Hermitian geometry of complex quotient manifolds with trivial canonical bundle

Luis Ugarte

I.U.M.A. – Univ. Zaragoza

SYMMETRY and SHAPE

celebrating the sixtieth birthday of Eduardo García Río

Santiago de Compostela, 23–27 September, 2024 —

Based on recent joint works with Antonio Otal (CUD-UZ) and Raguel Villacampa (UZ).

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

We will show when $\nabla^{\varepsilon,\rho}$ satisfies the Hermitian-Yang-Mills condition.

Nilmanifolds and solvmanifolds

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

- Nilmanifolds and solvmanifolds
- The non-solvable case

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

- Nilmanifolds and solvmanifolds
- The non-solvable case
- Hull-Strominger system and invariant solutions

We will mainly focus in six dimensions on the classification of Lie algebras $\mathfrak g$ admitting a complex structure with closed (3,0)-form Ψ .

The main reason is that they allow to construct compact complex quotients $M = \Gamma \setminus G$ whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the Hull-Strominger system with respect to metric connections $\nabla^{\varepsilon,\rho}$ in the plane that contains Levi-Civita and the Gauduchon line.

- Nilmanifolds and solvmanifolds
- The non-solvable case
- Hull-Strominger system and invariant solutions
- The Hermitian-Yang-Mills condition for $abla^{arepsilon,
 ho}$

Given a compact complex manifold X, $\dim_{\mathbb{C}} X = n$, the canonical bundle K_X is holomorphically trivial if there is a nowhere vanishing (n,0)-form Ψ such that $d\Psi = 0$.

Given a compact complex manifold X, $\dim_{\mathbb{C}} X = n$, the canonical bundle K_X is holomorphically trivial if there is a nowhere vanishing (n,0)-form Ψ such that $d\Psi=0$.

If $\dim_{\mathbb{C}} X = 2$ then, K_X is trivial if and only if X is

- Torus (Kähler and nilmanifold), $\mathbb{T} = \Gamma \backslash \mathbb{C}^2$,
- Kodaira surface (non-Kähler and nilmanifold), KT,
- K3 surface (Kähler).

Given a compact complex manifold X, $\dim_{\mathbb{C}} X = n$, the canonical bundle K_X is holomorphically trivial if there is a nowhere vanishing (n,0)-form Ψ such that $d\Psi = 0$.

If $\dim_{\mathbb{C}} X = 2$ then, K_X is trivial if and only if X is

- Torus (Kähler and nilmanifold), $\mathbb{T} = \Gamma \backslash \mathbb{C}^2$,
- Kodaira surface (non-Kähler and nilmanifold), KT,
- K3 surface (Kähler).
- No classification for $\dim_{\mathbb{C}}(X) \geq 3$.

Given a compact complex manifold X, $\dim_{\mathbb{C}} X = n$, the canonical bundle K_X is holomorphically trivial if there is a nowhere vanishing (n,0)-form Ψ such that $d\Psi = 0$.

If $\dim_{\mathbb{C}} X = 2$ then, K_X is trivial if and only if X is

- Torus (Kähler and nilmanifold), $\mathbb{T} = \Gamma \backslash \mathbb{C}^2$,
- Kodaira surface (non-Kähler and nilmanifold), KT,
- K3 surface (Kähler).
- No classification for $\dim_{\mathbb{C}}(X) \geq 3$.
- An interesting class: compact quotients $\Gamma \setminus G$ endowed with J coming from complex structures on the Lie algebra $\mathfrak g$ of G having a non-zero closed (n,0)-form $\Psi \in \Lambda^{n,0}(\mathfrak g^*)$

Given a compact complex manifold X, $\dim_{\mathbb{C}} X = n$, the canonical bundle K_X is holomorphically trivial if there is a nowhere vanishing (n,0)-form Ψ such that $d\Psi=0$.

If $\dim_{\mathbb{C}} X = 2$ then, K_X is trivial if and only if X is

- Torus (Kähler and nilmanifold), $\mathbb{T} = \Gamma \backslash \mathbb{C}^2$,
- Kodaira surface (non-Kähler and nilmanifold), KT,
- K3 surface (Kähler).
- No classification for $\dim_{\mathbb{C}}(X) \geq 3$.
- An interesting class: compact quotients $\Gamma \setminus G$ endowed with J coming from complex structures on the Lie algebra $\mathfrak g$ of G having a non-zero closed (n,0)-form $\Psi \in \Lambda^{n,0}(\mathfrak g^*)$

Problem (n\geq3): classify (unimodular) Lie algebras admitting such a J

Complex structures with non-zero closed (n,0)-form on $\mathfrak g$

The Lie algebra \mathfrak{g} of G has an endomorphism $J \colon \mathfrak{g} \longrightarrow \mathfrak{g}$ such that $J^2 = -Id$, and [JU, JV] = J[JU, V] + J[U, JV] + [U, V], $U, V \in \mathfrak{g}$.

Complex structures with non-zero closed (n,0)-form on g

The Lie algebra \mathfrak{g} of G has an endomorphism $J : \mathfrak{g} \longrightarrow \mathfrak{g}$ such that $J^2 = -Id$, and [JU, JV] = J[JU, V] + J[U, JV] + [U, V], $U, V \in \mathfrak{g}$.

Equivalently, $d(\mathfrak{g}^{1,0}) \subset \bigwedge^{2,0}(\mathfrak{g}^*) \oplus \bigwedge^{1,1}(\mathfrak{g}^*)$

Complex structures with non-zero closed (n,0)-form on $\mathfrak g$

The Lie algebra \mathfrak{g} of G has an endomorphism $J \colon \mathfrak{g} \longrightarrow \mathfrak{g}$ such that $J^2 = -Id$, and [JU, JV] = J[JU, V] + J[U, JV] + [U, V], $U, V \in \mathfrak{g}$.

Equivalently, $d(\mathfrak{g}^{1,0}) \subset \bigwedge^{2,0}(\mathfrak{g}^*) \oplus \bigwedge^{1,1}(\mathfrak{g}^*)$

• Suppose J is almost complex (i.e. $J^2 = -Id$) and that there is a non-zero closed (n,0)-form Ψ .

Then, $d\Psi = 0 \Rightarrow J$ is complex (integrable):

Complex structures with non-zero closed (n,0)-form on $\mathfrak g$

The Lie algebra \mathfrak{g} of G has an endomorphism $J \colon \mathfrak{g} \longrightarrow \mathfrak{g}$ such that $J^2 = -Id$, and [JU, JV] = J[JU, V] + J[U, JV] + [U, V], $U, V \in \mathfrak{g}$.

Equivalently,
$$d(\mathfrak{g}^{1,0}) \subset \bigwedge^{2,0}(\mathfrak{g}^*) \oplus \bigwedge^{1,1}(\mathfrak{g}^*)$$

• Suppose J is almost complex (i.e. $J^2 = -Id$) and that there is a non-zero closed (n,0)-form Ψ .

Then, $d\Psi = 0 \Rightarrow J$ is complex (integrable):

For any $\omega \in \mathfrak{g}^{1,0}$ one has $\omega \wedge \Psi = 0$, then $0 = d(\omega \wedge \Psi) = d\omega \wedge \Psi = (d\omega)^{0,2} \wedge \Psi$, which implies that $d(\mathfrak{g}^{1,0})$ has zero component in $\Lambda^{0,2}(\mathfrak{g}^*)$.

4 D > 4 D > 4 E > 4 E > E = 900

The goal is to *classify* the unimodular *Lie algebras* $\mathfrak g$ with $\dim_{\mathbb R} \mathfrak g = 6$ admitting a complex structure with *closed* (3,0)-*form* $\Psi \neq 0$

The goal is to *classify* the unimodular *Lie algebras* $\mathfrak g$ with $\dim_{\mathbb R} \mathfrak g = 6$ admitting a complex structure with *closed* (3,0)-*form* $\Psi \neq 0$

g NILPOTENT

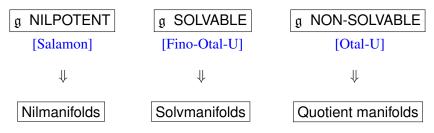
g SOLVABLE

g NON-SOLVABLE

The goal is to *classify* the unimodular *Lie algebras* $\mathfrak g$ with $\dim_{\mathbb R} \mathfrak g = 6$ admitting a complex structure with *closed* (3,0)-*form* $\Psi \neq 0$

with complex structures and holomorphically trivial canonical bundle

The goal is to *classify* the unimodular *Lie algebras* \mathfrak{g} with $\dim_{\mathbb{R}} \mathfrak{g} = 6$ admitting a complex structure with *closed* (3,0)-*form* $\Psi \neq 0$



with complex structures and holomorphically trivial canonical bundle

The Lie algebra \mathfrak{g} of G is s-step *nilpotent*, i.e. the descending series $\{\mathfrak{g}_i\}$ satisfies

$$\mathfrak{g}_0=\mathfrak{g}\supset\mathfrak{g}_1=[\mathfrak{g},\mathfrak{g}]\supset\cdots\supset\mathfrak{g}_{i+1}=[\mathfrak{g}_i,\mathfrak{g}]\supset\cdots\supset\mathfrak{g}_s=[\mathfrak{g}_{s-1},\mathfrak{g}]=\{0\}.$$

The Lie algebra \mathfrak{g} of G is *s*-step *nilpotent*, i.e. the descending series $\{\mathfrak{g}_i\}$ satisfies

$$\mathfrak{g}_0 = \mathfrak{g} \supset \mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{i+1} = [\mathfrak{g}_i, \mathfrak{g}] \supset \cdots \supset \mathfrak{g}_s = [\mathfrak{g}_{s-1}, \mathfrak{g}] = \{0\}.$$

Some important well-known properties:

- g is unimodular.
- G has a lattice Γ if and only if the structure constants of $\mathfrak g$ are rational numbers [Mal'cev].

The Lie algebra $\mathfrak g$ of G is s-step *nilpotent*, i.e. the descending series $\{\mathfrak g_i\}$ satisfies

$$\mathfrak{g}_0=\mathfrak{g}\supset\mathfrak{g}_1=[\mathfrak{g},\mathfrak{g}]\supset\cdots\supset\mathfrak{g}_{i+1}=[\mathfrak{g}_i,\mathfrak{g}]\supset\cdots\supset\mathfrak{g}_s=[\mathfrak{g}_{s-1},\mathfrak{g}]=\{0\}.$$

Some important well-known properties:

- g is unimodular.
- G has a lattice Γ if and only if the structure constants of \mathfrak{g} are rational numbers [Mal'cev].
- By [Nomizu], [Deligne-Griffiths-Morgan-Sullivan], [Hasegawa], for complex nilmanifolds: Kähler $\iff \partial \bar{\partial}$ -property. Hence,

 $\Gamma \setminus G$ cannot admit Kähler metrics, except for a torus

The Lie algebra $\mathfrak g$ of G is s-step *nilpotent*, i.e. the descending series $\{\mathfrak g_i\}$ satisfies

$$\mathfrak{g}_0 = \mathfrak{g} \supset \mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{i+1} = [\mathfrak{g}_i, \mathfrak{g}] \supset \cdots \supset \mathfrak{g}_s = [\mathfrak{g}_{s-1}, \mathfrak{g}] = \{0\}.$$

Some important well-known properties:

- g is unimodular.
- G has a lattice Γ if and only if the structure constants of \mathfrak{g} are rational numbers [Mal'cev].
- By [Nomizu], [Deligne-Griffiths-Morgan-Sullivan], [Hasegawa], for complex nilmanifolds: Kähler $\iff \partial \bar{\partial}$ -property. Hence,

 $\Gamma \setminus G$ cannot admit Kähler metrics, except for a torus

• Any complex structure J on $\mathfrak g$ has non-zero closed (n,0)-form:

$$d\omega^i \in \mathcal{I}(\omega^1, \dots, \omega^{i-1}) \Rightarrow d(\omega^1 \wedge \dots \wedge \omega^n) = 0$$
 [Salamon]

The Lie algebra \mathfrak{g} of G is s-step solvable, i.e. the series $\{\mathfrak{g}_{(i)}\}$ satisfies $\mathfrak{g}_{(0)} = \mathfrak{g} \supset \mathfrak{g}_{(1)} = [\mathfrak{g},\mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{(i+1)} = [\mathfrak{g}_{(i)},\mathfrak{g}_{(i)}] \supset \cdots \cdots \supset \mathfrak{g}_{(s)} = [\mathfrak{g}_{(s-1)},\mathfrak{g}_{(s-1)}] = \{0\}.$

The Lie algebra \mathfrak{g} of G is s-step solvable, i.e. the series $\{\mathfrak{g}_{(i)}\}$ satisfies $\mathfrak{g}_{(0)} = \mathfrak{g} \supset \mathfrak{g}_{(1)} = [\mathfrak{g},\mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{(i+1)} = [\mathfrak{g}_{(i)},\mathfrak{g}_{(i)}] \supset \cdots \cdots \supset \mathfrak{g}_{(s)} = [\mathfrak{g}_{(s-1)},\mathfrak{g}_{(s-1)}] = \{0\}.$

Important differences with respect to nilmanifolds:

• There is no a simple condition for the existence of lattice. Necessary condition [Milnor]: if G has a lattice, then it is unimodular, i.e. $\operatorname{tr}\operatorname{ad}X=0, \, \forall X\in\mathfrak{g}$.

The Lie algebra \mathfrak{g} of G is s-step solvable, i.e. the series $\{\mathfrak{g}_{(i)}\}$ satisfies $\mathfrak{g}_{(0)} = \mathfrak{g} \supset \mathfrak{g}_{(1)} = [\mathfrak{g},\mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{(i+1)} = [\mathfrak{g}_{(i)},\mathfrak{g}_{(i)}] \supset \cdots$

Important differences with respect to nilmanifolds:

- There is no a simple condition for the existence of lattice. Necessary condition [Milnor]: if G has a lattice, then it is unimodular, i.e. $\operatorname{tr} \operatorname{ad} X = 0$. $\forall X \in \mathfrak{a}$.
- There exist non-Kähler $\partial \bar{\partial}$ -solvmanifolds.

A solvmanifold has a Kähler metric if and only if it is a finite quotient of a complex torus [Hasegawa].

 $\cdots \supset \mathfrak{g}_{(s)} = [\mathfrak{g}_{(s-1)}, \mathfrak{g}_{(s-1)}] = \{0\}.$

The Lie algebra \mathfrak{g} of G is s-step solvable, i.e. the series $\{\mathfrak{g}_{(i)}\}$ satisfies $\mathfrak{g}_{(0)} = \mathfrak{g} \supset \mathfrak{g}_{(1)} = [\mathfrak{g},\mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{(i+1)} = [\mathfrak{g}_{(i)},\mathfrak{g}_{(i)}] \supset \cdots \cdots \supset \mathfrak{g}_{(s)} = [\mathfrak{g}_{(s-1)},\mathfrak{g}_{(s-1)}] = \{0\}.$

Important differences with respect to nilmanifolds:

- There is no a simple condition for the existence of lattice. Necessary condition [Milnor]: if G has a lattice, then it is unimodular, i.e. $\operatorname{tr} \operatorname{ad} X = 0$, $\forall X \in \mathfrak{g}$.
- There exist non-Kähler $\partial \bar{\partial}$ -solvmanifolds.

A solvmanifold has a Kähler metric if and only if it is a finite quotient of a complex torus [Hasegawa].

• There exist complex structures *J* with no closed (n,0)-form.

The Lie algebra g of G is s-step solvable, i.e. the series $\{g_{(i)}\}$ satisfies $\mathfrak{g}_{(0)} = \mathfrak{g} \supset \mathfrak{g}_{(1)} = [\mathfrak{g},\mathfrak{g}] \supset \cdots \supset \mathfrak{g}_{(i+1)} = [\mathfrak{g}_{(i)},\mathfrak{g}_{(i)}] \supset \cdots$ $\cdots \supset \mathfrak{g}_{(s)} = [\mathfrak{g}_{(s-1)}, \mathfrak{g}_{(s-1)}] = \{0\}.$

Important differences with respect to nilmanifolds:

- There is no a simple condition for the existence of lattice. Necessary condition [Milnor]: if G has a lattice, then it is unimodular, i.e. tr ad X = 0, $\forall X \in \mathfrak{g}$.
- There exist non-Kähler ∂∂̄-solvmanifolds.

A solvmanifold has a Kähler metric if and only if it is a finite quotient of a complex torus [Hasegawa].

- There exist complex structures *J* with no closed (n,0)-form.
- There may exist non-invariant trivializing sections, even when J is invariant with no invariant closed (n,0)-form [Andrada-Tolcachier 2023].

Theorem [Salamon]. In dimension 6, a nilpotent Lie algebra admitting a complex structure J is isomorphic to one of the following

$$\begin{array}{lll} \mathfrak{n}_1 = (0,0,0,0,0,0), & \mathfrak{n}_{10} = (0,0,0,12,13,14), \\ \mathfrak{n}_2 = (0,0,0,0,12,34), & \mathfrak{n}_{11} = (0,0,0,12,13,14+23), \\ \mathfrak{n}_3 = (0,0,0,0,0,12+34), & \mathfrak{n}_{12} = (0,0,0,12,13,24), \\ \mathfrak{n}_4 = (0,0,0,0,12,14+23), & \mathfrak{n}_{13} = (0,0,0,12,13+14,24), \\ \mathfrak{n}_5 = (0,0,0,0,13+42,14+23), & \mathfrak{n}_{14} = (0,0,0,12,14,13+42), \\ \mathfrak{n}_6 = (0,0,0,0,12,13), & \mathfrak{n}_{15} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_7 = (0,0,0,12,13,23), & \mathfrak{n}_{16} = (0,0,0,12,14,24), \\ \mathfrak{n}_8 = (0,0,0,0,0,12), & \mathfrak{n}_{19}^- = (0,0,0,12,13,23,14+25). \end{array}$$

Theorem [Salamon]. In dimension 6, a nilpotent Lie algebra admitting a complex structure J is isomorphic to one of the following

$$\begin{array}{lll} \mathfrak{n}_1 = (0,0,0,0,0,0), & \mathfrak{n}_{10} = (0,0,0,12,13,14), \\ \mathfrak{n}_2 = (0,0,0,0,12,34), & \mathfrak{n}_{11} = (0,0,0,12,13,14+23), \\ \mathfrak{n}_3 = (0,0,0,0,0,12+34), & \mathfrak{n}_{12} = (0,0,0,12,13,24), \\ \mathfrak{n}_4 = (0,0,0,0,12,14+23), & \mathfrak{n}_{13} = (0,0,0,12,13+14,24), \\ \mathfrak{n}_5 = (0,0,0,0,13+42,14+23), & \mathfrak{n}_{14} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_6 = (0,0,0,0,12,13), & \mathfrak{n}_{15} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_7 = (0,0,0,12,13,23), & \mathfrak{n}_{16} = (0,0,0,12,14,24), \\ \mathfrak{n}_8 = (0,0,0,0,0,12), & \mathfrak{n}_{19}^+ = (0,0,0,12,23,14-35), \\ \mathfrak{n}_9 = (0,0,0,0,12,14+25), & \mathfrak{n}_{28}^+ = (0,0,12,13,23,14+25). \end{array}$$

 n_2 is the product of two 3-dimensional Heisenberg algebras

Theorem [Salamon]. In dimension 6, a nilpotent Lie algebra admitting a complex structure J is isomorphic to one of the following

$$\begin{array}{lll} \mathfrak{n}_1 = (0,0,0,0,0,0), & \mathfrak{n}_{10} = (0,0,0,12,13,14), \\ \mathfrak{n}_2 = (0,0,0,0,12,34), & \mathfrak{n}_{11} = (0,0,0,12,13,14+23), \\ \mathfrak{n}_3 = (0,0,0,0,12+34), & \mathfrak{n}_{12} = (0,0,0,12,13,24), \\ \mathfrak{n}_4 = (0,0,0,0,12,14+23), & \mathfrak{n}_{13} = (0,0,0,12,13+14,24), \\ \mathfrak{n}_5 = (0,0,0,0,13+42,14+23), & \mathfrak{n}_{14} = (0,0,0,12,13+14,24), \\ \mathfrak{n}_6 = (0,0,0,0,12,13), & \mathfrak{n}_{15} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_7 = (0,0,0,12,13,23), & \mathfrak{n}_{16} = (0,0,0,12,14,24), \\ \mathfrak{n}_8 = (0,0,0,0,0,12), & \mathfrak{n}_{19}^- = (0,0,0,12,13,23,14+25). \end{array}$$

 \mathfrak{n}_3 is the product of the 5-dimensional Heisenberg algebra by $\mathbb R$

Theorem [Salamon]. In dimension 6, a nilpotent Lie algebra admitting a complex structure J is isomorphic to one of the following

$$\begin{array}{lll} \mathfrak{n}_1 = (0,0,0,0,0,0), & \mathfrak{n}_{10} = (0,0,0,12,13,14), \\ \mathfrak{n}_2 = (0,0,0,0,12,34), & \mathfrak{n}_{11} = (0,0,0,12,13,14+23), \\ \mathfrak{n}_3 = (0,0,0,0,0,12+34), & \mathfrak{n}_{12} = (0,0,0,12,13,24), \\ \mathfrak{n}_4 = (0,0,0,0,12,14+23), & \mathfrak{n}_{13} = (0,0,0,12,13+14,24), \\ \mathfrak{n}_5 = (0,0,0,0,13+42,14+23), & \mathfrak{n}_{14} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_6 = (0,0,0,0,12,13), & \mathfrak{n}_{15} = (0,0,0,12,13+42,14+23), \\ \mathfrak{n}_7 = (0,0,0,12,13,23), & \mathfrak{n}_{16} = (0,0,0,12,14,24), \\ \mathfrak{n}_8 = (0,0,0,0,0,12), & \mathfrak{n}_{19}^+ = (0,0,0,12,23,14-35), \\ \mathfrak{n}_9 = (0,0,0,0,12,14+25), & \mathfrak{n}_{26}^+ = (0,0,12,13,23,14+25). \end{array}$$

 \mathfrak{n}_5 is the underlying Lie algebra to the Iwasawa manifold

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

Theorem [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

$$\begin{array}{l} \mathfrak{s}_1 = (15, -25, -35, 45, 0, 0), \\ \mathfrak{s}_2^{\alpha \geq 0} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45, -35 - \alpha \cdot 45, 0, 0), \\ \mathfrak{s}_3 = (0, -13, 12, 0, -46, -45), \end{array}$$

Decomposable Lie algebras

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

$$\begin{array}{l} \mathfrak{s}_1 = (15, -25, -35, 45, 0, 0), \\ \mathfrak{s}_2^{\alpha \geq 0} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45, -35 - \alpha \cdot 45, 0, 0), \\ \mathfrak{s}_3 = (0, -13, 12, 0, -46, -45), \end{array}$$

 \mathfrak{s}_2^{α} with $\alpha \geq 0$ is an infinite family of non-isomorphic Lie algebras

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

$$\begin{array}{l} \mathfrak{s}_1 = (15, -25, -35, 45, 0, 0), \\ \mathfrak{s}_2^{\alpha \geq 0} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45, -35 - \alpha \cdot 45, 0, 0), \\ \mathfrak{s}_3 = (0, -13, 12, 0, -46, -45), \\ \mathfrak{s}_4 = (23, -36, 26, -56, 46, 0), \\ \mathfrak{s}_5 = (24 + 35, 26, 36, -46, -56, 0), \\ \mathfrak{s}_6 = (24 + 35, -36, 26, -56, 46, 0), \\ \mathfrak{s}_7 = (24 + 35, 46, 56, -26, -36, 0), \\ \mathfrak{s}_8 = (16 - 25, 15 + 26, -36 + 45, -35 - 46, 0, 0), \\ \mathfrak{s}_9 = (45, 15 + 36, 14 - 26 + 56, -56, 46, 0). \end{array}$$

Indecomposable Lie algebras

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

$$\begin{array}{l} \mathfrak{s}_1 = (15, -25, -35, 45, 0, 0), \\ \mathfrak{s}_2^{\alpha \geq 0} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45, -35 - \alpha \cdot 45, 0, 0), \\ \mathfrak{s}_3 = (0, -13, 12, 0, -46, -45), \\ \mathfrak{s}_4 = (23, -36, 26, -56, 46, 0), \\ \mathfrak{s}_5 = (24 + 35, 26, 36, -46, -56, 0), \\ \mathfrak{s}_6 = (24 + 35, -36, 26, -56, 46, 0), \\ \mathfrak{s}_7 = (24 + 35, 46, 56, -26, -36, 0), \\ \mathfrak{s}_8 = (16 - 25, 15 + 26, -36 + 45, -35 - 46, 0, 0), \\ \mathfrak{s}_9 = (45, 15 + 36, 14 - 26 + 56, -56, 46, 0). \end{array}$$

\$8 is the underlying Lie algebra to the Nakamura manifold

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable Lie algebra $\mathfrak g$ admitting J with closed (3,0)-form $\Psi \neq 0$ is isomorphic to

$$\begin{split} &\mathfrak{s}_1 = (15, -25, -35, 45, 0, 0), \\ &\mathfrak{s}_2^{\alpha \geq 0} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45, -35 - \alpha \cdot 45, 0, 0), \\ &\mathfrak{s}_3 = (0, -13, 12, 0, -46, -45), \\ &\mathfrak{s}_4 = (23, -36, 26, -56, 46, 0), \\ &\mathfrak{s}_5 = (24 + 35, 26, 36, -46, -56, 0), \\ &\mathfrak{s}_6 = (24 + 35, -36, 26, -56, 46, 0), \\ &\mathfrak{s}_7 = (24 + 35, 46, 56, -26, -36, 0), \\ &\mathfrak{s}_8 = (16 - 25, 15 + 26, -36 + 45, -35 - 46, 0, 0), \\ &\mathfrak{s}_9 = (45, 15 + 36, 14 - 26 + 56, -56, 46, 0). \end{split}$$

PROPOSITION [Fino-Otal-U]. The corresponding connected and simply-connected solvable Lie groups admit a lattice (for a countable number of α 's, including $\alpha = 0$).

The non-solvable case in dimension 6

THEOREM [Otal-U]. Let $\mathfrak g$ be an unimodular non-solvable Lie algebra of dimension 6. Then, $\mathfrak g$ admits a complex structure with a non-zero closed (3,0)-form if and only if it is isomorphic to $\mathfrak{so}(3,1)$.

The non-solvable case in dimension 6

THEOREM [Otal-U]. Let $\mathfrak g$ be an unimodular non-solvable Lie algebra of dimension 6. Then, $\mathfrak g$ admits a complex structure with a non-zero closed (3,0)-form if and only if it is isomorphic to $\mathfrak{so}(3,1)$.

The real Lie algebra $\mathfrak{so}(3,1)$ underlies the 3-dimensional complex Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ given by the complex structure equations

$$d\omega^1 = \omega^2 \wedge \omega^3$$
, $d\omega^2 = -\omega^1 \wedge \omega^3$, $d\omega^3 = \omega^1 \wedge \omega^2$.

Clearly, $d(\omega^1 \wedge \omega^2 \wedge \omega^3) = 0$.

The non-solvable case in dimension 6

THEOREM [Otal-U]. Let $\mathfrak g$ be an unimodular non-solvable Lie algebra of dimension 6. Then, $\mathfrak g$ admits a complex structure with a non-zero closed (3,0)-form if and only if it is isomorphic to $\mathfrak{so}(3,1)$.

The real Lie algebra $\mathfrak{so}(3,1)$ underlies the 3-dimensional complex Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ given by the complex structure equations

$$d\omega^1 = \omega^2 \wedge \omega^3$$
, $d\omega^2 = -\omega^1 \wedge \omega^3$, $d\omega^3 = \omega^1 \wedge \omega^2$.

Clearly, $d(\omega^1 \wedge \omega^2 \wedge \omega^3) = 0$.

Consider the real basis $\{e^j\}_{j=1}^6$ given by

$$\omega^1 = e^3 - i e^6$$
, $\omega^2 = e^1 - i e^4$, $\omega^3 = e^2 - i e^5$.

Then we get

$$\mathfrak{so}(3,1) = (23-56, -13+46, 12-45, 26-35, -16+34, 15-24)$$

Key obs.: the (3,0)-form Ψ is determined by its real part $\rho=\mathfrak{Re}\,\Psi$, which is a stable form.

Key obs.: the (3,0)-form Ψ is determined by its real part $\rho = \mathfrak{Re} \Psi$, which is a stable form.

Let (V, ν) be an oriented 6-dimensional vector space.

A form $\rho \in \Lambda^3 V^*$ is stable if its orbit under the action of GL(V) is open.

Key obs.: the (3,0)-form Ψ is determined by its real part $\rho=\mathfrak{Re}\,\Psi$, which is a stable form.

Let (V, ν) be an oriented 6-dimensional vector space.

A form $\rho \in \Lambda^3 V^*$ is stable if its orbit under the action of GL(V) is open.

Consider the isomorphism $k: \Lambda^5 V^* \to V$, given by $\eta \mapsto y$, where y is such that $\iota_V \nu = \eta$,

and the endomorphism $K_{\rho}: V \to V$, given by $x \mapsto k(\iota_{x} \rho \wedge \rho)$.

[Reichel; Hitchin]: ρ stable $\iff \lambda(\rho) = \frac{1}{6} \operatorname{trace} (K_{\rho}^2) \neq 0$.

The sign of $\lambda(\rho)$ only depends on ρ (not on ν).

Key obs.: the (3,0)-form Ψ is determined by its real part $\rho = \mathfrak{Re} \Psi$, which is a stable form.

Let (V, ν) be an oriented 6-dimensional vector space.

A form $\rho \in \Lambda^3 V^*$ is stable if its orbit under the action of GL(V) is open.

Consider the isomorphism $k: \Lambda^5 V^* \to V$, given by $\eta \mapsto y$, where y is such that $\iota_y \nu = \eta$,

and the endomorphism $K_{\rho}: V \to V$, given by $x \mapsto k(\iota_x \rho \wedge \rho)$.

[Reichel; Hitchin]: ρ stable $\iff \lambda(\rho) = \frac{1}{6} \operatorname{trace} (K_{\rho}^2) \neq 0$.

The sign of $\lambda(\rho)$ only depends on ρ (not on ν).

If $\lambda(\rho) < 0$, then $J_{\rho} := \frac{1}{\sqrt{|\lambda(\rho)|}} K_{\rho}$ is an almost complex structure on V, which is given by:

$$\sqrt{|\lambda(\rho)|} (J_{\rho}^* \alpha)(\mathbf{x}) \nu = \alpha \wedge \iota_{\mathbf{x}} \rho \wedge \rho, \quad \alpha \in \mathbf{V}^*, \ \mathbf{x} \in \mathbf{V}.$$

Key obs.: the (3,0)-form Ψ is determined by its real part $\rho = \mathfrak{Re} \Psi$, which is a stable form.

Let (V, ν) be an oriented 6-dimensional vector space.

A form $\rho \in \Lambda^3 V^*$ is stable if its orbit under the action of GL(V) is open.

Consider the isomorphism $k: \Lambda^5 V^* \to V$, given by $\eta \mapsto y$, where y is such that $\iota_y \nu = \eta$,

and the endomorphism $K_{\rho}: V \to V$, given by $x \mapsto k(\iota_{x} \rho \wedge \rho)$.

[Reichel; Hitchin]:
$$\rho$$
 stable $\iff \lambda(\rho) = \frac{1}{6} \operatorname{trace} (K_{\rho}^2) \neq 0$.

The sign of $\lambda(\rho)$ only depends on ρ (not on ν).

If $\lambda(\rho) < 0$, then $J_{\rho} := \frac{1}{\sqrt{|\lambda(\rho)|}} K_{\rho}$ is an almost complex structure on V, which is given by:

$$\sqrt{|\lambda(\rho)|} (J_{\rho}^* \alpha)(\mathbf{x}) \nu = \alpha \wedge \iota_{\mathbf{x}} \rho \wedge \rho, \quad \alpha \in \mathbf{V}^*, \ \mathbf{x} \in \mathbf{V}.$$

The complex form $\Psi = \rho + iJ_{\rho}^{*}(\rho)$ has bidegree (3,0) w.r.t. J_{ρ} .

STEP 1. Classify real Lie algebras g admitting complex structures.

Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g}) = \{ \rho \in \Lambda^3 \mathfrak{g}^* \mid d\rho = 0 \}$ and look for $\rho \in Z^3(\mathfrak{g})$ such that $\lambda(\rho) < 0$ and $d(J_\rho^* \rho) = 0$.

STEP 1. Classify real Lie algebras $\mathfrak g$ admitting complex structures.

Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g})=\{\rho\in\Lambda^3\mathfrak{g}^*\mid d\rho=0\}$ and look for $\rho\in Z^3(\mathfrak{g})$ such that $\lambda(\rho)<0$ and $d(J_\rho^*\rho)=0$.

STEP 2. Moduli space $\mathcal{M}(\mathfrak{g})$ of complex structures for every \mathfrak{g} .

$$\mathcal{M}(\mathfrak{g}) = \mathcal{C}(\mathfrak{g})/\sim$$

where $J \sim J'$ iff $\exists A \in Aut(\mathfrak{g})$ such that $A \circ J = J' \circ A$.

STEP 1. Classify real Lie algebras $\mathfrak g$ admitting complex structures.

Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g}) = \{ \rho \in \Lambda^3 \mathfrak{g}^* \mid d\rho = 0 \}$ and look for $\rho \in Z^3(\mathfrak{g})$ such that $\lambda(\rho) < 0$ and $d(J_\rho^* \rho) = 0$.

STEP 2. Moduli space $\mathcal{M}(\mathfrak{g})$ of complex structures for every \mathfrak{g} .

$$\mathcal{M}(\mathfrak{g})=\mathcal{C}(\mathfrak{g})/\sim$$

where $J \sim J'$ iff $\exists A \in Aut(\mathfrak{g})$ such that $A \circ J = J' \circ A$.

Conclusion: many compact complex 3-folds X = (M, J) defined by a quotient of G by a lattice Γ , where one can study different questions, as

STEP 1. Classify real Lie algebras ${\mathfrak g}$ admitting complex structures.

Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g}) = \{ \rho \in \Lambda^3 \mathfrak{g}^* \mid d\rho = 0 \}$ and look for $\rho \in Z^3(\mathfrak{g})$ such that $\lambda(\rho) < 0$ and $d(J_\rho^* \rho) = 0$.

STEP 2. Moduli space $\mathcal{M}(\mathfrak{g})$ of complex structures for every \mathfrak{g} .

$$\mathcal{M}(\mathfrak{g}) = \mathcal{C}(\mathfrak{g})/\sim$$

where $J \sim J'$ iff $\exists A \in Aut(\mathfrak{g})$ such that $A \circ J = J' \circ A$.

Conclusion: many compact complex 3-folds X = (M, J) defined by a quotient of G by a lattice Γ , where one can study different questions, as

• complex invariants (Dolbeault, Bott-Chern, Aeppli cohomologies), Frölicher spectral sequence $H^{*,*}_{\bar\partial}(X) \to H^*_{dR}(X),...$

STEP 1. Classify real Lie algebras \mathfrak{g} admitting complex structures. Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g}) = \{ \rho \in \Lambda^3 \mathfrak{g}^* \mid d\rho = 0 \}$ and look for $\rho \in Z^3(\mathfrak{g})$ such that $\lambda(\rho) < 0$ and $d(J_\rho^* \rho) = 0$.

STEP 2. Moduli space $\mathcal{M}(\mathfrak{g})$ of complex structures for every \mathfrak{g} .

$$\mathcal{M}(\mathfrak{g}) = \mathcal{C}(\mathfrak{g})/\sim$$

where $J \sim J'$ iff $\exists A \in Aut(\mathfrak{g})$ such that $A \circ J = J' \circ A$.

Conclusion: many compact complex 3-folds X = (M, J) defined by a quotient of G by a lattice Γ , where one can study different questions, as

- complex invariants (Dolbeault, Bott-Chern, Aeppli cohomologies), Frölicher spectral sequence $H^{*,*}_{\bar\partial}(X) \to H^*_{dR}(X),...$
- small deformations of complex structure, behaviour in central fiber,...

STEP 1. Classify real Lie algebras \mathfrak{g} admitting complex structures. Given a Lie algebra \mathfrak{g} , let $Z^3(\mathfrak{g}) = \{ \rho \in \Lambda^3 \mathfrak{g}^* \mid d\rho = 0 \}$

and look for $\rho \in Z^3(\mathfrak{g})$ such that $\lambda(\rho) < 0$ and $d(J_\rho^* \rho) = 0$.

STEP 2. Moduli space $\mathcal{M}(\mathfrak{g})$ of complex structures for every $\mathfrak{g}.$

$$\mathcal{M}(\mathfrak{g}) = \mathcal{C}(\mathfrak{g})/\sim$$

where $J \sim J'$ iff $\exists A \in Aut(\mathfrak{g})$ such that $A \circ J = J' \circ A$.

Conclusion: many compact complex 3-folds X = (M, J) defined by a quotient of G by a lattice Γ , where one can study different questions, as

- complex invariants (Dolbeault, Bott-Chern, Aeppli cohomologies), Frölicher spectral sequence $H^{*,*}_{\bar{\partial}}(X) \to H^*_{dR}(X),...$
- small deformations of complex structure, behaviour in central fiber,...
- existence of different types of special Hermitian metrics (Kähler, lcK, pluriclosed, generalized Gauduchon, balanced,...)

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot, \cdot) = g(\cdot, J \cdot)$).

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot,\cdot)=g(\cdot,J\cdot)$).

Recall the Lee form of a Hermitian metric F is the 1-form $\theta = J d^*F$.

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot,\cdot)=g(\cdot,J\cdot)$).

Recall the Lee form of a Hermitian metric F is the 1-form $\theta = J d^*F$.

A Hermitian metric F on X is balanced if the Lee 1-form $\theta = 0$, equivalently, $dF^{n-1} = 0$ $(n = \dim_{\mathbb{C}} X)$.

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot,\cdot)=g(\cdot,J\cdot)$).

Recall the Lee form of a Hermitian metric F is the 1-form $\theta = J d^*F$.

A Hermitian metric F on X is balanced if the Lee 1-form $\theta = 0$, equivalently, $dF^{n-1} = 0$ $(n = \dim_{\mathbb{C}} X)$.

Balanced metrics correspond to the Gray-Hervella class \mathcal{W}_3 (semi-Kähler). They are studied by many authors (Michelsohn,...) and play an important role in geometry and physics (string theory).

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot,\cdot)=g(\cdot,J\cdot)$).

Recall the Lee form of a Hermitian metric F is the 1-form $\theta = J d^*F$.

A Hermitian metric F on X is balanced if the Lee 1-form $\theta = 0$, equivalently, $dF^{n-1} = 0$ $(n = \dim_{\mathbb{C}} X)$.

Balanced metrics correspond to the Gray-Hervella class W_3 (semi-Kähler). They are studied by many authors (Michelsohn,...) and play an important role in geometry and physics (string theory).

PROPOSITION. Let $X = (\Gamma \setminus G, J)$ endowed with any invariant complex structure J. If F is a balanced metric on X, then there is a balanced metric on the Lie algebra \mathfrak{g} (obtained by symmetrization).

Let F be a Hermitian metric on X, i.e. a positive (1,1)-form on X (note that $F(\cdot,\cdot)=g(\cdot,J\cdot)$).

Recall the Lee form of a Hermitian metric F is the 1-form $\theta = J d^*F$.

A Hermitian metric F on X is balanced if the Lee 1-form $\theta = 0$, equivalently, $dF^{n-1} = 0$ $(n = \dim_{\mathbb{C}} X)$.

Balanced metrics correspond to the Gray-Hervella class W_3 (semi-Kähler). They are studied by many authors (Michelsohn,...) and play an important role in geometry and physics (string theory).

PROPOSITION. Let $X = (\Gamma \setminus G, J)$ endowed with any invariant complex structure J. If F is a balanced metric on X, then there is a balanced metric on the Lie algebra \mathfrak{g} (obtained by symmetrization).

REDUCTION TO THE LIE ALGEBRA: For each pair (\mathfrak{g}, J) , we are reduced to study the existence of J-Hermitian inner products F on \mathfrak{g} satisfying the balanced condition.

Existence of balanced metrics: nilpotent case

[U]	Balanced
$n_1 = (0, 0, 0, 0, 0, 0)$	✓
$n_2 = (0, 0, 0, 0, 12, 34)$	√(J)
$\mathfrak{n}_3 = (0, 0, 0, 0, 0, 12 + 34)$	√(J)
$n_4 = (0, 0, 0, 0, 12, 14+23)$	√(J)
$\mathfrak{n}_5 = (0,0,0,0,13+42,14+23)$	√(J)
$\mathfrak{n}_6 = (0, 0, 0, 0, 12, 13)$	√
$\mathfrak{n}_7 = (0, 0, 0, 12, 13, 23)$	_
$n_8 = (0, 0, 0, 0, 0, 12)$	_
$n_9 = (0, 0, 0, 0, 12, 14+25)$	_
$\mathfrak{n}_{10} = (0, 0, 0, 12, 13, 14)$	_
$\mathfrak{n}_{11} = (0, 0, 0, 12, 13, 14 + 23)$	_
$n_{12} = (0, 0, 0, 12, 13, 24)$	_
$n_{13} = (0, 0, 0, 12, 13+14, 24)$	_
$n_{14} = (0, 0, 0, 12, 14, 13+42)$	_
$\mathfrak{n}_{15} = (0,0,0,12,13{+}42,14{+}23)$	_
$\mathfrak{n}_{16} = (0, 0, 0, 12, 14, 24)$	_
$n_{19}^- = (0, 0, 0, 12, 23, 14 - 35)$	✓
$\mathfrak{n}_{26}^{+} = (0, 0, 12, 13, 23, 14+25)$	_

Existence of balanced metrics: non-nilpotent case

[FOU]	Balanced
$\mathfrak{s}_1 = (15, -25, -35, 45, 0, 0)$	✓
$\mathfrak{s}_2^0 = (25, -15, 45, -35, 0, 0)$	✓
$\mathfrak{s}_{2}^{\alpha} = (\alpha \cdot 15 + 25, -15 + \alpha \cdot 25, -\alpha \cdot 35 + 45,$	✓
$-35 - \alpha \cdot 45, 0, 0), \alpha > 0$	
$\mathfrak{s}_3 = (0, -13, 12, 0, -46, -45)$	✓
$\mathfrak{s}_4 = (23, -36, 26, -56, 46, 0)$	-
$\mathfrak{s}_5 = (24+35, 26, 36, -46, -56, 0)$	✓
$\mathfrak{s}_6 = (24+35, -36, 26, -56, 46, 0)$	_
$\mathfrak{s}_7 = (24+35, 46, 56, -26, -36, 0)$	✓
$\mathfrak{s}_8 = (16-25, 15+26, -36+45, -35-46, 0, 0)$	√(J)
$\mathfrak{s}_9 = (45, 15+36, 14-26+56, -56, 46, 0)$	_

$\mathfrak{sl}(2,\mathbb{C})$	Balanced
$\mathfrak{so}(3,1) = (23-56, \ -13+46, \ 12-45, \ 26-35, \ -16+34, \ 15-24)$	✓

The Hull-Strominger system in six dimensions

Hull and Strominger proposed a 10-dim. space-time $L^{1,9-d} \times X^d$, X compact, in order to compactify the heterotic strings with torsion. It was proposed independently by

- C.M. Hull (Compactifications of the heterotic superstring, *Physics Letters* **B 178** (4):357-364, 1986.)
- A. Strominger (Superstrings with torsion, *Nuclear Phys.* **B 274** (1986), 253.)

The Hull-Strominger system in six dimensions

Hull and Strominger proposed a 10-dim. space-time $L^{1,9-d} \times X^d$, X compact, in order to compactify the heterotic strings with torsion. It was proposed independently by

- C.M. Hull (Compactifications of the heterotic superstring, *Physics Letters* **B 178** (4):357-364, 1986.)
- A. Strominger (Superstrings with torsion, *Nuclear Phys.* **B 274** (1986), 253.)

X is a compact complex manifold, $\dim_{\mathbb{C}} X = 3$, with holomorphically trivial canonical bundle. The system consists of three equations:

(I) The conformally balanced equation.

Let Ψ be a nowhere vanishing holomorphic (3,0)-form on X.

Let F be a Hermitian metric on X and denote by $||\Psi||_F$ the norm of Ψ with respect to the metric F.

The first equation is $d(||\Psi||_F \cdot F^2) = 0$,

in the formulation of [Li-Yau, 2005].

• The equation $d(||\Psi||_F \cdot F^2) = 0$ implies that $\tilde{F} = e^{-f/2}F$, with $f = -\log ||\Psi||_F$, is a balanced metric.

The function *f* is known as the dilaton function.

• The equation $d(||\Psi||_F \cdot F^2) = 0$ implies that $\tilde{F} = e^{-f/2}F$, with $f = -\log ||\Psi||_F$, is a balanced metric.

The function *f* is known as the dilaton function.

Let ∇^+ be the Bismut connection, i.e. the unique Hermitian connection (i.e. $\nabla J=0$ and $\nabla F=0$) with totally skew-symmetric torsion:

$$\nabla^+ = \nabla^{LC} + \frac{1}{2}T$$
, where $T = JdF$ torsion 3-form.

• The equation $d(||\Psi||_F \cdot F^2) = 0$ implies that $\tilde{F} = e^{-f/2}F$, with $f = -\log ||\Psi||_F$, is a balanced metric.

The function *f* is known as the dilaton function.

Let ∇^+ be the Bismut connection, i.e. the unique Hermitian connection (i.e. $\nabla J = 0$ and $\nabla F = 0$) with totally skew-symmetric torsion:

$$\nabla^+ = \nabla^{LC} + \frac{1}{2}T$$
, where $T = JdF$ torsion 3-form.

• The equation $d(||\Psi||_F \cdot F^2) = 0$ implies that the (3,0)-form $e^f \Psi$, $f = -\log ||\Psi||_F$, is parallel with respect to ∇^+ , i.e.

$$abla^+(e^f\Psi)=0, \quad \text{ hence } \operatorname{Hol}(
abla^+)\subset\operatorname{SU}(3).$$

(II) The instanton equation.

A Hermitian vector bundle E over X equipped with an instanton, i.e. a connection A with curvature 2-form Ω^A satisfying the Hermitian-Yang-Mills equation

$$\Omega^{A} \wedge F^{2} = 0, \quad (\Omega^{A})^{0,2} = (\Omega^{A})^{2,0} = 0.$$

More explicitly, with respect to a local orthonormal basis $\{e_k\}$

$$(\Omega^A)^i_j(Je_k,Je_l)=(\Omega^A)^i_j(e_k,e_l), \qquad \sum_{k=1}^6 (\Omega^A)^i_j(e_k,Je_k)=0.$$

It is allowed (and also of interest) to take the trivial case $\Omega^A = 0$.

(III) The anomaly cancellation equation.

$$\boxed{ dT = rac{lpha'}{4} \left(\operatorname{tr} \Omega \wedge \Omega - \operatorname{tr} \Omega^{ extit{A}} \wedge \Omega^{ extit{A}}
ight) } \qquad ext{for } lpha'$$

for $\alpha' \neq 0$ constant

 α' slope parameter (string tension $\alpha' > 0$)

 Ω is the curvature form of some metric connection ∇

Metric connections proposed for ∇

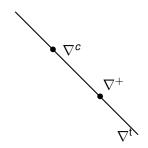
• Strominger-Bismut $\nabla^+ = \nabla^{LC} + \frac{1}{2}T$: torsion $T(\cdot,\cdot,\cdot) = \textit{JdF}(\cdot,\cdot,\cdot)$

Metric connections proposed for ∇

- Strominger-Bismut $\nabla^+ = \nabla^{LC} + \frac{1}{2}T$: torsion $T(\cdot, \cdot, \cdot) = JdF(\cdot, \cdot, \cdot)$
- Chern $\nabla^c = \nabla^{LC} + \frac{1}{2}C$: torsion $C(\cdot, \cdot, \cdot) = dF(J\cdot, \cdot, \cdot)$

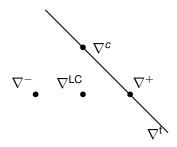
Metric connections proposed for ∇

- Strominger-Bismut $\nabla^+ = \nabla^{LC} + \frac{1}{2}T$: torsion $T(\cdot,\cdot,\cdot) = JdF(\cdot,\cdot,\cdot)$
- Chern $\nabla^c = \nabla^{LC} + \frac{1}{2}C$: torsion $C(\cdot, \cdot, \cdot) = dF(J \cdot, \cdot, \cdot)$
- Gauduchon (Hermitian) line $\nabla^t = \nabla^{LC} + \frac{1-t}{4} T + \frac{1+t}{4} C$, $t \in \mathbb{R}$.



Metric connections proposed for ∇

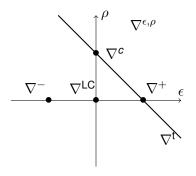
- Strominger-Bismut $\nabla^+ = \nabla^{LC} + \frac{1}{2}T$: torsion $T(\cdot, \cdot, \cdot) = JdF(\cdot, \cdot, \cdot)$
- Chern $\nabla^c = \nabla^{LC} + \frac{1}{2}C$: torsion $C(\cdot, \cdot, \cdot) = dF(J \cdot, \cdot, \cdot)$
- Gauduchon (Hermitian) line $\nabla^t = \nabla^{LC} + \frac{1-t}{4} T + \frac{1+t}{4} C$, $t \in \mathbb{R}$.
- Hull (metric) connection $\nabla^- = \nabla^{LC} \frac{1}{2}T$



The (ϵ, ρ) -plane of metric connections $\nabla^{\epsilon, \rho}$ [Otal-U-Villacampa]

Let (M^{2n}, J, g) be any Hermitian manifold. For any $(\varepsilon, \rho) \in \mathbb{R}^2$, define:

$$g(\nabla_X^{\varepsilon,\rho}Y,Z)=g(\nabla_X^{LC}Y,Z)+\varepsilon\,T(X,Y,Z)+\rho\,C(X,Y,Z).$$

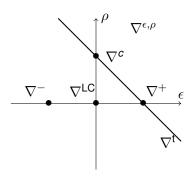


The (ϵ, ρ) -plane of metric connections $\nabla^{\epsilon, \rho}$ [Otal-U-Villacampa]

Let (M^{2n}, J, g) be any Hermitian manifold. For any $(\varepsilon, \rho) \in \mathbb{R}^2$, define:

$$g(\nabla_X^{\varepsilon,\rho}Y,Z)=g(\nabla_X^{LC}Y,Z)+\varepsilon\,T(X,Y,Z)+\rho\,C(X,Y,Z).$$

Then, $\nabla^{\varepsilon,\rho}g=0$, and $\nabla^{\varepsilon,\rho}J=-2\Big(\varepsilon+\rho-\frac{1}{2}\Big)\nabla^{LC}J$.



Solutions of the Hull-Strominger system

1. Any Kähler CY manifold X solves the HS system (by Yau's solution to the Calabi conjecture X admits a Ricci-flat Kähler metric) taking e.g. $\Omega^A = \Omega$.

Solutions of the Hull-Strominger system

- **1.** Any Kähler CY manifold X solves the HS system (by Yau's solution to the Calabi conjecture X admits a Ricci-flat Kähler metric) taking e.g. $\Omega^A = \Omega$.
- **2.** [Li-Yau, 2005] obtained the first non-Kähler solutions to the HS system on a Kähler CY 3-fold (further extended by [Andreas-García, 2012]).

Solutions of the Hull-Strominger system

- 1. Any Kähler CY manifold X solves the HS system (by Yau's solution to the Calabi conjecture X admits a Ricci-flat Kähler metric) taking e.g. $\Omega^A = \Omega$.
- 2. [Li-Yau, 2005] obtained the first non-Kähler solutions to the HS system on a Kähler CY 3-fold (further extended by [Andreas-García, 2012]).

3. On non-Kähler 3-folds:

[Fu-Yau, 2008] proved the existence of solutions on non-Kähler 3-folds given as a \mathbb{T}^2 -bundle over a K3 surface.

[Fernández-Ivanov-U-Villacampa, 2009] first explicit invariant solutions.

[Fei-Yau, 2015] invariant solutions on complex Lie groups.

[Phong-Picard-Zhang, 2016] recover the Fu-Yau results via the anomaly flow.

[Fei-Huang-Picard, 2017] on hyperkähler fibrations over a Riemann surface.

[Otal-U-Villacampa, 2017] invariant solutions on solvmanifolds.

[Fino-Grantcharov-Vezzoni, 2021] Fu-Yau solution is generalized to torus bundles over K3 orbifolds.

From HS to the heterotic equations of motion

Theorem [Ivanov 2010]

A solution to the HS system satisfies the heterotic equations of motion if and only if the connection ∇ is Hermitian-Yang-Mills (i.e. instanton).

From HS to the heterotic equations of motion

Theorem [Ivanov 2010]

A solution to the HS system satisfies the heterotic equations of motion if and only if the connection ∇ is Hermitian-Yang-Mills (i.e. instanton).

The Hull-Strominger-Ivanov system

(I)
$$d(||\Psi||_F \cdot F^2) = 0$$
,

(II.a)
$$\Omega^A \wedge F^2 = 0$$
, $(\Omega^A)^{0,2} = (\Omega^A)^{2,0} = 0$,

(II.b)
$$\Omega \wedge F^2 = 0$$
, $\Omega^{0,2} = \Omega^{2,0} = 0$,

(III)
$$d(JdF) = \frac{\alpha'}{4} (\operatorname{tr} \Omega \wedge \Omega - \operatorname{tr} \Omega^A \wedge \Omega^A).$$

From HS to the heterotic equations of motion

Theorem [Ivanov 2010]

A solution to the HS system satisfies the heterotic equations of motion if and only if the connection ∇ is Hermitian-Yang-Mills (i.e. instanton).

The Hull-Strominger-Ivanov system

(I)
$$d(||\Psi||_F \cdot F^2) = 0$$
,

(II.a)
$$\Omega^A \wedge F^2 = 0$$
, $(\Omega^A)^{0,2} = (\Omega^A)^{2,0} = 0$,

(II.b)
$$\Omega \wedge F^2 = 0$$
, $\Omega^{0,2} = \Omega^{2,0} = 0$,

(III)
$$d(JdF) = \frac{\alpha'}{4} (\operatorname{tr} \Omega \wedge \Omega - \operatorname{tr} \Omega^A \wedge \Omega^A).$$

Theorem (Existence of invariant solutions)

The first solutions are given in [FIUV 2009] on the "nilmanifold" n_3 , and later in [Otal-U-Villacampa 2017] on the "solvmanifold" \mathfrak{s}_7 , and on the quotient of (SO(3,1), J_0) = SL(2, \mathbb{C}). Moreover, $\nabla = \nabla^+$, and it is a non-flat instanton.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

The (3,0)-form $\Psi = \omega^1 \wedge \omega^2 \wedge \omega^3$ is holomorphic.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

The (3,0)-form $\Psi = \omega^1 \wedge \omega^2 \wedge \omega^3$ is holomorphic.

(I) An infinite family F_t of balanced metrics with $\operatorname{Hol}(\nabla_t^+) \subset \operatorname{SU}(3)$

$$F_t = \frac{i}{2}(\omega^1 \wedge \omega^{\bar{1}} + \omega^2 \wedge \omega^{\bar{2}} + t^2 \omega^3 \wedge \omega^{\bar{3}}), \quad t \in \mathbb{R} - \{0\}.$$

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

The (3,0)-form $\Psi = \omega^1 \wedge \omega^2 \wedge \omega^3$ is holomorphic.

(I) An infinite family F_t of balanced metrics with $\operatorname{Hol}(\nabla_t^+) \subset \operatorname{SU}(3)$

$$F_t = \frac{i}{2}(\omega^1 \wedge \omega^{\bar{1}} + \omega^2 \wedge \omega^{\bar{2}} + t^2 \omega^3 \wedge \omega^{\bar{3}}), \quad t \in \mathbb{R} - \{0\}.$$

(II.a) There is an instanton A with $\operatorname{tr} \Omega^A \wedge \Omega^A = \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}}$.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

The (3,0)-form $\Psi = \omega^1 \wedge \omega^2 \wedge \omega^3$ is holomorphic.

(I) An infinite family F_t of balanced metrics with $\operatorname{Hol}(\nabla_t^+) \subset \operatorname{SU}(3)$

$$F_t = \frac{i}{2}(\omega^1 \wedge \omega^{\bar{1}} + \omega^2 \wedge \omega^{\bar{2}} + t^2 \omega^3 \wedge \omega^{\bar{3}}), \quad t \in \mathbb{R} - \{0\}.$$

(II.a) There is an instanton A with $\operatorname{tr} \Omega^A \wedge \Omega^A = \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}}$.

(II.b) ∇_t^+ is an instanton with $\operatorname{tr} \Omega_t^+ \wedge \Omega_t^+ = 16 \, t^4 \, \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}}$.

Simplest solutions given by the "nilmanifold" $n_3 = (0,0,0,0,0,12+34)$. Two complex structures (up to equivalence), one is locally conformally Kähler, and the other one is given by:

$$d\omega^1 = d\omega^2 = 0$$
, $d\omega^3 = \omega^1 \wedge \omega^{\bar{1}} - \omega^2 \wedge \omega^{\bar{2}}$.

The (3,0)-form $\Psi = \omega^1 \wedge \omega^2 \wedge \omega^3$ is holomorphic.

(I) An infinite family F_t of balanced metrics with $\operatorname{Hol}(\nabla_t^+) \subset \operatorname{SU}(3)$

$$F_t = \frac{i}{2}(\omega^1 \wedge \omega^{\bar{1}} + \omega^2 \wedge \omega^{\bar{2}} + t^2 \omega^3 \wedge \omega^{\bar{3}}), \quad t \in \mathbb{R} - \{0\}.$$

- (II.a) There is an instanton A with $\operatorname{tr} \Omega^A \wedge \Omega^A = \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}}$.
- (II.b) ∇_t^+ is an instanton with $\operatorname{tr} \Omega_t^+ \wedge \Omega_t^+ = 16 \, t^4 \, \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}}$.
- (III) The anomaly cancellation equation

$$dT_t = 2t^2 \omega^1 \wedge \omega^{\bar{1}} \wedge \omega^2 \wedge \omega^{\bar{2}} = \frac{\alpha'}{4} \left(\operatorname{tr} \Omega_t^+ \wedge \Omega_t^+ - \operatorname{tr} \Omega^A \wedge \Omega^A \right),$$

is equivalent to $\alpha' = 8t^2/(16t^4-1)$. Any $t > \frac{1}{2}$ solves the H-S-I system.

An uniqueness result for invariant non-flat solutions of the H-S-I system

An uniqueness result: the spaces n_3 , s_7 and so(3,1) are the unique admitting invariant solutions of the H-S-I system. More concretely,

An uniqueness result for invariant non-flat solutions of the H-S-I system

An uniqueness result: the spaces n_3 , s_7 and so(3,1) are the unique admitting invariant solutions of the H-S-I system. More concretely,

Theorem [Otal-U, 2023]

 $M = \Gamma \backslash G$ six-dimensional compact quotient of a simply connected Lie group G by a lattice Γ . Suppose that M possesses an invariant balanced Hermitian structure (J,F) with invariant non-zero closed (3,0)-form. Let $\nabla^{\varepsilon,\rho}_{(J,F)}$ be any metric connection in the (ε,ρ) -plane.

If $\nabla^{\varepsilon,\rho}_{(J,F)}$ is a non-flat instanton, then $\mathfrak g$ is isomorphic to $\mathfrak n_3,\,\mathfrak s_7,\,$ or $\mathfrak {so}(3,1).$

An uniqueness result for invariant non-flat solutions of the H-S-I system

An uniqueness result: the spaces n_3 , s_7 and so(3,1) are the unique admitting invariant solutions of the H-S-I system. More concretely,

Theorem [Otal-U, 2023]

 $M = \Gamma \backslash G$ six-dimensional compact quotient of a simply connected Lie group G by a lattice Γ . Suppose that M possesses an invariant balanced Hermitian structure (J,F) with invariant non-zero closed (3,0)-form. Let $\nabla^{\varepsilon,\rho}_{(J,F)}$ be any metric connection in the (ε,ρ) -plane.

If $\nabla^{\varepsilon,\rho}_{(J,F)}$ is a non-flat instanton, then $\mathfrak g$ is isomorphic to $\mathfrak n_3,\,\mathfrak s_7,\,$ or $\mathfrak {so}(3,1).$

PROOF: We studied the whole space of balanced Hermitian structures on the remaining Lie algebras from the previous classifications: \mathfrak{n}_2 , \mathfrak{n}_4 , \mathfrak{n}_5 , \mathfrak{n}_6 , \mathfrak{n}_{19}^- , \mathfrak{s}_1 , \mathfrak{s}_2^0 , \mathfrak{s}_2^α ($\alpha>0$), \mathfrak{s}_3 , \mathfrak{s}_5 , and \mathfrak{s}_8 .

We found that if $\nabla_{(J,F)}^{\varepsilon,\rho}$ satisfies the Hermitian-Yang-Mills condition, then it is flat (and in this case, the connection is necessarily the Chern connection ∇^c).

New Developments in Differential Geometry, Budapest, July 1996

New Developments in Differential Geometry, Budapest, July 1996

HAPPY BIRTHDAY (in advance), EDUARDO!

And congratulations for your outstanding contributions to Mathematics!