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Let (M, ω, J) be a Kähler manifold. The so-called Lefschetz
operator is defined as follows:

L : Hk(M) −→ Hk+2(M), L([α]) = [ω ∧ α].

Theorem (Hard Lefschetz theorem)

Let (Mn, ω, J) be a compact Kähler manifold. The homomorphism

Lr : Hn−r (M) −→ Hn+r (M), L([α]) = [ω ∧ α].

is an isomorphism for all r ≥ 0.
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Let Λ: Hk(M) −→ Hk−2(M) be the formal adjoint of L. A k-form
α is called effective (or primitive), if Λα = 0. Let Pk be the
space of all effective k-forms.

The hard Lefschetz theorem then implies the following
isomorphism, which is the Lefschetz decomposition:

Hk(M) =
⊕
r≥0

Lr (Pk−2r ).
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Section 2

Quaternionic case
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Let I , J,K be three almost complex structures on a 4n-dimensional
manifold M, such that they satisfy I ◦ J = K and its cyclic
permutations, then the ordered triple H = (I , J,K ) on M is called
an almost hypercomplex structure.

An almost quaternionic
structure on the manifold M is a rank 3 vector subbundle Q of
the endomorphism bundle End(TM) which locally is spanned by an
almost hypercomplex structure H = (I , J,K ) which are
transformed by SO(3) on the their respective domains of existence.
A quaternionic structure on the manifold M is an almost
quaternionic structure Q such that there exists a torsionless
connection ∇ whose extension to End(TM) preserves the
subbundle Q, i.e. ∇Q ⊂ Q. On an almost quaternionic manifold
(M,Q) the metric g is quaternion Hermitian if it is Hermitian
with respect to the local basis (I , J,K ) of Q. It is quaternion
Kähler if it is quaternion Hermitian and Q is ∇-parallel for the
Levi-Civita connection of g .
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Quaternion Kähler manifolds are Riemannian manifolds (M, g) of
real dimension 4n whose holonomy group can be reduced to
Sp(n).Sp(1).

In dimension 4(n = 1) this condition means only
that the manifold is Riemannian as Sp(1).Sp(1) = SO(4).
Therefore this condition is meaningful for n ≥ 2.
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Section 3

Foliation
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Foliated manifolds

Let (M,F) be a Riemannian foliation. Then it is defined by a
cocycle U = {Ui , fi , kij}i ,j∈I that is modeled on a Riemannian
manifold (N, ḡ) such that

1 fi : Ui → N is a submersion with connected fibers;

2 kij : fj(Ui ∩ Uj) → fi (Ui ∩ Uj) are local isometries of (N, ḡ);

3 fi = kij fj on Ui ∩ Uj .

10 / 31



Kähler case Quaternionic case Foliation Hodge theory for basic forms References

Definition

A foliation F is transversely quaternion Kähler if it is defined by a
cocycle U = {Ui , fi , gij}i ,j∈I modeled on a quaternion Kähler
manifold (N0, g0,Q0) and the local diffeomorphisms gij are local
automorphisms of the quaternion Kähler structure of (N0, g0,Q0),
i.e., the gij are local isometries and the induced mappings g̃ij of
End(TN0) preserve the subbundle Q0 of rank 3.
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In the language of foliated structures this condition can be
formulated as follows.

Let N(M,F) = TM/TF be the normal
bundle of the foliation F . The vector bundle End(N(M,F))
admits the natural foliation FEnd of dimension p which is defined
by a cocycle FEnd = {Vi , f̃i , g̃ij}i ,j∈I modeled on End(TN0) where
f̃ (A) = df ◦ A ◦ (df |N(M,F))

−1. With this in mind we can define a
foliated quaternion Kähler structure.
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Definition

A foliated quaternion Kähler structure on a foliated Riemannian
manifold (M,F) is given by the following data:

1 g is a foliated Riemannian metric in N(M,F);

2 a 3-dimensional foliated subbundle Q of End(N(M,F)) which
is locally spanned by 3 almost complex foliated structures;

3 the metric g is Hermitian with respect to these local almost
complex structures;

4 the subbundle Q is parallel with respect to the foliated
Levi-Civita connection of g .
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Therefore a foliated quaternion Kähler structure on a foliated
Riemannian manifold (M,F) will be denoted by (M,F , g ,Q).

At
each point x ∈ Ui , there exist 3 foliated almost complex structures
Ix , Jx , and Kx on an open neighbourhood Ux .Then on Ux we
define the 2-forms

ΩI (u, v) = g(Iu, v), ΩJ(u, v) = g(Ju, v), and ΩK (u, v) = g(Ku, v),

where u, v ∈ N(M,F).

The 4-form Ω

Ω = ΩI ∧ ΩI +ΩJ ∧ ΩJ +ΩK ∧ ΩK

is well-defined, i.e., it is independent of the choice of the structures
I , J, and K .
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Section 4

Hodge theory for basic forms
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On a foliated Riemannian manifold (M, g ,F) the set of all basic
k-forms is

Ak(M,F) = {α ∈ Ak(M) : iXα = 0, iXdα = 0, for all vectorsX ∈ TF},

which is a subcomplex of Ak(M) and we denote its cohomology by
Hk(M,F).

The restriction of the bundle-like metric to the normal bundle of
the foliation of the Riemannian foliated manifold (M, g ,F) defines
∗̄ operator,

∗̄ : Ak(M,F) → A4n−k(M,F).
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On the Riemannian manifold (M, g) we have the ∗-operator acting
on the complex of smooth forms:

∗ : Ak(M) → Am−k(M).

On the subcomplex Ak(M,F) of basic forms these two operators
are related by the formula

∗̄α = (−1)p(q−k) ∗ (α ∧ χF ),

for any α ∈ Ak(M,F), where χF is the volume form of leaves.
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In Ak(M,F) we have the standard scalar product

⟨α, β⟩b =

∫
M
α ∧ ∗̄β ∧ χF ,

which is the restriction of the standard scalar product on Ak(M).

A Riemannian foliation on a compact manifold is said to be taut if
there exists a Riemannian metric that makes all its leaves minimal
submanifolds.Tautness is characterized by the nonvanishing of the
top dimensional basic cohomology, i.e., Hq(M,F) ̸= 0. In this case
we say that the foliation is cohomologically taut. In fact, this
Riemannian metric can be chosen to be bundle-like.
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The formal adjoint δb of d in the complex Ak(M,F) with the
scalar product ⟨. , . ⟩b is the operator

δb = (d − κ∧)∗̄ : Ak(M,F) → Ak−1(M,F),

where κ is the mean curvature form of the leaves,

and

(d − κ∧)∗̄(β) = (−1)q(k+1)+1∗̄(d − κ)∗̄β,

for any β ∈ Ak(M,F). If the leaves of F are minimal submanifolds
for the bundle-like metric g , then κ = 0 and δb = d ∗̄. We define
the basic Laplacian as

∆b = δbd + dδb

A basic form α is called harmonic iff ∆bα = 0. The basic Hodge
theorem for compact Riemannian foliated manifolds asserts that α
is harmonic iff dα = 0 = δbα.
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Using the 4-form Ω, we define L and Λ operators on the complex
A∗(M,F):

L : Ak(M,F) → Ak+4(M,F); L(α) = Ω ∧ α

Λ: Ak(M,F) → Ak−4(M,F); Λ(α) = ∗̄(Ω ∧ ∗̄α)

Basic forms that are annihilated by Λ are called effective.
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On a compact manifold with a taut foliation one can define scalar
products ⟨. , . ⟩ and ⟨. , . ⟩b on Ak(M) and Ak(M,F), respectively,
as

1 ⟨ω, ω′⟩ =
∫
M ∗(ω ∧ ∗ω′) =

∫
M ω ∧ ∗ω′,

2 ⟨ω, ω′⟩b =
∫
M ∗̄(ω ∧ ∗̄ω′) =

∫
M ω ∧ ∗̄ω′ ∧ χF .

Using this scalar product we have for any ω ∈ Ak(M,F) and
ω′ ∈ Ak+4(M,F)

⟨Lω, ω′⟩b = ⟨ω,Λω′⟩b.

21 / 31



Kähler case Quaternionic case Foliation Hodge theory for basic forms References

On a compact manifold with a taut foliation one can define scalar
products ⟨. , . ⟩ and ⟨. , . ⟩b on Ak(M) and Ak(M,F), respectively,
as

1 ⟨ω, ω′⟩ =
∫
M ∗(ω ∧ ∗ω′) =

∫
M ω ∧ ∗ω′,

2 ⟨ω, ω′⟩b =
∫
M ∗̄(ω ∧ ∗̄ω′) =

∫
M ω ∧ ∗̄ω′ ∧ χF .

Using this scalar product we have for any ω ∈ Ak(M,F) and
ω′ ∈ Ak+4(M,F)

⟨Lω, ω′⟩b = ⟨ω,Λω′⟩b.

21 / 31



Kähler case Quaternionic case Foliation Hodge theory for basic forms References

Theorem (M., R. Wolak)

Let (M, g ,F) be a (4n + p)-dimensional Riemannian foliated
manifold whose p-dimensional foliation F is transversely
quaternion Kähler. Let ω be a basic differential form on (M,F) of
degree p ≤ n + 1. Then

ω =

[p/4]∑
i=0

Liωp−4i
e

where ωk
e is an effective basic k-form.
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Let (M,F) be a compact Riemannian foliated manifold. Assume
that

1) its foliated normal bundle (N(M,F),FN) admits a reduction
to a connected subgroup G of O(q),

2) the corresponding foliated G -reduction B((M,F),G ,FG ) of
the foliated frame bundle L((M,F),FL) admits a foliated
connection without torsion.
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The fiber bundle
∧k Nx(M,F)∗ can be understood as the

associated bundle of L((M,F),FL) with the standard fiber∧k(Rq∗).The space of sections of this bundle we denote by Ak(N).
Since the normal frame bundle L(M,F) is foliated, the foliation FL

induces a foliation Fk
L of the fiber bundle

∧k Nx(M,F)∗. The
space of k-basic forms Ak(M,F) is a subspace of Ak(N). If the
normal frame bundle L(M,F) admits a foliated G -reduction
B((M,F),G ,FG ), the bundle

∧k Nx(M,F)∗ can be understood
as the associated fiber bundle of B((M,F),G ,FG ) with the
standard fiber

∧k(Rq∗). The natural induced foliations coincide.
Let W ⊂

∧k(Rq∗) be an invariant subspace of
∧k(Rq∗) under the

standard action of G . There is the standard scalar product on∧k(Rq∗) for which the induced action of G is isometric.
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The associated fiber bundle W of B((M,F),G ,FG ) with the
standard fiber W can be understood as a foliated vector subbundle
of the foliated vector bundle (

∧k Nx(M,F)∗,Fk
L ). Therefore a

k-differential form α which corresponds to a section of W is said to
be of type W . The space of these W-valued sections we denote
also by W. The projection PW : Ak(N) → W sends basic forms
into basic forms as the operation is done point by point. Next we
show that the result of S.S. Chern can be reformulated for the
basic Laplacian ∆b.
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Proposition (M., R. Wolak)

Let W ⊂
∧k(Rq∗) be an invariant subspace of

∧k(Rq∗) under the
standard action of G, PW be the projection PW : Ak(M,F) → W
and ∆b be the basic Laplacian, then

PW∆b = ∆bPW .

Moreover, let W1, . . . ,Ws be irreducible invariant subspaces of∧k(Rq∗) for the action of the group G. Then if α is a harmonic
basic k-form, the k-forms PW1α, . . . ,PWsα are basic and harmonic.
Moreover, if α is a basic k-form of type W so is the form ∆bα.
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Theorem (M., R. Wolak)

Let (M,F) be a compact Riemannian foliated manifold of
codimension 4q. If the foliation F is cohomologically taut and
transversely quaternionic Kähler then the basic Betti numbers B i

F
of (M,F) satisfy the inequalities:

B i
F ≤ B i+4

F ≤ . . . ≤ B i+4r
F

for i + 4r ≤ q + 1, i = 0, 1, 2 or 3.
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Theorem (M., R. Wolak)

Let (M, g ,Q,F) be a cohomologically taut quaternion Kähler
foliated manifold of codimension 4q. Then

1) for any k < q the linear map L : Hk(M,F) → Hk+4(M,F) is
injective,

2) and there is the direct sum decomposition
Hk(M,F) =

∑
0≤s≤[k/4] L

sHk−4s
e (M,F), k ≤ q + 3.
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Thank you.
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