Polygons & G2-symmetry

Luis Hernández Lamoneda, CIMAT-Guanajuato, México (joint with Gil Bor, CIMAT-Guanjauto)

Symmetry & Shape, September 23, 2024

Santiago de Compostela, Galicia

Theorem (main): there is a 1:1 correspondence

Dancing pair: is a pair of polygons in \mathbb{RP}^2 , with vertices

 A_1, A_2, \ldots, A_n and edges b_1, b_2, \ldots, b_n , such that for all i

(1) $b_i b_{i+1} \in A_i A_{i+1}$ (red is inscribed in black)

(2)
$$[A_{i+1}, B_i, A_i, D] + [A_{i+1}, B_{i+1}, A_{i+2}, C] = 0$$

Cross-ratio
$$[x_1, x_2, x_3, x_4] := \frac{(x_1 - x_3)(x_2 - x_4)}{(x_1 - x_4)(x_2 - x_3)}$$

Non degeneracy conditions:

- (1) No 3 consecutive A's are colinear.
- (2) No 3 consecutive b's are concurrent.
- (3) $A_i \notin b_i$, for all i.

Theorem: there are dancing pairs of closed n gons iff $n \ge 6$.

Proof: via rolling balls

$$n = 6$$

Rolling balls: a sphere of radius 1 is rolling without sliding and twisting along a closed polygon on a sphere of radius 3

Non-degeneracy condition:
No 3 consecutive vertices
are collinear.

The rolling ball defines a path in SO_3 , starting at I, whose endpoint is ``the rolling monodromy"

Rolling monodromy (3:1 ratio)

Definition: the rolling monodromy is trivial if the corresponding path in SO_3 is closed and contractible.

Equivalently: the lifted path in S^3 is closed.

Recall:

$$S^{3} \Rightarrow q$$
2:1
$$SO_{3} \Rightarrow [\mathbf{v} \mapsto \mathbf{q}\mathbf{v}\mathbf{q}]$$

Example: a triangular 'octant'.

Each edge is ½ of a great circle

⇒ small sphere makes 1 full turn going along each edge

 \implies lifted monodromy for each edge is -1

 \implies lifted monodromy of the triangle is $(-1)^3 = -1$

⇒ lifted monodromy of going twice around the triangle is trivial.

Cartan-Engel distribution (1893)

max symm

Is a "flat" 2-plane dist $D \subset TQ$, non-integrable, on a 5-mfld Q

Theorem (Cartan, 1910):

1. It is a "flat" 235 dist: The (local) symmetry gp is G_2 (a 14-dim non-cpct simple Lie gp), max-dim possible for a 235 dist.

- 2. All "flat" 235 dist are loc diffeo.
- 3. Submax symmetry for 235 dist: dim Aut \geq 8 \Rightarrow Aut = G_2 .

$$\longleftrightarrow$$

$$\mathbb{R}^{3} \times (\mathbb{R}^{3})^{*} \longrightarrow \mathbb{R}$$
is a (3,3) metric
$$(\mathbf{A}, \mathbf{b}) \longmapsto \mathbf{b}\mathbf{A}$$

$$Q^{\text{dance}} = \{ (\mathbf{A}, \mathbf{b}) | \mathbf{b} \mathbf{A} = 1 \} \subset \mathbb{R}^3 \times (\mathbb{R}^3)^*$$

$$D_{\mathbf{A},\mathbf{b}} = \left\{ (\dot{\mathbf{A}}, \dot{\mathbf{b}}) \in TQ_{\mathbf{A},\mathbf{b}}^{dance} \middle| \dot{\mathbf{b}} = \mathbf{A} \times \dot{\mathbf{A}} \right\}, \text{ the dancing}$$

distribution, is a Cartan-Engel 235-distribution:

Proof: 8-dimensional $SL_3(\mathbb{R})$ acts trans. on Q^{dance} preserving $D \Longrightarrow 14$ -dim symmetry

G Bor, LH, P Nurowski (2018), The dancing metric, G₂-symmetry and projective rolling, Trans. Amer. Math. Soc. 370(6)

 Q^{dance} fibers over the space M^4 of non-incident pairs of point-line

$$(\mathbf{A}, \mathbf{b}) \in Q^{\text{dance}} \subset \mathbb{R}^3 \times (\mathbb{R}^3)^*$$

$$\downarrow \qquad \qquad \downarrow$$

$$(A, b) \in M^4 = \left\{ (A, b) \middle| A \notin b \right\} \subset \mathbb{RP}^2 \times (\mathbb{RP}^2)^*$$

$$\mathbb{R}^*$$
 acts on Q^{dance} : $r \cdot (\mathbf{A}, \mathbf{b}) = (r\mathbf{A}, r^{-1}\mathbf{b})$

 Q^{dance} includes many horizontal lines: in fact, $\forall (\mathbf{A}, \mathbf{b}) \in Q^{dance}$, $(\mathbf{A}, \mathbf{b}) + D_{\mathbf{A}, \mathbf{b}} \subset Q^{dance}$

These horizontal lines are precisely the rigid curves (a la Bryant-Hsu) of the distribution.

Theorem: a pair of polygons, the 1st with vertices $A_1, ..., A_n \in \mathbb{RP}^2$, the 2nd with edges $b_1, b_2, ..., b_n \in (\mathbb{RP}^2)^*$, is *dancing* iff there are homogeneous coordinates

 $\mathbf{A}_1, ..., \mathbf{A}_n \in \mathbb{R}^3, \mathbf{b}_1, ..., \mathbf{b}_n \in (\mathbb{R}^3)^*$, such that $(\mathbf{A}_1, \mathbf{b}_1), ..., (\mathbf{A}_n, \mathbf{b}_n)$ are the vertices of a horizontal polygon in Q^{dance} .

Remark.

dancing pairs of polygons = discrete version of 'dancing' point-line pairs in M^4 :

(1) A(t) always moves towards the "turning pt" of b(t) ('ice skate')

⇔ null curves of a metric of signature (2,2) on

Ψ-riem symm space
$$SL_3(\mathbb{R})/GL_2(\mathbb{R})$$

$$\mathbb{R}$$

$$M^4 = \left\{ (A,b) \, | \, A \not\in b \right\} \subset \mathbb{RP}^2 \times (\mathbb{RP}^2)^*$$

(2) The tangent SD 2-plane field along the curve (A(t),b(t)) in M^4 is parallel (a 'half-geodesic').

 $Q^{\text{roll}} = S^2 \times SO_3$ = configuration space for rolling balls

The rolling distribution: $D \subset TQ^{\text{roll}}$, 235-dist if $\rho = R/r \neq 1$,

No slip & no twist conditions
$$\begin{cases} (\rho+1)\mathbf{x}' = \mathbf{\omega} \times \mathbf{x}, \\ \mathbf{\omega} \cdot \mathbf{x} = 0 \end{cases} \quad \mathbf{x} \in S^2, \quad \mathbf{\omega} = g^{-1}g' \in \mathbb{R}^3 \simeq \mathfrak{S}o_3$$

Theorem (R Bryant ~2000):

The rolling dist for a pair of balls with $R/r \neq 1$

is *flat* (ie a Cartan-Engel dist)
$$\Leftrightarrow R/r = \frac{1}{3}$$
 or 3

(for $R/r \neq 1,3,1/3$, sym gp is 6-dim)

"Rigid" curves of rolling distributions: rolling along geodesics (great circles)

R Bryant, L Hsu (1993), *Rigidity of integral curves of rank 2 distributions*, Invent. Math. 114.

G Bor, R Montgomery (2009), *G*₂ and the 'rolling distribution', Enseign. Math. 55.

JC Baez, J Huerta (2014), G_2 and the rolling ball, Trans. AMS 366.

The "octonions" model of the Cartan-Engel distribution

$$\mathbb{O} = \mathbb{R} 1 \oplus \mathbb{Im} \mathbb{O} \simeq \mathbb{R}^8$$
 the split octonions, $G_2 = \operatorname{Aut}(\mathbb{O})$

$$Q^{oct} \subset \mathbb{RP}^6 = \mathbb{P}(\text{Im}\mathbb{O})$$

$$Q^{oct} = \left\{ [\zeta] \mid \zeta \in \text{ImO}, \langle \zeta, \zeta \rangle = 0 \right\}$$

$$T_{[\zeta]}Q^{oct}\supset D^{oct}_{[\zeta]}=T_{[\zeta]}\left(\mathbb{P}\left[\left\{\eta\in\operatorname{Im}\mathbb{O}\,|\,\zeta\eta=0\right\}\right]\right)$$

 ζ °, the 3-dim annihilator of $\zeta \supset \mathbb{R}\zeta$

$$S^{2} \times S^{3} \longrightarrow S^{2} \times S^{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Spherical regular *n*-gons with trivial rolling monodromy

Proposition

(a) A regular spherical polygon (n, w, ϕ) has trivial 3:1 rolling monodromy iff there exists an integer w' such that

•
$$\cos\left(\frac{\pi w'}{n}\right) = \cos\left(\frac{\pi w}{n}\right) \left[1 - 4\sin^2\left(\frac{\pi w}{n}\right)\sin^2\phi\right].$$

$$n = 5, w = 2$$

• $w \equiv w' \pmod{2}$

w' is the winding number of the curve traced on the small sphere

(b) There are solutions iff $n \ge 6$

Theorem (main): there is a 1:1 correspondence

Thank you!