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The results I am going to introduce in this talk were obtained some
years ago in collaboration with the following colleagues:

? Ana Hurtado, from Universidad de Granada, and Vicente Palmer,
from Universitat Jaume I, Castelló (Spain):

Geometric analysis of Lorentzian distance function on spacelike
hypersurfaces, Transactions of the American Mathematical Society
362 (2010), 5083–5106.

? G. Pacelli Bessa and Jorge H.S. de Lira, from Universidade Federal
do Ceará, Fortaleza (Brasil):

Geometric analysis of the Lorentzian distance function on trapped
submanifolds, Classical and Quantum Gravity 33 (2016) 125007 (28
pp.).

Our results where strongly based on a previous work by Erkekoglu,
Garćıa-Ŕıo and Kupeli, where they established the basis for the
comparison analysis of the (Lorentzian) Hessian and Laplacian
operators of the Lorentzian distance funtion:

On level sets of Lorentzian distance function, General Relativity and
Gravitation 35 (2003), 1597–1615.
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Causality relations in a spacetime

Consider Mn an n-dimensional spacetime, that is, a time-oriented
Lorentzian manifold of dimension n ≥ 2.

Let p, q be points in M. Using the standard terminology and
notation from Lorentzian geometry, one says that q is in the
chronological future of p, written p � q, if there exists a
future-directed timelike curve from p to q.

Similarly, q is in the causal future of p, written p < q, if there exists
a future-directed causal (i.e., nonspacelike) curve from p to q.

Obviously, p � q implies p < q. As usual, p ≤ q means that either
p < q or p = q.

For a subset S ⊂ M, one defines the chronological future of S as

I+(S) = {q ∈ M : p � q for some p ∈ S},

and the causal future of S as

J+(S) = {q ∈ M : p ≤ q for some p ∈ S}.

Thus S ∪ I+(S) ⊂ J+(S).
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Causality relations

In a dual way, I−(S) = {q ∈ M : q � p for some p ∈ S} and
J−(S) = {q ∈ M : q ≤ p for some p ∈ S} are the chronological past
and causal past of S .

In particular, the chronological future I+(p) and the causal future
J+(p) of a point p ∈ M are

I+(p) = {q ∈ M : p � q}, and J+(p) = {q ∈ M : p ≤ q}.

For instance, for a point p ∈ M in Minkowski space, I+(p) is just
the future timecone of p,

I+(p) = {q ∈ M : 〈q − p, q − p〉 < 0 and 〈q − p, en+1〉 < 0},

and

J+(p) = I+(p) = {p}∪{q : 〈q − p, q − p〉 ≤ 0 and 〈q − p, en+1〉 < 0}

I+(p) is always open. J+(p) is neither open nor closed in general.
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Lorentzian distance function

If q ∈ J+(p), then the Lorentzian distance d(p, q) is the supremum
of the Lorentzian lengths of all the future-directed causal curves
from p to q (possibly, d(p, q) = +∞).

If q /∈ J+(p), then the Lorentzian distance d(p, q) = 0 by definition.

In particular, d(p, q) > 0 if and only is q ∈ I+(p).

The Lorentzian distance function d : M ×M → [0,+∞] is always
lower semicontinuous.

However, for an arbitrary spacetime it may fail to be continuous in
general, and may also fail to be finite valued.

Globally hyperbolic spacetimes turn out to be the natural class of
spacetimes for which the Lorentzian distance function is finite-valued
and continuous.

Recall that a spacetime M is said to be globally hyperbolic if

(i) it is causal, that is, there exists no causal loop in M, and
(ii) the intersections J+(p) ∩ J−(q) are compact for every p, q ∈ M.
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Lorentzian distance function from a point

Given a point p ∈ M, one can define the Lorentzian distance
function from p by dp : M → [0,+∞]

dp(q) = d(p, q).

In order to guarantee the smoothness of dp, we need to restrict this
function on certain special subsets of M.

Let T−1M|p be the fiber of the unit future observer bundle of M at
p, that is,

T−1M|p = {v ∈ TpM : v is a future-directed timelike unit vector}.

Define the function sp : T−1M|p → [0,+∞] by

sp(v) = sup{t ≥ 0 : dp(γv (t)) = t},

where γv : [0, a)→ M is the future inextendible geodesic starting at
p with initial velocity v .
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Lorentzian distance function from a point

Then, one can define the subset Ĩ+(p) ⊂ TpM given by

Ĩ+(p) = {tv : for all v ∈ T−1M|p and 0 < t < sp(v)}

and consider the subset I+(p) ⊂ M given by

I+(p) = expp(int(Ĩ+(p))) ⊂ I+(p).

Observe that
expp : int(Ĩ+(p))→ I+(p)

is a diffeomorphism and I+(p) is an open subset (possible empty).

Lemma 1 (Erkekoglu, Garćıa-Ŕıo and Kupeli, GRG 2003)

Let M be a spacetime and p ∈ M.

1 If M is strongly causal at p, then sp(v) > 0 for all v ∈ T−1M|p and
I+(p) 6= ∅.

2 If I+(p) 6= ∅, then the Lorentzian distance function dp is smooth on
I+(p) and its gradient ∇dp is a past-directed timelike (geodesic)
unit vector field on I+(p).
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Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Lorentzian distance function from a point

Then, one can define the subset Ĩ+(p) ⊂ TpM given by
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Lemma 1 (Erkekoglu, Garćıa-Ŕıo and Kupeli, GRG 2003)

Let M be a spacetime and p ∈ M.
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I+(p) and its gradient ∇dp is a past-directed timelike (geodesic)
unit vector field on I+(p).
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Hessian comparison results for the Lorentzian distance

For every c ∈ R, let us define

hc(t) =


1√
c

sinh(
√
c t) if c > 0 and t > 0

t if c = 0 and t > 0
1√
−c sin(

√
−c t) if c < 0 and 0 < t < π/

√
−c .

Observe that the index of a Jacobi field along a timelike geodesic in
a Lorentzian space form of constant curvature c is given by

Iγc (Jc , Jc) = −h′c(t)

hc(t)
〈x , x〉.

On the other hand,
h′c(t)

hc(t)
is the future mean curvature of the level

set
Σc(t) = {q ∈ I+(p) : dp(q) = t} ⊂ Mn

c .
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Hessian comparison results for the Lorentzian distance

Lemma 2

Let M be a spacetime such that KM(Π) ≥ c , c ∈ R, for all timelike
planes in M. Assume that there exists a point p ∈ M such that
I+(p) 6= ∅, and let q ∈ I+(p) (with dp(q) < π/

√
−c when c < 0). Then

for every spacelike vector x ∈ TqM orthogonal to ∇dp(q)

∇2
dp(x , x) ≤ −h′c

hc
(dp(q))〈x , x〉,

where ∇2
stands for the Hessian operator on M.

The proof of Lemma 2 follows from the fact that

∇2
dp(x , x) = Iγ(J, J)

where γ is the radial future directed unit timelike geodesic from p to
q and J is the Jacobi field along γ with J(0) = 0 and J(s) = x , and
is strongly based on the maximality of the index of Jacobi fields.
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Hessian comparison results for the Lorentzian distance

On the other hand, under the assumption that the sectional
curvatures of the timelike planes of M are bounded from above by a
constant c , we get the following result.

Lemma 3

Let M be a spacetime such that KM(Π) ≤ c c ∈ R, for all timelike planes
in M. Assume that there exists a point p ∈ M such that I+(p) 6= ∅, and
let q ∈ I+(p) (with dp(q) < π/

√
−c when c < 0). Then for every

spacelike vector x ∈ TqM orthogonal to ∇dp(q) it holds that

∇2
dp(x , x) ≥ −h′c

hc
(dp(q))〈x , x〉,

where ∇2
stands for the Hessian operator on M.

The proof is similar to that of Lemma 2.
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Spacelike submanifolds contained in I+(p)

Consider ψ : Σm → Mn an m-dimensional spacelike submanifold
immersed into a spacetime M.

We will assume that there exists a point p ∈ M such that I+(p) 6= ∅
and that ψ(Σ) ⊂ I+(p).

Let r = dp denote the Lorentzian distance function with respect to
p, and let u = r ◦ ψ : Σ→(0,∞) be the function r along the
submanifold, which is a smooth function on Σ.

Our first objective is to compute the Hessian of u. To do that,
observe that

∇r = ∇u + (∇r)⊥

along Σ, where ∇u = (∇r)> stands for the gradient of u on Σ and
(∇r)⊥ denotes the normal component of ∇r .

By Gauss and Weingarten formulae we get

∇X∇r = ∇X∇u − A
(∇r)⊥

X + II(X ,∇u) +∇⊥X (∇r)⊥,

for every tangent vector X ∈ TΣ, where II denotes the second
fundamental form of the submanifold and, for every normal vector η,
Aη denotes the Weingarten endomorphism with respect to η.
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Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Spacelike submanifolds contained in I+(p)

Consider ψ : Σm → Mn an m-dimensional spacelike submanifold
immersed into a spacetime M.

We will assume that there exists a point p ∈ M such that I+(p) 6= ∅
and that ψ(Σ) ⊂ I+(p).

Let r = dp denote the Lorentzian distance function with respect to
p, and let u = r ◦ ψ : Σ→(0,∞) be the function r along the
submanifold, which is a smooth function on Σ.

Our first objective is to compute the Hessian of u. To do that,
observe that

∇r = ∇u + (∇r)⊥

along Σ, where ∇u = (∇r)> stands for the gradient of u on Σ and
(∇r)⊥ denotes the normal component of ∇r .

By Gauss and Weingarten formulae we get

∇X∇r = ∇X∇u − A
(∇r)⊥

X + II(X ,∇u) +∇⊥X (∇r)⊥,

for every tangent vector X ∈ TΣ, where II denotes the second
fundamental form of the submanifold and, for every normal vector η,
Aη denotes the Weingarten endomorphism with respect to η.
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It follows from here that

∇2u(X ,Y ) = ∇2
r(X ,Y ) + 〈II(X ,Y ),∇r〉

for every tangent vector fields X ,Y ∈ TΣ, where ∇2
r and ∇2u

stand for the Hessian of r and u in M and Σ, respectively.

Tracing this expression, one gets that the Laplacian of u is given by

∆u =
m∑
i=1

∇2
r(Ei ,Ei ) + m〈H,∇r〉,

where {E1, . . . ,Em} is a local orthonormal frame on Σ, and

H :=
1

m
tr(II) =

1

m

m∑
i=1

II(Ei ,Ei )

defines the mean curvature vector field of the submanifold.
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Case 1: Spacelike hypersurfaces contained in I+(p)

Since Mm+1 is time-oriented and Σm is spacelike, there is a unique
future-directed timelike unit normal field N globally defined on Σ.

Let A stand for the shape operator of Σ with respect to N. Then

H = − 1

m
tr(A)N = HN,

where H = −(1/m)tr(A) is the future mean curvature function of Σ.

On the other hand, ∇r = ∇u − 〈∇r ,N〉N and, in particular,

〈∇r ,N〉 =
√

1 + |∇u|2 ≥ 1.

Therefore, the Laplacian of u becomes in this case

∆u =
m∑
i=1

∇2
r(Ei ,Ei ) + mH〈N,∇r〉

=
m∑
i=1

∇2
r(Ei ,Ei ) + mH

√
1 + |∇u|2.
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Assume now that KM(Π) ≥ c (resp. KM(Π) ≤ c) for all timelike
planes in M.

Then by the Hessian comparison results for r given in Lemma 2
(resp. Lemma 3), one gets the following inequality for the Laplacian
of u

∆u ≤ (≥)− fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2,
where

fc(t) =
h′c(t)

hc(t)
=


√
c coth(

√
c t) if c > 0 and t > 0

1/t if c = 0 and t > 0
√
−c cot(

√
−c t) if c < 0 and 0 < t < π/

√
−c .

Summarizing,
KM(Π) ≥ c implies that

∆u ≤ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

KM(Π) ≤ c implies that

∆u ≥ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

Before stating our main results, we need to introduce some
terminology.

Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Assume now that KM(Π) ≥ c (resp. KM(Π) ≤ c) for all timelike
planes in M.

Then by the Hessian comparison results for r given in Lemma 2
(resp. Lemma 3), one gets the following inequality for the Laplacian
of u

∆u ≤ (≥)− fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2,
where

fc(t) =
h′c(t)

hc(t)
=


√
c coth(

√
c t) if c > 0 and t > 0

1/t if c = 0 and t > 0
√
−c cot(

√
−c t) if c < 0 and 0 < t < π/

√
−c .

Summarizing,
KM(Π) ≥ c implies that

∆u ≤ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

KM(Π) ≤ c implies that

∆u ≥ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

Before stating our main results, we need to introduce some
terminology.
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The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti
(2005), the Omori-Yau maximum principle is said to hold on an
n-dimensional Riemannian manifold Σ if, for any smooth function
u ∈ C2(Σ) with u∗ = supΣ u < +∞ there exists a sequence of points
{pk}k∈N in Σ with the properties

(i) u(pk) > u∗ − 1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) <

1

k
.

Equivalently, for any u ∈ C2(Σ) with u∗ = infΣ u > −∞ there exists
a sequence of points {pk}k∈N in Σ satisfying

(i) u(pk) < u∗ +
1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) > − 1

k
.

In this sense, the classical maximum principle given by Omori (1967)
and Yau (1975) stays that the Omori-Yau maximum principle holds
on every complete Riemannian manifold with Ricci curvature
bounded from below.
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{pk}k∈N in Σ with the properties

(i) u(pk) > u∗ − 1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) <

1

k
.

Equivalently, for any u ∈ C2(Σ) with u∗ = infΣ u > −∞ there exists
a sequence of points {pk}k∈N in Σ satisfying

(i) u(pk) < u∗ +
1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) > − 1

k
.

In this sense, the classical maximum principle given by Omori (1967)
and Yau (1975) stays that the Omori-Yau maximum principle holds
on every complete Riemannian manifold with Ricci curvature
bounded from below.
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First applications: Hypersurfaces bounded by a level set of
the Lorentzian distance. Case KM(Π) ≥ c

Theorem 1 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Let Mm+1 be an (m + 1)-dimensional spacetime such that KM(Π) ≥ c ,
c ∈ R, for all timelike planes in M. Let p ∈ M be such that I+(p) 6= ∅,
and let ψ : Σm → Mm+1 be a spacelike hypersurface such that
ψ(Σ) ⊂ I+(p). If the Omori-Yau maximum principle holds on Σ (and
infΣ u < π/

√
−c when c < 0), then its future mean curvature H satisfies

sup
Σ

H ≥ fc(inf
Σ

u),

where u denotes the Lorentzian distance dp along the hypersurface. In
particular, if infΣ u = 0 then supΣ H = +∞.

Corollary 1 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Under the assumptions of Theorem 1, if H is bounded from above on Σ,
then there exists some δ > 0 such that ψ(Σ) ⊂ O+(p, δ), where O+(p, δ)
denotes the future outer ball of radius δ,

O+(p, δ) = {q ∈ I+(p) : dp(q) > δ}.
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Theorem 1 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Let Mm+1 be an (m + 1)-dimensional spacetime such that KM(Π) ≥ c ,
c ∈ R, for all timelike planes in M. Let p ∈ M be such that I+(p) 6= ∅,
and let ψ : Σm → Mm+1 be a spacelike hypersurface such that
ψ(Σ) ⊂ I+(p). If the Omori-Yau maximum principle holds on Σ (and
infΣ u < π/

√
−c when c < 0), then its future mean curvature H satisfies

sup
Σ

H ≥ fc(inf
Σ

u),

where u denotes the Lorentzian distance dp along the hypersurface. In
particular, if infΣ u = 0 then supΣ H = +∞.
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Proof of Theorem 1

As KM(Π) ≥ c , we know that

∆u ≤ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

Applying Omori-Yau maximum principle to the positive function u,
we get that

− 1

k
< ∆u(pk) ≤ −fc(u(pk))(m+|∇u(pk)|2)+mH(pk)

√
1 + |∇u(pk)|2.

It follows from here that

sup
Σ

H ≥ H(pk) ≥ −1/k + fc(u(pk))(m + |∇u(pk)|2)

m
√

1 + |∇u(pk)|2
.

Therefore, making k →∞ here we get the result.

The last assertion follows from the fact that lims→0 fc(s) = +∞.
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Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Proof of Theorem 1

As KM(Π) ≥ c , we know that

∆u ≤ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2.

Applying Omori-Yau maximum principle to the positive function u,
we get that

− 1

k
< ∆u(pk) ≤ −fc(u(pk))(m+|∇u(pk)|2)+mH(pk)

√
1 + |∇u(pk)|2.

It follows from here that

sup
Σ

H ≥ H(pk) ≥ −1/k + fc(u(pk))(m + |∇u(pk)|2)

m
√

1 + |∇u(pk)|2
.

Therefore, making k →∞ here we get the result.

The last assertion follows from the fact that lims→0 fc(s) = +∞.
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Hypersurfaces in Lorentzian space forms

Theorem 2 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Let Mm+1
c be a Lorentzian space form of constant sectional curvature c

and let p ∈ Mm+1
c . Let us consider ψ : Σm → Mm+1

c a spacelike
hypersurface such that ψ(Σ) ⊂ I+(p) ∩ B+(p, δ) for some δ > 0 (with
δ ≤ π/

√
−c if c < 0). If the Omori-Yau maximum principle holds on Σ,

then
inf
Σ

H ≤ fc(sup
Σ

u) ≤ fc(inf
Σ

u) ≤ sup
Σ

H,

where u denotes the Lorentzian distance dp along the hypersurface.

Here, for δ > 0, the subset B+(p, δ) denotes the future inner ball of
radius δ, that is,

B+(p, δ) = {q ∈ I+(p) : dp(q) < δ}.

Corollary 2 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Let Mm+1
c be a Lorentzian space form of constant sectional curvature c

and let p ∈ Mm+1
c . If Σ is a complete spacelike hypersurface in Mm+1

c

with constant mean curvature H which is contained in I+(p) and
bounded from above by a level set of the Lorentzian distance function dp
(with dp < π/

√
−c if c < 0), then Σ is necessarily a level set of dp.
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For a proof simply observe that the Ricci curvature of a spacelike
hypersurface in an arbitrary spacetime M is given by

Ric(X ,X ) = RicM(X ,X )−
(
KM(X ∧ N) +

m2H2

4

)
|X |2 + |AX +

m

2
X |2

≥ RicM(X ,X )−
(
KM(X ∧ N) +

m2H2

4

)
|X |2.

In particular, when Mm+1
c is a Lorentzian space form of constant

sectional curvature c then

Ric(X ,X ) ≥
(

(m − 1)c − m2H2

4

)
|X |2.

Therefore, every spacelike hypersurface Σ with bounded mean
curvature in Mm+1

c has Ricci curvature bounded from below. Hence,
if Σ is complete, it satisfies the Omori-Yau maximum principle.

Corollary 3 (Aĺıas, Hurtado, Palmer, TAMS 2010)

The only complete spacelike hypersurfaces with constant mean curvature
in the Lorentz-Minkowski space Lm+1 which are contained in I+(p) (for
some fixed p ∈ Lm+1) and bounded from above by a hyperbolic space
centered at p are precisely the hyperbolic spaces centered at p.
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Hyperbolicity of spacelike hypersurfaces

Let us recall that a Riemannian manifold Σ is hyperbolic if there
exists a non-constant positive superharmonic function globally
defined on Σ.

As another application of our comparison results, we have:

Theorem 3 (Aĺıas, Hurtado, Palmer, TAMS 2010)

Let Mm+1 be an (m + 1)-dimensional spacetime, m ≥ 2, such that
KM(Π) ≥ c for all timelike planes in M. Assume that there exists a point
p ∈ Mm+1 such that I+(p) 6= ∅, and let ψ : Σm → Mm+1 be a spacelike
hypersurface with ψ(Σ) ⊂ I+(p). Let us denote by u the function dp
along the hypersurface, and assume that u ≤ π/(2

√
−c) if c < 0. Then

(i) If the future mean curvature of Σ satisfies H ≤ 2
√
m − 1

m
fc(u) with

H < fc(u) at some point of Σ if m = 2, then Σ is hyperbolic.

(ii) If c = 0 and H ≤ 0, then Σ is hyperbolic.

(iii) If c > 0 and H ≤ 2
√
m−1
m

√
c , then Σ is hyperbolic.

In particular, every maximal hypersurface contained in I+(p) (and
satisfying u < (π/2

√
−c) if c < 0) is hyperbolic.
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Proof of Theorem 3

In order to proof (i), observe that under our assumptions on H we
have

mH ≤ 2
√
m − 1 fc(u) ≤ fc(u)(m + |∇u|2)√

1 + |∇u|2
.

Therefore, by the Hessian comparison result in Lemma 2 we conclude

∆u ≤ −fc(u)(m + |∇u|2) + mH
√

1 + |∇u|2 ≤ 0

and u defines a non-constant positive superharmonic function on Σ.

To prove (ii) and (iii), simply observe that f0(u) = 1/u > 0 and
fc(u) =

√
c coth(

√
cu) >

√
c on Σ.
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Case 2: Spacelike submanifolds contained in I+(p)

Recall that the Laplacian of u is given by

∆u =
m∑
i=1

∇2
r(Ei ,Ei ) + m〈H,∇r〉.

Consider the function v = φc(u), where φc(t) is a primitive of hc(t):

φc(t) =


1
c cosh(

√
c t) if c > 0 and t > 0

t2

2 if c = 0 and t > 0
1
c cos(

√
−c t) if c < 0 and 0 < t < π/

√
−c .

Then, the Laplacian of v is given by

∆v = φ′c(u)∆u + φ′′c (u)|∇u|2

= hc(u)
m∑
i=1

∇2
r(Ei ,Ei ) + mhc(u)〈H,∇r〉+ h′c(u)|∇u|2.

Assume now that KM(Π) ≥ c (resp. KM(Π) ≤ c) for all timelike
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Then by the Hessian comparison results for r , one gets that

∇2
r(X ,X ) ≤ (≥)− h′c

hc
(u)(1 + 〈X ,∇u〉2)

for every unit tangent vector field X ∈ TΣ.

Therefore,

hc(u)
m∑
i=1

∇2
r(Ei ,Ei ) ≤ (≥)− h′c(u)(m + |∇u|2),

which, jointly with the expression above, gives the following
inequality for the Laplacian of v

∆v ≤ (≥)−mh′c(u) + mhc(u)〈H,∇r〉.
Summarizing:

KM(Π) ≥ c implies that

∆v ≤ −mh′c(u) + mhc(u)〈H,∇r〉.

KM(Π) ≤ c implies that

∆v ≥ −mh′c(u) + mhc(u)〈H,∇r〉.

where v = φc(u) and u is the Lorentzian distance function of M
restricted on the spacelike submanifold Σ.
For statement of our main results, we introduce some terminology.
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The weak maximum principle

The weak maximum principle is said to hold on Σ if, for any
u ∈ C2(Σ) with u∗ < +∞ there is a sequence {pk}k∈N in Σ with

(i) u(pk) > u∗ − 1

k
, and (iii) ∆u(pk) <

1

k
.

Pigola, Rigoli and Setti (2003) proved that the weak maximum
principle holds on Σ if and only if Σ is stochastically complete.

Σ is said to be stochastically complete if its Brownian motion is
stochastically complete, i.e, the probability of a particle to be found
in the state space is constantly equal to 1.

This is equivalent (among other conditions) to the fact that for
every λ > 0, the only non-negative bounded smooth solution u of
∆u ≥ λu on Σ is the constant u = 0.

In particular, every parabolic manifold is stochastically complete.
Hence, the weak max principle holds on every parabolic manifold.
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Trapped submanifolds in a spacetime

Following the standard terminology in General Relativity, a spacelike
submanifold Σm (of arbitrary codimension) of a spacetime Mn is
said to be a future trapped submanifold if its mean curvature vector
field H is timelike and future-pointing everywhere on Σ.

Similarly, Σm is said to be a past trapped submanifold if H is
timelike and past-pointing everywhere on Σ.

On the other hand, if H is lightlike and future-pointing everywhere
on Σ then the spacelike submanifold is said to be marginally future
trapped.

Similarly, Σ is said to be marginally past trapped if H is lightlike and
past-pointing on Σ.

Finally, Σ is said to be weakly future trapped if H is causal (that is,
timelike or lightlike) and future-pointing everywhere.

Analogously, Σ is said to be weakly past trapped if H is causal and
past-pointing on Σ.

Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Trapped submanifolds in a spacetime

Following the standard terminology in General Relativity, a spacelike
submanifold Σm (of arbitrary codimension) of a spacetime Mn is
said to be a future trapped submanifold if its mean curvature vector
field H is timelike and future-pointing everywhere on Σ.

Similarly, Σm is said to be a past trapped submanifold if H is
timelike and past-pointing everywhere on Σ.

On the other hand, if H is lightlike and future-pointing everywhere
on Σ then the spacelike submanifold is said to be marginally future
trapped.

Similarly, Σ is said to be marginally past trapped if H is lightlike and
past-pointing on Σ.

Finally, Σ is said to be weakly future trapped if H is causal (that is,
timelike or lightlike) and future-pointing everywhere.

Analogously, Σ is said to be weakly past trapped if H is causal and
past-pointing on Σ.
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Weakly trapped submanifolds in the chronological future of
a point. Case KM(Π) ≥ c

Theorem 4 (Aĺıas, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≥ c , c ∈ R, for all timelike planes in M.

1 If c ≥ 0 there exists no stochastically complete, weakly past trapped
submanifold contained in I+(p).

2 If c < 0 and Σ is a stochastically complete, weakly past trapped
submanifold contained in I+(p) ∩ B+(p, π/

√
−c), then

u∗ = inf
Σ

u ≥ π

2
√
−c

,

where u denotes the Lorentzian distance dp along the hypersurface.
In other words, Σ is contained in B+(p, π/

√
−c) ∩O+(p, π/2

√
−c).

Recall that the subsets B+(p, δ) and O+(p, δ) denote the future
inner ball and the future outer ball of radius δ > 0, that is,

B+(p, δ) = {q ∈ I+(p) : dp(q) < δ}
O+(p, δ) = {q ∈ I+(p) : dp(q) > δ}.
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Proof of Theorem 4

As KM(Π) ≥ c , we know that

∆v ≤ −mh′c(u) + mhc(u)〈H,∇r〉.

Applying the weak max principle to the function v , which satisfies
v∗ = infΣ v = φc(u∗) with u∗ = infΣ u ≥ 0, we get that

− 1

k
< ∆v(pk) ≤ −mh′(u(pk)) + mh(u(pk))〈H,∇r〉(pk),

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Observe that, since Σ is weakly past trapped, then

〈H,∇r〉 < 0 everywhere on Σ.

Therefore,
− 1

k
< ∆v(pk) ≤ −mh′(u(pk))

and, making k →∞ here we get h′c(u∗) ≤ 0.

The result then follows by observing that, when c ≥ 0 then
h′c(t) > 0, and if c < 0 then h′c(t) ≤ 0 when
π/2
√
−c ≤ t < π/

√
−c .
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Marginally trapped submanifolds in the chronological
future of a point. Case KM(Π) ≥ c

Theorem 5 (Aĺıas, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≥ c , c ∈ R, for all timelike planes in M.
Let Σ be a stochastically complete, marginally trapped submanifold
contained in I+(p) (with u∗ < π/2

√
−c in the case c < 0). Then

sup
Σ
|H0| ≥

h′c
hc

(u∗),

where H0 stands for the spacelike component of the lightlike vector field
H which is orthogonal to ∇r , and u∗ = infΣ u. In particular, if u∗ = 0
then supM |H0| = +∞.

Corollary 4 (Aĺıas, Bessa, de Lira, CQG 2016)

Under the assumptions of Theorem 5, if |H0| is bounded from above on
Σ, then there exists some δ > 0 such that Σ ⊂ O+(p, δ), where O+(p, δ)
denotes the future outer ball of radius δ.
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Corollary 4 (Aĺıas, Bessa, de Lira, CQG 2016)

Under the assumptions of Theorem 5, if |H0| is bounded from above on
Σ, then there exists some δ > 0 such that Σ ⊂ O+(p, δ), where O+(p, δ)
denotes the future outer ball of radius δ.
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Proof of Theorem 5

We know from Theorem 4 that Σ must be in fact marginally future
trapped.

Let us write
H = H0 − 〈H,∇r〉∇r ,

with 〈H0,∇r〉 = 0.

Since H is lightlike and future-pointing we derive from here that

〈H,∇r〉 = |H0| > 0 on Σ.

Therefore, as KM(Π) ≥ c , we have

∆v ≤ −mh′c(u) + mhc(u)|H0|.

If supΣ |H0| = +∞ then there is nothing to prove.

Otherwise, let us write

∆v ≤ −mh′c(u) + mhc(u)|H0| ≤ −mh′c(u) + mhc(u) sup
Σ
|H0|.
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Proof of Theorem 5

Applying again the weak maximum principle on Σ to the function
v = φc(u), with v∗ = infΣ v = φc(u∗), we have

− 1

k
< ∆v(pk) ≤ −mh′c(u(pk)) + mhc(u(pk)) sup

Σ
|H0|,

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Letting k → +∞ we conclude that

sup
Σ
|H0| ≥

h′c(u∗)

hc(u∗)
.

The last assertion follows from the fact that hc(0) = 0 and
h′c(0) = 1.
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Marginally trapped submanifolds in the chronological
future of a point. Case KM(Π) ≤ c

Theorem 6 (Aĺıas, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≤ c , c ∈ R, for all timelike planes in M.
Let Σ be a stochastically complete, marginally future trapped
submanifold contained in I+(p) ∩ B+(p, δ) for some δ > 0 (with
δ ≤ π/

√
−c when c < 0). Then

inf
Σ
|H0| ≤

h′c
hc

(u∗),

where H0 stands for the spacelike component of the lightlike vector field
H which is orthogonal to ∇r , and u∗ = supΣ u.

Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Proof of Theorem 6

Since KM(Π) ≤ c and 〈H,∇r〉 = |H0| > 0 on Σ, we have

∆v ≥ −mh′c(u) + mhc(u)|H0|.

If infΣ |H0| = −∞ then there is nothing to prove.

Otherwise, let us write

∆v ≥ −mh′c(u) + mhc(u)|H0| ≥ −mh′c(u) + mhc(u) inf
Σ
|H0|.

Applying the weak maximum principle on Σ to the function
v = φc(u), with v∗ = supΣ v = φc(u∗), we have

1

k
> ∆v(pk) ≥ −mh′c(u(pk)) + mhc(u(pk)) inf

Σ
|H0|,

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Making k → +∞ we conclude that

inf
Σ
|H0| ≤

h′c(u∗)

hc(u∗)
.
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Marginally future trapped submanifolds in Lorentzian space
forms

In particular, when the ambient spacetime is a Lorentzian space
form, by putting together Theorems 4, 5 and 6 we obtain the
following consequence.

Theorem 7 (Aĺıas, Bessa, de Lira, CQG 2016)

Let Mn
c be a Lorentzian space form of constant sectional curvature c and

let p ∈ Mn
c . Let Σ be a stochastically complete, marginally trapped

submanifold of Mn
c which is contained in I+(p) ∩ B+(p, δ) for some

δ > 0 (with δ ≤ π/2
√
−c if c < 0). Then

inf
Σ
|H0| ≤

h′c(u∗)

hc(u∗)
≤ h′c(u∗)

hc(u∗)
≤ sup

Σ
|H0|,

where u∗ = infΣ u and u∗ = supΣ u.

The estimates are sharp as proved by considering Σ as a constant
mean curvature hypersurface of a level set of the Lorentzian distance
in Mn

c .

Luis J. Aĺıas Geometric analysis of the Lorentzian distance function. Symmetry and shape, USC 2024



Marginally future trapped submanifolds in Lorentzian space
forms

In particular, when the ambient spacetime is a Lorentzian space
form, by putting together Theorems 4, 5 and 6 we obtain the
following consequence.
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That’s all !! Thanks a lot for your attention...

and congratulations to Eduardo for his
forthcoming first 60 years.
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