Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

Miguel Sánchez, Univ. Granada & IMAG

Based on A. Elshafei, AC. Ferreira, M. Sánchez, A. Zeghib: Tran. AMS (2024)

Symmetry and Shape. U. Santiago, 27/09/24

My talk is entitled

Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

Eduardo is a distinguished developer of S-R. G. in the world

- Osserman manifolds in semi-Riemannian geometry (2004) E García-Río, DN Kupeli, R Vázquez-Lorenzo
- Semi-Riemannian maps and their applications (2013) E García-Río, DN Kupeli
- The geometry of Walker manifolds (2022)
 Peter Gilkey, Miguel Brozos-Vázquez, Eduardo García-Río,
 Stana Nikcević, Ramón Vázquez-Lorenzo

Further topics as:

- Lorentzian Ricci solitons,
- Null and infinitesimal isotropy in semi- Riemannian geometry,
- Lorentzian manifolds with special curvature operators,
- Curvature of indefinite almost contact manifolds...

In particular, a distinguished promoter of Lorentzian G. in Spain

First Int. Meet. Lorentzian Geometry, Benalmádena (2021)

A sort of Big-Bang for Spanish Lorentzian Geometry

In particular, a distinguished promoter of Lorentzian G. in Spain

First Int. Meet. Lorentzian Geometry, Benalmádena (2021)

A sort of Big-Bang for Spanish Lorentzian Geometry ...and for a community of very good researchers and very good friends

Eduardo is also a distinguished promoter of the group of very good researchers and very good friends **hosting us in Santiago**

Coming back, my talk is entitled

Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

and it is based on joint work with

A. Elshafei, A.C. Ferreira and A. Zeghib

(Trans AMS'24)

Main aim

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group. If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

Main aim

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group. If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

In particular, this includes all the known cases:

- compact (Marsden, Indiana'73)
- 2-step nilpotent (Guediri, Torino'94)
- semidirect $K \times_{\rho} \mathbb{R}^n$
 - K direct product of compact and abelian groups
 - ho(K) pre-compact in GL(n,R)

(in particular, E(2) in Bromberg & Medina, SIGMA'08)

Main aim

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group.

If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

In particular, this includes all the known cases:

- compact (Marsden, Indiana'73)
- 2-step nilpotent (Guediri, Torino'94)
- semidirect $K \times_{\rho} \mathbb{R}^n$
 - K direct product of compact and abelian groups
 - ho(K) pre-compact in GL(n,R)

(in particular, E(2) in Bromberg & Medina, SIGMA'08)

Heuristic approach, starting at Marsden's:

compact homogeneous semi-Riemannian manifolds are complete

Planning:

- Background and examples
- 2 Marsden theorem:
 - Original proof for compact homogeneous spaces
- 3 Clairaut metrics on Lie groups
 - A variant of Marsden's proof
- 4 Linear growth and geodesic completeness
- 5 Growth of the adjoint representation and proof of Thm.
- **6** *Discussion:* $Aff(\mathbb{R})$
- **7** Groups of linear growth

Left invariant metrics g on a Lie group G:

■ Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

Left invariant metrics g on a Lie group G:

- Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$
- Noble birth: Euler solution of solid rigid motion → geodesics of a left-invariant g on SO(3) (as in Euler-Arnold eqns, Arnold, Grenoble'66)

Left invariant metrics g on a Lie group G:

- Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$
- Noble birth: Euler solution of solid rigid motion

 → geodesics of a left-invariant g on SO(3)
 (as in Euler-Arnold eqns, Arnold, Grenoble'66)
- Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's

Left invariant metrics g on a Lie group G:

- Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$
- Noble birth: Euler solution of solid rigid motion

 → geodesics of a left-invariant g on SO(3)
 (as in Euler-Arnold eqns, Arnold, Grenoble'66)
- Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's
- Recent application to semi-Riemannian Geometry:
 ∃ compact Lorentzian manifold with no closed geodesic (Allout, Belkacem, Zeghib, GAFA'24)
 - Enough simple to control all of the geodesics
 - Highly subtle behaviour

Left invariant metrics g on a Lie group G:

- Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$
- Noble birth: Euler solution of solid rigid motion

 → geodesics of a left-invariant g on SO(3)
 (as in Euler-Arnold eqns, Arnold, Grenoble'66)
- Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's
- Recent application to semi-Riemannian Geometry:
 ∃ compact Lorentzian manifold with no closed geodesic (Allout, Belkacem, Zeghib, GAFA'24)
 - Enough simple to control all of the geodesics
 - Highly subtle behaviour

But the metric is incomplete (the party goes on!)

Geodesic completeness

- Hopf Rinow th.: basic property for Riemannian manifolds
- Subtle in the semi-Riemannian case (no Hopf-Rinow):

```
even { homogeneous or compact } Lorentz mfd possibly incomplete
```

Geodesic completeness

- Hopf Rinow th.: basic property for Riemannian manifolds
- Subtle in the semi-Riemannian case (no Hopf-Rinow):

Note. Completeness important for General Relativity:

 Singularity thms (as Penrose's) prove incompleteness but no curvature blow up

(Recall: homogeneous Riemannian mfds are complete)

(Recall: homogeneous Riemannian mfds are complete)

- **1** Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- 2 Lightlike coordinates $(u = (x + y)/\sqrt{2}, v = (-x + y)/\sqrt{2})$

$$g_0 = -2dudv \ (:= -du \otimes dv - dv \otimes du), \qquad \forall (u, v) \in \mathbb{R}^2$$

3 Restrict to u > 0, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

(Recall: homogeneous Riemannian mfds are complete)

- **1** Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- 2 Lightlike coordinates $(u = (x + y)/\sqrt{2}, v = (-x + y)/\sqrt{2})$

$$g_0 = -2dudv \ (:= -du \otimes dv - dv \otimes du), \qquad \forall (u, v) \in \mathbb{R}^2$$

3 Restrict to u > 0, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

Admits the isometries:

- **1** For each $\lambda > 0$: $\phi_{\lambda}(u, v) = (\lambda u, v/\lambda)$
- 2 For each $b \in \mathbb{R}$, translations $(u, v) \mapsto (u, v + b)$

(Recall: homogeneous Riemannian mfds are complete)

- 1 Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- 2 Lightlike coordinates $(u = (x + y)/\sqrt{2}, v = (-x + y)/\sqrt{2})$

$$g_0 = -2dudv \ (:= -du \otimes dv - dv \otimes du), \qquad \forall (u, v) \in \mathbb{R}^2$$

3 Restrict to u > 0, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

Admits the isometries:

- 1 For each $\lambda > 0$: $\phi_{\lambda}(u, v) = (\lambda u, v/\lambda)$
- **2** For each $b \in \mathbb{R}$, translations $(u, v) \mapsto (u, v + b)$

 $\rightsquigarrow M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ becomes a homogeneous manifold, trivially incomplete

Choose
$$\lambda=2,\ \phi_2(u,v)=(2u,v/2)$$

$$G=\{\phi_2^k:k\in\mathbb{Z}\}$$

Choose
$$\lambda=2$$
, $\phi_2(u,v)=(2u,v/2)$
$$G=\{\phi_2^k:k\in\mathbb{Z}\}$$

Let G act on (open subsets of) \mathbb{L}^2 :

 \mathbf{I} G is a non-precompact isometry subgroup

Choose
$$\lambda=2,\ \phi_2(u,v)=(2u,v/2)$$

$$G=\{\phi_2^k:k\in\mathbb{Z}\}$$

- $oldsymbol{G}$ is a non-precompact isometry subgroup
- 2 On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $\Rightarrow (\mathbb{L}^2 \setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold

Choose
$$\lambda=2$$
, $\phi_2(u,v)=(2u,v/2)$
$$G=\{\phi_2^k:k\in\mathbb{Z}\}$$

- f G is a non-precompact isometry subgroup
- 2 On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $\longrightarrow (\mathbb{L}^2 \setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold
- On $M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ action properly discontinuous $\rightsquigarrow M/G$ is the Misner cylinder

Choose
$$\lambda=2$$
, $\phi_2(u,v)=(2u,v/2)$
$$G=\{\phi_2^k:k\in\mathbb{Z}\}$$

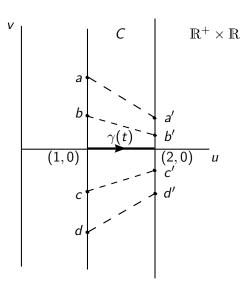
- f G is a non-precompact isometry subgroup
- 2 On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $(\mathbb{L}^2 \setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold
- 3 On $M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ action properly discontinuous $\rightsquigarrow M/G$ is the Misner cylinder obviously incomplete
 - ... and with a closed incomplete geodesic

Example 3: incomplete closed geodesics in Misner's

■ Misner cylinder *M/G*

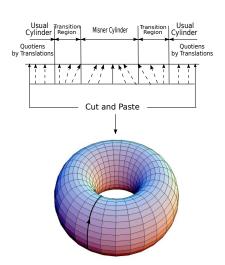
$$M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$$

 Misner cylinder has an incomplete closed (lightlike) geodesic!



Example 4: Incomplete Lorentzian tori (intuitive)

- Misner cylinder shows that an incomplete geodesic may remain in a compact region.
- Intuitively, it's easy to go from the cylinder to a torus!



Example 4: Incomplete Lorentzian tori (explicit)

 (\mathbb{R}^2, g) in usual coordinates

$$g = 2dxdy - 2\tau(x)dy^2,$$

where $\tau: \mathbb{R} \to \mathbb{R}$ satisfies:

- (1) 1-periodic \longrightarrow The metric g is inducible in the quotient torus $\mathbb{R}^2/\mathbb{Z}^2$
- (2) $\tau(0) = 0$. \sim The coordinate axis y is the image of a lightlike geodesic
- (3) $\tau'(0) \neq 0$. \sim Such a lightlike geodesic is incomplete:
 - Christoffel symbol: $\Gamma_{vv}^{y}(x,y) = \frac{1}{2}g^{yx} \left(2\partial_{v}g_{xy} 2\partial_{x}g_{yy}\right) = \tau'(x),$
 - Equation for the component y(t): $y''(t) + \tau'(0)y'(t)^2 = 0$.
 - Incomplete *y*-solution: $y(t) = \ln(t)/\tau'(0)$

Example 4: Incomplete Lorentzian tori: Killing family

Notes:

1 Clifton-Pohl's torus : $\mathbb{R}^2/\mathbb{Z}^2$

$$g = \pi^2 \cos 2\pi x (2dxdy) - \pi^2 \sin 2\pi x (dx^2 - dy^2)$$

1st example compact+incomplete

- 2 Lorentzian tori with a Killing field K ($K = \partial_y$ above) incomplete $\Leftrightarrow g(K, K)$ non-constant sign \Leftrightarrow space, time & lightlike incomplete geod.
 - S., Trans AMS '97 (systematic study)
 - Many subtler properties: Mehidi, Math Z'22, Geom. Ded.'23

2. Marsden theorem

Theorem (Marsden'73)

A compact homogeneous semi-Riemannian manifold is complete.

2. Marsden theorem

Theorem (Marsden'73)

A compact homogeneous semi-Riemannian manifold is complete.

Proof. Let $\gamma:[0,b)\to M$, $b<\infty$ be a geodesic:

- **I** General: γ' in compact $C_{\gamma} \subset TM \Rightarrow \gamma$ extends smoothly to b
- 2 Under our hyp.: such a C_{γ} exists (and will contain $\gamma'([0,\infty))$

1 γ' in a compact subset $C_{\gamma} \subset TM \Rightarrow \gamma$ extensible to b

Lemma (Step 1)

For any affine conn. ∇ on M:

• $\{\gamma'(t_m)\}_m$ converges in TM for some $\{t_m\} \nearrow b$ $\implies \gamma$ is extendible to b as a geodesic 1 γ' in a compact subset $C_{\gamma} \subset TM \Rightarrow \gamma$ extensible to b

Lemma (Step 1)

For any affine conn. ∇ on M:

 $\{\gamma'(t_m)\}_m$ converges in TM for some $\{t_m\} \nearrow b$ $\implies \gamma$ is extendible to b as a geodesic

Proof. Consequence of $\rho := \gamma'$ is an integral curve of the geodesic vector field \mathcal{G} on TM.

(existence and uniqueness of its local flow through the limit) \square

2. $\exists C_{\gamma}$ compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be $(m \ge dim M)$ a base of Killing algebra and

$$\begin{array}{lll} c_i := & g(\gamma'(0), K_i), & i = 1, \dots m \\ C_{\gamma} := & \{ v \in TM : c_i = g(v, K_i), & i = 1, \dots m \} \end{array}$$

- (a) C_{γ} contains $\gamma'(t), \forall t \in [0, b)$
- (b) C_{γ} is compact

Proof. (a) For any geodesic γ and Killing K:

$$g(\gamma', K)$$
 is constant

2. $\exists C_{\gamma}$ compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be $(m \ge dim M)$ a base of Killing v.f. and put

$$c_i := g(\gamma'(0), K_i), i = 1, ... m$$

 $C_{\gamma} := \{ v \in TM : c_i = g(v, K_i), i = 1, ... m \}$

- (a) C_{γ} contains $\gamma'(t), \forall t \in [0, b)$
- (b) C_{γ} is compact

Proof. (b) Steps:

- **1** C_{γ} is closed (trivial)
- \square $\Pi: TM \to M$ restricted to C_{γ} injective (c_i) 's overdetermine v)

2. $\exists C_{\gamma}$ compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be $(m \ge dim M)$ a base of Killing v.f. and put

$$c_i := g(\gamma'(0), K_i), i = 1, ... m$$

 $C_{\gamma} := \{ v \in TM : c_i = g(v, K_i), i = 1, ... m \}$

- (a) C_{γ} contains $\gamma'(t), \forall t \in [0, b)$
- (b) C_{γ} is compact

Proof. (b) Steps:

- **1** C_{γ} is closed (trivial)
- \blacksquare $\Pi: TM \to M$ restricted to C_{γ} injective $(c_i$'s overdetermine v)
- 3 $\Pi(C_{\gamma})$ is closed, thus compact (as so is M): At each $p \in \partial(\Pi(C_{\gamma}))$, choose n Killing independent at p, a normal neigh. and use overdetermination of geod. through p

2. $\exists C_{\gamma}$ compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be $(m \ge \dim M)$ a base of Killing v.f. and put

$$c_i := g(\gamma'(0), K_i), i = 1, ... m$$

 $C_{\gamma} := \{ v \in TM : c_i = g(v, K_i), i = 1, ... m \}$

- (a) C_{γ} contains $\gamma'(t), \forall t \in [0, b)$
- (b) C_{γ} is compact

Proof. (b) Steps:

- **1** C_{γ} is closed (trivial)
- **2** $\Pi: TM \to M$ restricted to C_{γ} injective (c_i) 's overdetermine v)
- $\Pi(C_{\gamma})$ is closed, thus compact (as so is M): At each $p \in \partial(\Pi(C_{\gamma}))$, choose n Killing independent at p, a normal neigh, and use overdetermination of geod, through p
- 4 $\Pi|_{C_{\gamma}}$ is continuously invertible (as v varies cont. with $c_i's$) \square

Notes. Going further

- Weaken: homogeneous → conformally-homogeneus
 - $\gamma'([0,b))$ is proven to lie in a compact subset of TM
 - ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, possibly not

Notes. Going further

- Weaken: homogeneous → conformally-homogeneus
 - $\gamma'([0,b)))$ is proven to lie in a compact subset of TM
 - ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, possibly not
- Semi-Riemannian *g* of index *s*:
 - s pointwise indep. timelike (g(K, K) < 0) conf. Killing v.f. \Rightarrow completeness
 - Extensible to **non-compact M** case under some assumptions

(Romero, S., Proc AMS'95/ Geom. Dedic.'94)

Notes. Going further

- Weaken: homogeneous → conformally-homogeneus
 - $\gamma'([0,b))$ is proven to lie in a compact subset of TM
 - ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, possibly not
- Semi-Riemannian g of index s:
 - s pointwise indep. timelike (g(K, K) < 0) conf. Killing v.f. \Rightarrow completeness
 - Extensible to **non-compact M** case under some assumptions

(Romero, S., Proc AMS'95/ Geom. Dedic.'94)

- **Corollary** [precedent of ours] for non-compact Lorentz *M*:
 - \exists timelike Killing K with $|g(K, K)| \ge \epsilon > 0$
 - It is complete the ("Wick-rotated") Riemann $g_R := g 2(K^{\flat} \otimes K^{\flat})/g(K,K)$
 - \Rightarrow complete g

Notes. Going even beyond

- Compact Lorentz with *K* lightlike
 - K Killing \Rightarrow complete, Hanounah, Mehidi, arxiv: 2403.15722
 - K Parallel \Rightarrow complete, Mehidi, Zeghib, arxiv: 2205.07243
 - Applicable even weakening compactnes
 - Improve Leistner, Schliebner Math Ann '16 (pp-waves, Abelian holonomy)

Notes. Going even beyond

- Compact Lorentz with *K* lightlike
 - K Killing \Rightarrow complete, Hanounah, Mehidi, arxiv: 2403.15722
 - K Parallel \Rightarrow complete, Mehidi, Zeghib, arxiv: 2205.07243
 - Applicable even weakening compactnes
 - Improve Leistner, Schliebner Math Ann '16 (pp-waves, Abelian holonomy)
- For (M, ∇) compact affine (possibly non-symmetric) Precompact holonomy \Rightarrow completeness (Aké, S., JMAA '16)

3. Clairaut metrics and uniformities on Lie groups

■ G admits a natural uniformity

Base of entourages: $\{V_U : U \text{ is a neighbourhood of } 1\}$ where $V_U := \{(p,q) \in G \times G : q^{-1}.p \in U\}.$

3. Clairaut metrics and uniformities on Lie groups

- G admits a natural uniformity
 Base of entourages: $\{V_U : U \text{ is a neighbourhood of } 1\}$ where $V_U := \{(p,q) \in G \times G : q^{-1}.p \in U\}.$ \longrightarrow Cauchy filters, completeness
- All the left invariant **Riemanian** metrics g_R , g_R' are:
 - Complete (homogeneous positive def. spaces)
 - Bilipschitz bounded: $c g_R \le g_R' \le g_R/c$. $(c \in \mathbb{R})$
 - \rightsquigarrow induce the natural uniformity on G

G Lie group, g left invariant semi-Riemannian metric, $p \in G$

 \bullet (e_i) basis Lie algebra $\mathfrak{g} = \mathcal{T}_1 G$,

- G Lie group, g left invariant semi-Riemannian metric, $p \in G$
 - \bullet (e_i) basis Lie algebra $\mathfrak{g} = T_1 G$,

Extend e_i to v.f. $X_i, Y_i (X_i(1) = Y_i(1) = e_i)$:

■ Left invariant: $X_i(p) = p.e_i$ \rightsquigarrow frame on TG

G Lie group, g left invariant semi-Riemannian metric, $p \in G$

• (e_i) basis Lie algebra $\mathfrak{g} = T_1 G$,

Extend e_i to v.f. $X_i, Y_i (X_i(1) = Y_i(1) = e_i)$:

- Left invariant: $X_i(p) = p.e_i$ \rightsquigarrow frame on TG
- Right invariant: $Y_i(p) = e_i . p$
 - \blacksquare Y_i Killing for g

G Lie group, g left invariant semi-Riemannian metric, $p \in G$

 \bullet (e_i) basis Lie algebra $\mathfrak{g} = T_1G$,

Extend e_i to v.f. $X_i, Y_i (X_i(1) = Y_i(1) = e_i)$:

- Left invariant: $X_i(p) = p.e_i$ \rightsquigarrow frame on TG
- Right invariant: $Y_i(p) = e_i . p$
 - Y_i Killing for g
- Clairaut forms and coframe: $\omega^i := g(Y_i, \cdot)$
 - For any geodesic γ : $\omega^i(\gamma') \equiv c \in \mathbb{R}$
 - Transformation law ($\dagger \equiv g$ -adjoint operator):

$$\omega_p^i(p.u) = g_p(Y_i(p), p.u) = g_p(e_i.p, p.u) = g_1(\mathrm{Ad}_{p^{-1}}(e_i), u)
= g_1(e_i, ((\mathrm{Ad}_p)^{-1})^{\dagger})(u)) = \omega_1^i((\mathrm{Ad}_p^i)^{-1}(u)).$$

no left (nor right) invariant

3. Clairaut metric: concept

Definition

Clairaut metric (associated to a Clairaut coframe: g, (e_i)):

$$h:=\sum \omega^i\otimes\omega^i$$

- h Riemannian metric on G
- Transformation rule:

$$h_p(p.u, p.v) = \sum_i g_1((\mathrm{Ad}_{p^{-1}})(e_i), u) g_1((\mathrm{Ad}_{p^{-1}})(e_i), v).$$

3. Clairaut metric: concept

Definition

Clairaut metric (associated to a Clairaut coframe: g, (e_i)):

$$\mathit{h} := \sum \omega^{\mathit{i}} \otimes \omega^{\mathit{i}}$$

- h Riemannian metric on G
- Transformation rule:

$$h_p(p.u, p.v) = \sum_i g_1((\mathrm{Ad}_{p^{-1}})(e_i), u) g_1((\mathrm{Ad}_{p^{-1}})(e_i), v).$$

- Change of bases (e_i) , (\hat{e}_i) with Clairaut h, \hat{h} :
 - bi-Lipschitz bounded (\Rightarrow uniformly equivalent distances) Moreover: Transition matrix M orthonormal $\Longrightarrow h = \hat{h}$

3. Clairaut metric: concept

Definition

Clairaut metric (associated to a Clairaut coframe: g, (e_i)):

$$\mathit{h} := \sum \omega^{\mathit{i}} \otimes \omega^{\mathit{i}}$$

- h Riemannian metric on G
- Transformation rule:

$$h_p(p.u, p.v) = \sum_i g_1((\mathrm{Ad}_{p^{-1}})(e_i), u) g_1((\mathrm{Ad}_{p^{-1}})(e_i), v).$$

- Change of bases (e_i) , (\hat{e}_i) with Clairaut h, \hat{h} :
 - bi-Lipschitz bounded (\Rightarrow uniformly equivalent distances) Moreover: Transition matrix M orthonormal $\Longrightarrow h = \hat{h}$

Theorem

If the Clairaut uniformity [or metric h] is complete then g is complete.

Theorem

If the Clairaut uniformity [or metric h] is complete then g is complete.

Proof. Let $\gamma:[0,b)\to M, b<\infty$ a geodesic:

• $h(\gamma', \gamma') \equiv C$, thus, γ has finite h-length

Theorem

If the Clairaut uniformity [or metric h] is complete then g is complete.

Proof. Let $\gamma:[0,b)\to M, b<\infty$ a geodesic:

- $h(\gamma', \gamma') \equiv C$, thus, γ has finite h-length
- *h* is complete (and Riemannian):

```
\gamma' lies in a compact subset of TM
```

$$ightsquigarrow \gamma$$
 extensible as a geodesic \Box

Corollary (Special case of Marsden's)

Any left invariant metric g on a compact Lie group G is complete

Proof. Its Clairaut h is complete because M is compact \square

A compact homogeneous semi-Riemannian manifold is complete.

A compact homogeneous semi-Riemannian manifold is complete.

- Any base (e_j) of T_pM extends to Killing $(Y_j^{(p)})$
- Pointwise independent on a neighborhood $U_p \ni p$

A compact homogeneous semi-Riemannian manifold is complete.

- Any base (e_j) of T_pM extends to Killing $(Y_j^{(p)})$
- Pointwise independent on a neighborhood $U_p \ni p$

Clairaut
$$h_p = \sum \omega_{Y_i^{(p)}}^2$$
 is now

- Positive definite on U_p
- Positive semidefinite on M

A compact homogeneous semi-Riemannian manifold is complete.

- Any base (e_j) of T_pM extends to Killing $(Y_j^{(p)})$
- Pointwise independent on a neighborhood $U_p \ni p$

Clairaut
$$h_p = \Sigma \omega_{Y_i^{(p)}}^2$$
 is now

- Positive definite on U_p
- Positive semidefinite on M

Compactness of
$$M$$
: finite covering U_{p_k} , $k = 1, ..., s$ $\longrightarrow h = \sum h_{p_k}$ is positive def. (and complete) \leadsto the uniformity of h is complete $\leadsto g$ is complete \square

In the remainder:

- Given left invariant g, construct Clairaut h \rightsquigarrow choice of basis (e_i) of $g = T_1G$
- 2 Our aim will be to prove completeness of h (and thus of g)

lacktriangle Auxiliary left invariant (complete) Riemannian metric \tilde{g}

- lacktriangle Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
 - lacksquare (e_i) in $\mathfrak{g} = T_1G$ orthonormal (Sylvester) for g_1 and \tilde{g}_1

Then, h is independent of the common orthonormal (e_i)

- lacktriangle Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
 - lacksquare (e_i) in $\mathfrak{g} = T_1 G$ orthonormal (Sylvester) for g_1 and \tilde{g}_1

Then, h is independent of the common orthonormal (e_i)

Expression for *h*:

$$h_p(p.u, p.v) = \tilde{\mathbf{g}}_1(\mathrm{Ad}_{p^{-1}}^*(\psi(u)), \mathrm{Ad}_{p^{-1}}^*(\psi(v)))$$

- * denotes adjoint respect to §₁
- $\psi : \mathfrak{g} \to \mathfrak{g}$ linear with $\psi(e_i) = \epsilon_i e_i$, $\epsilon_i := g_1(e_i, e_i)$ (ψ isometry and self-adjoint for g_1 and \tilde{g}_1)

- lacktriangle Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
 - $lackbox{lack}(e_i)$ in $\mathfrak{g}=T_1G$ orthonormal (Sylvester) for g_1 and $ilde{g}_1$

Then, h is independent of the common orthonormal (e_i)

Expression for *h*:

$$h_p(p.u, p.v) = \tilde{\mathbf{g}}_1(\mathrm{Ad}_{p^{-1}}^*(\psi(u)), \mathrm{Ad}_{p^{-1}}^*(\psi(v)))$$

- * denotes adjoint respect to §₁
- $\psi : \mathfrak{g} \to \mathfrak{g}$ linear with $\psi(e_i) = \epsilon_i e_i$, $\epsilon_i := g_1(e_i, e_i)$ (ψ isometry and self-adjoint for g_1 and \tilde{g}_1)

Summing up, h constructed from:

- **Euclidean** \tilde{g}_1 , its isometry ψ and adjoint operator *
- the adjoint representation of G: $Ad_q(v) = q \cdot v \cdot q^{-1}$.

Abstract setting:

■ M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \operatorname{dist}(x, x_0)$ for some $x_0 \in M$

Abstract setting:

- M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \operatorname{dist}(x, x_0)$ for some $x_0 \in M$
- *h* Riemannian m. find a criterion for completeness
 - $\blacksquare \| \cdot \|_h \ge \| \cdot \|_R \Longrightarrow h \text{ complete (trivial)}$

Abstract setting:

- M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \operatorname{dist}(x, x_0)$ for some $x_0 \in M$
- h Riemannian m. find a criterion for completeness
 - $\|\cdot\|_h \ge \|\cdot\|_R \Longrightarrow h \text{ complete (trivial)}$
 - Let $\varphi : [0, \infty[\rightarrow]0, \infty[$ be smooth s.t.:

$$\| v_x \|_h \ge \frac{\| v_x \|_R}{\varphi(d_R(x))}, \quad \forall x \in M$$

Optimal growth of φ to ensure completeness for h?

Abstract setting:

- M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \operatorname{dist}(x, x_0)$ for some $x_0 \in M$
- *h* Riemannian m. find a criterion for completeness
 - $\|\cdot\|_h \ge \|\cdot\|_R \Longrightarrow h \text{ complete (trivial)}$
 - Let $\varphi : [0, \infty[\rightarrow]0, \infty[$ be smooth s.t.:

$$\|v_x\|_h \ge \frac{\|v_x\|_R}{\varphi(d_R(x))}, \quad \forall x \in M$$

Optimal growth of φ to ensure completeness for h?

Estimate for $(M, g_R) = (\mathbb{R}, dx^2)$: divergent curve $\gamma(x) = x$, $x_0 = 0$

$$\mathsf{length}_h(\gamma) \geq \int_0^\infty \frac{d\mathsf{x}}{\varphi(|\mathsf{x}|)} = \infty$$

Proposition

If $\varphi: [0,\infty[\to]0,\infty[$ be satisfies

$$\int_0^\infty \frac{1}{\varphi(r)} dr = \infty$$

and

$$\| v_x \|_h \ge \frac{\| v_x \|_R}{\varphi(d_R(x))}, \quad \forall x \in M$$

then h is complete

In particular, when φ grows at most linearly,

$$\varphi(r) \le a + br$$
 for some $a, b > 0$

Proposition

If $\varphi : [0, \infty[\rightarrow]0, \infty[$ be satisfies

$$\int_0^\infty \frac{1}{\varphi(r)} dr = \infty$$

and

$$\| v_x \|_h \ge \frac{\| v_x \|_R}{\varphi(d_R(x))}, \quad \forall x \in M$$

then h is complete

In particular, when φ grows at most linearly,

$$\varphi(r) \le a + b r$$
 for some $a, b > 0$

Proof of the general case : reduce to dim 1, use Lipschitz regularity of d_R at the cut locus.

1 The affine bound is not optimal, f. ex., it suffices

$$\varphi(r) \le a + b r \log^k(1+r)$$
 for some $a, b, k \ge 0$

but seems natural for Lie groups

1 The affine bound is not optimal, f. ex., it suffices

$$\varphi(r) \le a + b r \log^k(1+r)$$
 for some $a, b, k \ge 0$

but seems natural for Lie groups

2 Choosing φ increasing: natural to estimate growth ...even if it loses generality

1 The affine bound is not optimal, f. ex., it suffices

$$\varphi(r) \le a + b \, r \log^k(1+r)$$

for some $a, b, k \ge 0$

but seems natural for Lie groups

- 2 Choosing φ increasing: natural to estimate growth ...even if it loses generality
- 3 The uniformities of h and g_R are not equal under such bounds

Note. Some related results on completeness and growth:

Note. Some related results on completeness and growth:

■ Completeness of spacelike submanifolds of Lⁿ: at most linear (subaffine) growth of the Euclidean length of unit normals Beem, Ehrlich Geom. Ded. '85

Note. Some related results on completeness and growth:

- Completeness of spacelike submanifolds of Lⁿ: at most linear (subaffine) growth of the Euclidean length of unit normals Beem, Ehrlich Geom. Ded. '85
- Completeness of trajectories accelerated by a potential V
 At most quadratic growth of V
 Abraham, Marsden book'87, Candela, Romero, S. ARMA'13
 Ehlers-Kundt conjecture (Flores, S. JDE'20)

Recap:

1 Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h

Recap:

- **1** Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g)

 → we have a criterion for completeness respect to aux. g_R
 (involving a linear bound)

Recap:

- **1** Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g)

 → we have a criterion for completeness respect to aux. g_R
 (involving a linear bound)
- 3 Our "Wick rotated" choice yielded $h_p(p.u, p.v) = \tilde{\mathbf{g}}_1(\operatorname{Ad}_{p^{-1}}^*(\psi(u)), \operatorname{Ad}_{p^{-1}}^*(\psi(v)))$ where everything Euclideanly controlled at $\mathfrak g$ but Ad

Recap:

- **1** Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g) \rightsquigarrow we have a criterion for completeness respect to aux. g_R (involving a linear bound)
- 3 Our "Wick rotated" choice yielded $h_p(p.u, p.v) = \tilde{\mathbf{g}}_1(\operatorname{Ad}_{p-1}^*(\psi(u)), \operatorname{Ad}_{p-1}^*(\psi(v)))$ where everything Euclideanly controlled at $\mathfrak g$ but Ad
- 4 Next: sufficient hypoth. on Ad to apply the criterion

Concept of (at most) linear growth for G

For left-invariant Riem. g_R on G with norm $\|\cdot\|$, let: $r:G\longrightarrow \mathbb{R}, \qquad r(p):=\operatorname{dist}_R(1,p)$ $\|\operatorname{Ad}_p\| = \operatorname{Max}_{\|u\|=1}\{\|\operatorname{Ad}_p(u)\|\}$ $= \lambda_+(p) := \operatorname{Max}\{\sqrt{\Lambda_i}:\Lambda_i \text{ is a eigenvalue of } \operatorname{Ad}_p^* \circ \operatorname{Ad}_p\}$

Concept of (at most) linear growth for G

For left-invariant Riem. g_R on G with norm $\|\cdot\|$, let:

$$r: G \longrightarrow \mathbb{R}, \qquad r(p) := \operatorname{dist}_R(1, p)$$

$$\begin{split} &\|\mathrm{Ad}_p\| &= \mathsf{Max}_{\|u\|=1}\{\|\mathrm{Ad}_p(u)\|\} \\ &= \lambda_+(p) &:= \mathsf{Max}\{\sqrt{\Lambda_i}: \Lambda_i \text{ is a eigenvalue of } \mathrm{Ad}_p^* \circ \mathrm{Ad}_p\} \end{split}$$

Definition

G has (at most) linear growth if there exist constants a, b > 0 such that for $p \in G$, $u \in \mathfrak{g}$, alternatively:

- $\|\operatorname{Ad}_p(u)\| \leq (a+b\,r(p))\|u\|$

■ Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. (σ from 1 to $p \Longrightarrow p^{-1}\sigma$ from p^{-1} to 1 and equal length)

- Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. (σ from 1 to $p \Longrightarrow p^{-1}\sigma$ from p^{-1} to 1 and equal length)
- Independent of chosen g_R

- Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. (σ from 1 to $p \Longrightarrow p^{-1}\sigma$ from p^{-1} to 1 and equal length)
- Independent of chosen g_R
- For the minimum eigenvalue $\lambda_{-}(p)$:

$$\lambda_{-}(p) = \frac{1}{\|\mathrm{Ad}_{p^{-1}}\|} = \frac{1}{\lambda_{+}(p^{-1})}, \qquad \|\mathrm{Ad}_{p}\|\|\mathrm{Ad}_{p^{-1}}\| \ge 1$$

- Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. (σ from 1 to $p \Longrightarrow p^{-1}\sigma$ from p^{-1} to 1 and equal length)
- Independent of chosen g_R
- For the minimum eigenvalue $\lambda_{-}(p)$:

$$\lambda_{-}(p) = \frac{1}{\|\mathrm{Ad}_{p^{-1}}\|} = \frac{1}{\lambda_{+}(p^{-1})}, \qquad \|\mathrm{Ad}_{p}\|\|\mathrm{Ad}_{p^{-1}}\| \ge 1$$

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of *h*:

$$h_{p}(p.u, p.u) = \tilde{g}_{1}(\mathrm{Ad}_{p^{-1}}^{*}(\psi(u)), \mathrm{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$= \tilde{g}_{1}(\psi(u), \mathrm{Ad}_{p^{-1}} \circ \mathrm{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$\geq \lambda_{-}(p^{-1})^{2} \tilde{g}_{1}(\psi(u), \psi(u))$$

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of *h*:

$$h_{p}(p.u, p.u) = \tilde{g}_{1}(\mathrm{Ad}_{p^{-1}}^{*}(\psi(u)), \mathrm{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$= \tilde{g}_{1}(\psi(u), \mathrm{Ad}_{p^{-1}} \circ \mathrm{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$\geq \lambda_{-}(p^{-1})^{2} \tilde{g}_{1}(\psi(u), \psi(u))$$

Using that ψ is an isometry for $ilde{g}_1$

$$h_p(p.u,p.u) \geq \frac{\tilde{g}_1(u,u)}{\|\mathrm{Ad}_p\|^2} = \frac{\tilde{g}_p(p.u,p.u)}{\|\mathrm{Ad}_p\|^2}.$$

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of *h*:

$$h_{p}(p.u, p.u) = \tilde{g}_{1}(\operatorname{Ad}_{p^{-1}}^{*}(\psi(u)), \operatorname{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$= \tilde{g}_{1}(\psi(u), \operatorname{Ad}_{p^{-1}} \circ \operatorname{Ad}_{p^{-1}}^{*}(\psi(u)))$$

$$\geq \lambda_{-}(p^{-1})^{2} \tilde{g}_{1}(\psi(u), \psi(u))$$

Using that ψ is an isometry for $ilde{g}_1$

$$h_p(p.u, p.u) \geq \frac{\tilde{g}_1(u, u)}{\|\operatorname{Ad}_p\|^2} = \frac{\tilde{g}_p(p.u, p.u)}{\|\operatorname{Ad}_p\|^2}.$$

Taking roots, criterion fulfilled with $\varphi(p) = \|\operatorname{Ad}_p\|$ (linear)

Main theorem

Theorem

All the left-invariant semi-Riemannian metrics of a Lie group with linear growth are geodesically complete.

Proof. Linear growth of $G \Longrightarrow h$ complete $\Longrightarrow g$ complete \square

6. Discussion: the case of $Aff(\mathbb{R})$

First questions: linear, polynomyal, exponential growth:

■ Q1: Interest for other issues on Lie groups?

6. Discussion: the case of $Aff(\mathbb{R})$

First questions: linear, polynomyal, exponential growth:

- Q1: Interest for other issues on Lie groups?
- Q2: Makes sense to consider a finer growth as $r \log^k (1+r)$ for Lie groups?

Things are subtle... Growths for Ad:

■ $\|\mathrm{Ad}_p\|$ attained at $\lambda_+(p)$

Things are subtle... Growths for Ad:

- $\|\mathrm{Ad}_p\|$ attained at $\lambda_+(p)$
- Intrinsic to G:
 - In particular, growth independent of semi-Riemannian g

Things are subtle... Growths for Ad:

- $\|\mathrm{Ad}_p\|$ attained at $\lambda_+(p)$
- Intrinsic to G:
 - In particular, growth independent of semi-Riemannian g
- \implies Growth of Clairaut h (respect to g_R) independent g-signature

Things are subtle... Growths for Ad:

- $\|\mathrm{Ad}_p\|$ attained at $\lambda_+(p)$
- Intrinsic to G:
 - In particular, growth independent of semi-Riemannian g
- \implies Growth of Clairaut h (respect to g_R) independent g-signature

h for g Riemannian (complete) equal growth thanh for g indefinite (possibly incomplete)!

Example: affine group of $\mathbb R$

Aff(\mathbb{R}): exponential growth and incomplete g!

Example: affine group of $\mathbb R$

Aff(\mathbb{R}): exponential growth and incomplete g!

■ Admits left invariant $g^{(+1)}$, $g^{(-1)}$ with Clairaut $h^{(+1)}$, $h^{(-1)}$

g^{+1} Riemanian (Complete)	h^{+1} (Riem.) Complete
$g^{(-1)}$ Lorentzian Incomplete	h^{-1} (Riem.) Incomplete

The growth of $h^{(+1)}$, $h^{(-1)}$ respect to g_R are equal!

- Growth of Ad (and h) \rightsquigarrow eigenvalues $\lambda_+^2(p) (= \|Ad\|^2)$ independent of signature
- Completeness of h (and g) \rightsquigarrow eigendirections do depend on signature (adjoint operator * , Euclidean isometry ψ) and conspire to ensure or destroy completeness

Explicit computations: background

 $\mathrm{Aff}(\mathbb{R})$ affine transformations of the line f(x)=ax+b, $a\neq 0$.

$$\operatorname{Aff}^+(\mathbb{R}) = \left\{ \left(\begin{array}{cc} x & y \\ 0 & 1 \end{array} \right) \, : \, x > 0, y \in \mathbb{R} \right\}$$

$$\mathfrak{aff}(\mathbb{R}) \left(= T_1(\mathrm{Aff}^+(\mathbb{R}))\right) = \left\{ \left(egin{array}{cc} u & v \ 0 & 0 \end{array} \right) : u, v \in \mathbb{R} \right\}$$

Basis at $\mathfrak{aff}(\mathbb{R})$

$$e_1=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight), \qquad e_2=\left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight), \qquad \left[e_1,e_2
ight]=e_2$$

Left invariant vector basis: $X_1 = x\partial_x, X_2 = x\partial_y$ Left invariant $g: g(X_i, X_j) \equiv \text{constant}$, matrix

$$\begin{pmatrix} c_1 & c_2 \\ c_2 & c_3 \end{pmatrix}. \qquad c_1c_3 - c_2^2 \neq 0$$

Explicit computations: left invariant $g^{(\pm 1)}$

General left invariant g

$$g = \frac{1}{x^2}(c_1 dx^2 + c_2 (dxdy + dydx) + c_3 dy^2),$$
 $c_1 c_3 - c_2^2 \neq 0$

Choices

$$c_1 = 1, c_2 = 0, c_3 = \epsilon = \pm 1$$

 $g^{(\epsilon)} = \frac{1}{x^2} (dx^2 + \epsilon dy^2).$

- $g^{(+1)}$: left-invariant Riemannian metric \Longrightarrow complete (hyperbolic space)
- $\mathbf{g}^{(-1)}$: left-invariant, Lorentz
 - incomplete geodesic $\gamma(t) = \left(\frac{1}{1-t}, \frac{1}{1-t}\right)$

Explicit computations: Clairaut $h^{(\pm 1)}$

Right-invariant (Killing) v.f. induced by e_1 and e_2 :

$$Y_1 = x\partial_x + y\partial_y, \quad Y_2 = \partial_y$$

Clairaut forms

$$\omega^1 = \frac{1}{x^2}(xdx + \epsilon dy)$$
 and $\omega^2 = \frac{\epsilon}{x^2}dy$

Clairaut metrics $(h^{(\epsilon)} = (\omega^1)^2 + (\omega^2)^2)$

$$h^{(\epsilon)} = \frac{1}{x^4} \left(x^2 dx^2 + (1+y^2) dy^2 + \epsilon xy (dxdy + dydx) \right).$$

Matrix:
$$\frac{1}{x^4} \begin{pmatrix} x^2 & \epsilon xy \\ \epsilon xy & 1+y^2 \end{pmatrix}$$
 (recall $x > 0$)

Explicit computations: Clairaut $h^{(\pm 1)}$

Right-invariant (Killing) v.f. induced by e_1 and e_2 :

$$Y_1 = x\partial_x + y\partial_y, \quad Y_2 = \partial_y$$

Clairaut forms

$$\omega^1 = \frac{1}{x^2}(xdx + \epsilon dy)$$
 and $\omega^2 = \frac{\epsilon}{x^2}dy$

Clairaut metrics $(h^{(\epsilon)} = (\omega^1)^2 + (\omega^2)^2)$

$$h^{(\epsilon)} = \frac{1}{x^4} \left(x^2 dx^2 + (1+y^2) dy^2 + \epsilon xy (dx dy + dy dx) \right).$$

Matrix:
$$\frac{1}{x^4} \begin{pmatrix} x^2 & \epsilon xy \\ \epsilon xy & 1+y^2 \end{pmatrix}$$
 (recall $x > 0$)

(Aim: equal growth, but complete $\epsilon=1$, incomplete $\epsilon=-1!$)

Explicit computations: growth of Clairaut $h^{(\pm 1)}/$ Ad

Eigenvalues evl_{\pm} independent of ϵ (determinant $= \epsilon^2/x^6$)

$$\frac{1}{2x^4}\left(x^2+\epsilon^2(1+y^2)\pm\sqrt{(x^2+\epsilon^2(1+y^2))^2-4\epsilon^2x^2}\right)$$

Explicit computations: growth of Clairaut $h^{(\pm 1)}/$ Ad

Eigenvalues evl $_{\pm}$ independent of ϵ (determinant $= \epsilon^2/x^6$)

$$\frac{1}{2x^4} \left(x^2 + \epsilon^2 (1+y^2) \pm \sqrt{(x^2 + \epsilon^2 (1+y^2))^2 - 4\epsilon^2 x^2} \right)$$

- They measure the growth of Ad in coordinates respect to Euclidean $dx^2 + dy^2$ (non left-invariant)
- The growth is exponential respect to $g^{(+1)} = (dx^2 + dy^2)/x^2$ (hyperbolic)

As expected, growth independent of $\epsilon = \pm 1$

Incompleteness of $h^{(-1)}$ ($\Leftarrow g^{(-1)}$ was incomplete): the curve

$$\gamma(t) = (x(t), y(t)) = (\cosh t, \sinh t) \quad \forall t \ge 0$$

(there is a heuristic way to arrive at it!)

- Clearly diverging
- **E**asy to show it has finite length for $h^{(-1)}$

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

1 For $\gamma(t) = (x(t) > 0, y(t)), t \in [0, b), b \le \infty$ diverging \rightarrow check infinite length

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

- 1 For $\gamma(t) = (x(t) > 0, y(t)), t \in [0, b), b \le \infty$ diverging \rightarrow check infinite length
- 2 Bound for the minimum eigenvalue of $h^{(+1)}$

$$\begin{array}{rcl}
\text{evl}_{-} & = & \frac{1}{2x^4} \left((1 + x^2 + y^2) - \sqrt{(1 + x^2 + y^2)^2 - 4x^2} \right) \\
& \geq & \frac{1}{x^2 (1 + x^2 + y^2)}
\end{array} \tag{1}$$

3 So, for bounded "Euclidean" radius $r^2(t) := x^2(t) + y^2(t) < 2C^2$.

$$h^{(1)} \ge \frac{dx^2 + dy^2}{x^2(1 + x^2 + y^2)} \ge \frac{dx^2 + dy^2}{x^2} \frac{1}{(1 + 2C^2)}$$

which is a (complete) hyperbolic metric.

4 Finer bound using $r^2 = x^2 + y^2$, $(r^2)' = 2x\dot{x} + 2y\dot{y}$:

$$h^{(\epsilon=1)}(\dot{\gamma}(t), \dot{\gamma}(t)) = \frac{1}{x^{4}}(x^{2}\dot{x}^{2} + (1+y^{2})\dot{y}^{2} + 2x\dot{x}y\dot{y})$$

$$= \frac{1}{x^{4}}((x\dot{x} + y\dot{y})^{2} + \dot{y}^{2})$$

$$\geq \frac{1}{x^{4}}(x\dot{x} + y\dot{y})^{2} = \frac{1}{x^{4}}(\frac{1}{2}(r^{2})')^{2}$$

$$\geq \frac{1}{r^{4}}(\frac{1}{2}(r^{2})')^{2} = (\frac{1}{2r^{2}}(r^{2})')^{2}$$

$$= (\frac{1}{2}(\ln(r^{2}))')^{2}.$$

(sharp when $y \equiv 0$)

5 Taking $t_n \nearrow b$ such that $\{\gamma(t_n)\}_n$ (thus r(n)) is unbounded:

$$\begin{array}{ll} \operatorname{length}(\gamma) \geq & \lim_{t_n \to b} \frac{1}{2} \int_0^{t_n} (\ln(r^2))'(t) dt \\ &= & \frac{1}{2} \left(\lim_{t_n \to b} \ln(r^2(t_n)) - \ln(r^2(0)) \right) \\ &= & \lim_{t_n \to b} \ln(\mathbf{r}(\mathbf{t_n})) - \ln(r(0)) = \infty, \end{array}$$

i.e., it goes to infinity (albeit it seems slowly!)

Explicit computations: questions

■ Q3: If left. inv. g is Riemannian must its Clairaut h be complete?

Explicit computations: questions

■ Q3: If left. inv. g is Riemannian must its Clairaut h be complete?

(If positive answer)

Q4: if left-inv. g is complete must its Clairaut h be complete? (we know the converse) If negative, is a geometric interpretation of the Cauchy boundary of h possible?

Technical available

Natural action $Aut(\mathfrak{g})$ on $Sym^*(\mathfrak{g})$

- ullet Aut(\mathfrak{g}): Lie algebra automorphisms of \mathfrak{g}
- Sym $^*(\mathfrak{g})$: scalar products (of any signature) on \mathfrak{g}

$$\varphi \in \operatorname{Aut}(\mathfrak{g}) \to g^{\varphi} \quad (g^{\varphi})_1 = \varphi.g_1. \quad (\mathsf{pushforward})$$

 \rightsquigarrow orbit of g_1 in \mathfrak{g} and, thus of g (in the open set of left invar. metr.)

Technical available

Natural action $Aut(\mathfrak{g})$ on $Sym^*(\mathfrak{g})$

- Aut(g): Lie algebra automorphisms of g
- Sym $^*(\mathfrak{g})$: scalar products (of any signature) on \mathfrak{g}

$$\varphi \in \operatorname{Aut}(\mathfrak{g}) \to g^{\varphi} \quad (g^{\varphi})_1 = \varphi.g_1. \quad (\mathsf{pushforward})$$

 \rightsquigarrow orbit of g_1 in \mathfrak{g} and, thus of g (in the open set of left invar. metr.)

Proposition

- **1** all the g's in the same orbit are either complete or incomplete. i.e. g^{φ} complete \iff g complete.
- 2 all Clairaut h's associated to left-invariant g's on the same orbit are bi-Lipschitz bounded, thus, either complete or incomplete

Explicit computations: classes of metrics in $Aff(\mathbb{R})$

Three classes of left invariant metrics in $\mathrm{Aff}(\mathbb{R})$ (up to scaling)

- $g^{(+1)}$, Riemannian (complete).
- $g^{(-1)}$, Lorentzian, incomplete.
- $g^{(0)}$, Lorentzian, incomplete.

$$g^{(0)} := \frac{2dxdy}{x^2}$$

(choice $c_1 = 0, c_2 = 1, c_3 = 0$ before)

7. Groups of linear growth

Trivial cases

Proposition

G is of linear growth in the following cases:

- Abelian $(Ad_p = Id \text{ for all } p, ||Ad_p|| \equiv 1)$
- or compact $(G \ni p \mapsto ||Ad_p|| \text{ has a maximum})$

7. Groups of linear growth: subgroups

Proposition

If G is of linear growth then so is any subgroup H < G

7. Groups of linear growth: subgroups

Proposition

If G is of linear growth then so is any subgroup H < G

Proof. R_G , d_G Riem, distance; R_H , d_H restrictions to H; $p \in H$.

- $d_G(1,p) \leq d_H(1,p)$.
- $\|\operatorname{Ad}_{p}^{H}\| \leq \|\operatorname{Ad}_{p}^{G}\|$

$$\|\mathrm{Ad}_{p}^{H}\| \le \|\mathrm{Ad}_{p}^{G}\| \le a + b d_{G}(1, p) \le a + b d_{H}(1, p) \quad \Box$$

Direct and semi-direct products

Proposition

 $G = G_1 \times G_2$ with G_1, G_2 Lie groups with linear growth $\Longrightarrow G$ has linear growth.

Idea of the proof.

Linear bounds $a_i + b_i r$ of G_i 's

 \longrightarrow single one $(a_1 + a_2) + (b_1 + b_2)r$ for G.

Direct and semi-direct products

Proposition

Let G be the semidirect product $K \ltimes_{\rho} V$, with

- K: pseudo-compact, i.e. product of compact and linear groups (⇔ admits a bi-invariant Riem. metric)
- V: linear group,
- lacktriangledown $ho: K \longrightarrow \mathrm{GL}(V)$ representation with ho(K) precompact .

Then G has linear growth.

Direct and semi-direct products

Proposition

Let G be the semidirect product $K \ltimes_{\rho} V$, with

- K: pseudo-compact, i.e. product of compact and linear groups (⇔ admits a bi-invariant Riem. metric)
- V: linear group,
- $ho: K \longrightarrow \operatorname{GL}(V)$ representation with $\rho(K)$ precompact.

Then G has linear growth.

Steps of the proof.

- **1** $\exists g_R$ common left-invariant Riem. for $K \times V$ and $K \ltimes_{\rho} V$ (Precompactness → G admits Ad(K)-invariant Riem. met.
 - \rightsquigarrow take a direct product by one on V)
 - \Rightarrow Left-invariant Riem. met. on $K \times V$ and $K \ltimes_{\rho} V$ bi-Lipschitz (with g_R and, then, among them)
- $\ge \ \sim \ \mathsf{Follow} \ \mathsf{as} \ \mathsf{in} \ \mathsf{products} \ \mathsf{using} \ \mathsf{a} \ \mathsf{bound} \ \mathsf{for} \ \| \rho(\mathcal{K}) \|$

2-step nilpotent groups

Proposition

If G is 2-step nilpotent, then it has linear growth.

Suggested as 2-step nilpotent \Longrightarrow

$$Ad_{exp(ta)} = exp^{ad_{ta}} = I + t ad_a$$

2-step nilpotent groups

Proposition

If G is 2-step nilpotent, then it has linear growth.

Steps of the (non-trivial) proof

- 1 Z center $\rightsquigarrow \pi: G \longrightarrow G/Z$ fibration ker $d\pi_1 = \mathfrak{z}$ (G/Z Lie) 2-step nilpot. $\Rightarrow G/Z$ Abelian and \mathbb{R}^d (as $\Pi_1(G) \subset$ center \tilde{G})
- 2 Choose left-inv. Rieman. g_R met.:
 - $\mathfrak{p} := \mathfrak{z}^{\perp} \equiv T_1(G/Z)$ (horizontal v.)
 - $\blacksquare \pi: G \longrightarrow G/Z$ is a Riem. submersion
 - \Rightarrow contracting map: $d_G \geq d_{G/Z}$
- **3** Any (unit) geodesic γ initially horizontal:
 - remains horizontal
 - **project** onto a geod (globally minimizing) of $G/Z \equiv \mathbb{R}^d$

$$\leadsto \gamma$$
 minimizing and

$$d_G(\gamma(t), \gamma(s)) = |t - s| = d_{G/Z}(\pi(\gamma(t)), \pi(\gamma(s))), \text{ while } z \in Z \leadsto \gamma(t)z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t)z, \gamma(s)) \ge |t - s|$$

4. Horizontal geodesics through 1 are one-parameter subgroups Use 2-step nilpotency in Euler-Arnold eqn. for geodesics

$$\dot{x}(t) = \mathrm{ad}_{x(t)}^* x(t)$$

(first orden eqn in \mathfrak{g} ; $x(t) := \gamma^{-1}(t)\dot{\gamma}(t) \in \mathfrak{g}$; $* g_R$ -adjoint)

- 5. For $p \in G \setminus Z$, \exists minim., hor. geod. γ from 1 to $\pi^{-1}(\pi(p))$
 - $p = \exp w, w \in \mathfrak{g}$ (for 2-step 1-connected, exp diffeo)
 - $\mathbf{w} = u + v, \ u \in \mathfrak{p}(=\mathfrak{z}^{\perp}), v \in \mathfrak{z}, \ \text{let } z = \exp(-v)$
 - **pz** = $\exp(\mathbf{u})$ (Baker-Campbell-Hausdorff with [w, v] = 0)
 - lacksquare exp(u) lies in horiz. geod. $\gamma(t) = \exp(ta), a := u/\|u\| \in \mathfrak{p}.$

Thus, using γ unit: $r_G(p) = d_G(1, p) \ge d_G(1, pz) \ge t$

4. Horizontal geodesics through 1 are one-parameter subgroups Use 2-step nilpotency in Euler-Arnold eqn. for geodesics

$$\dot{x}(t) = \mathrm{ad}_{x(t)}^* x(t)$$

(first orden eqn in \mathfrak{g} ; $x(t) := \gamma^{-1}(t)\dot{\gamma}(t) \in \mathfrak{g}$; $* g_R$ -adjoint)

- 5. For $p \in G \setminus Z$, \exists minim., hor. geod. γ from 1 to $\pi^{-1}(\pi(p))$
 - $p = \exp w, w \in \mathfrak{g}$ (for 2-step 1-connected, exp diffeo)
 - $\mathbf{w} = u + v, \ u \in \mathfrak{p}(=\mathfrak{z}^{\perp}), v \in \mathfrak{z}, \ \text{let } z = \exp(-v)$
 - **pz** = $\exp(\mathbf{u})$ (Baker-Campbell-Hausdorff with [w, v] = 0)
 - lacksquare exp(u) lies in horiz. geod. $\gamma(t) = \exp(ta), a := u/\|u\| \in \mathfrak{p}.$

Thus, using γ unit: $r_G(p) = d_G(1, p) \ge d_G(1, pz) \ge t$

- Check this proves affine growth of G
 For p = z ∈ Z, Ad_z = I, ||Ad_z|| = 1.
 For p ∈ G \ Z:
 - $\operatorname{Ad}_{pz} = \operatorname{Ad}_{p} (Z \text{ center})$ $\operatorname{Ad}_{\exp(\mathsf{ta})} = \exp^{\operatorname{ad}_{\mathsf{ta}}} = \operatorname{I} + \operatorname{tad}_{\mathsf{a}}, (G \text{ 2-step nilpotent})$
 - Putting $\alpha = 1, \beta = \|\operatorname{ad}_{a}\|$, for $u \in G$ $\|\operatorname{Ad}_{p}u\| = \|\operatorname{Ad}_{pz}u\| \le (\alpha|t|+\beta)\|u\| = \alpha r(pz) + \beta \le \alpha r(p) + \beta$

■ Q5: Can the growth of (1-connected) G be deduced from \mathfrak{g} ?

- Q5: Can the growth of (1-connected) G be deduced from \mathfrak{g} ?
- Q6: Give a complete classification of groups of linear growth (and extend to quadratic, cubic... exponential).

Other results on growths

No k-step nilpotent with k>2 is of linear growth $ldea\ proof$: expand $\mathrm{Ad}_{\exp(ta)}(u)$ in terms of powers of t (coefficients $\mathrm{ad}_{ta}^{k'}(u)/k'!=t^{k'}ad_a^{k'}(u)/k'!$, with $k'\leq k-1$) \leadsto For t large: $\frac{\|\mathrm{Ad}_{p(t)}(u)\|}{t^{k-1}}\geq C$ $(p(t)=\exp(ta)$ diverges and use $t\geq d(1,p(t))$)

Euler-Arnold eqn for geod. $\dot{x} = ad_x^* x$

- Idempotent: $y_0 \neq 0$ such that $ad_{y_0}^* y_0 = y_0$
- Easily: Idempotent ⇒ incomplete geodesic

(this happened in $\mathsf{Aff}(\mathbb{R})$)

Euler-Arnold eqn for geod. $\dot{x} = ad_x^* x$

- Idempotent: $y_0 \neq 0$ such that $ad_{y_0}^* y_0 = y_0$
- Easily: Idempotent ⇒ incomplete geodesic

(this happened in $\mathsf{Aff}(\mathbb{R})$)

Proposition

If G can be equipped with a semi-Riemannian metric g admitting an idempotent

 \Rightarrow G exponential growth.

(in its direction)

Idea of proof. Power series in the direction of the idempotent y_0 :

$$\mathrm{Ad}_{p(t)=expta}(y_0)=e^ty_0$$

Exponential growth: $\|\mathrm{Ad}_{p(t)}(y_0)\| \ge t^m \|y_0\| \ge d_R(1, p(t))^m \|y_0\|$

Summary of open questions

In blue, questions on growth independent of completeness

- \blacksquare Q1: Interest of growth for other issues on a Lie group G?
- **Q**2: Makes sense finer growths (as $r \log^k(1+r)$) for G?
- **Q3**: If left inv. g is Riem., must its Clairaut h be complete?
- Q4: If left inv. g is complete, must Clairaut h be complete? If negative, is a geometric interpretation of the Cauchy boundary of h possible?
- Q5: Can the growth of (1-connected) G be deduced from \mathfrak{g} ?
- Q6: Give a complete classification of groups of linear growth (and extend to quadratic, cubic... exponential).

Thank you for your attention!

Happy Anniversary Eduardo!