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Introduction

Let ¢ be an e-unit normal vector field on M, hypersurface immersed into
M. The formula of Gauss gives

VxY=VYY+hX Y X YeTM,

where /s called the second fundamental form of the immersion.

Definition 1

M is a totally geodesic hypersurface if /2 = 0.

Moreover, considering the covariant derivative VM h, defined by
(VMh)(X,Y,2) = X(W(Y, Z)) = h(V} Y, Z) - h(Y,V} Z),

we give the following

A hypersurface is said to be parallel if VMh = 0.
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Introduction

The second fundamental form £ of M is said to be Codazzi if VM h s totally
symmetric. This is equivalent to requiring that R(X, Y)¢ = 0 for all vector
fields X, Y tangent to M".

Clearly, parallel hypersurfaces have a Codazzi second fundamental form.

The knowledge of totally geodesic and parallel hypersurfaces improves our
understanding of the geometry of a given ambient space.
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Introduction

The second fundamental form £ of M is said to be Codazzi if VM h s totally
symmetric. This is equivalent to requiring that R(X, Y)¢ = 0 for all vector
fields X, Y tangent to M".

Clearly, parallel hypersurfaces have a Codazzi second fundamental form.

The knowledge of totally geodesic and parallel hypersurfaces improves our
understanding of the geometry of a given ambient space.
General setup

o Geometrical description of the ambient space;

o M Codazzi = different cases for algebraic conditions on the
components of the unit normal vector field;

o Geometrical investigation of each subcase;

o Totally Geodesicity and Parallelism.
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Introduction
Codazzi hypersurfac

Indecomposable symmetric Lorentzian manifolds of non-constant sectio-
nal curvature are knows as Cahen-Wallach spaces. Explicitly, an arbitra-
ry four-dimensional Cahen-Wallach symmetric space is described as R*
equipped with the Lorentzian metric

g = (k323 + kg X5) dP + 2dxy dxy + dos + do,
where k3, ks # 0 are some real constants.

In the special case where k3 = k4 = k, these spaces are also known as ¢-
spaces. They are locally conformally flat and admit a large group of isome-
tries.
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Introduction
Codazzi hypersurface
eodesic hypersurface

A Brinkmann manifold is a Lorentzian manifold (M, g) admitting a paral-
lel null vector field U, that is, such that g(U, U) =VU = 0.

Cahen-Wallach symmetric spaces are examples of Brinkmann manifolds.
In fact, 9, is a parallel null vector field on any Cahen-Wallach space.

A Brinkmann manifold is a special kind of Walker manifold, namely a pseudo-
Riemannian manifold which admits a non-trivial distribution D which is

o parallel: if X € Dthen VX € D;

o and null: the metric restricted to D vanishes identically.
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Introduction
Codazzi hypersurface

Totally geodesic hypersurface

Parallel hypersurface

In dimension three, a Walker manifold admits local coordinates (,x,y),
with respect to which its Lorentzian metric tensor is expressed as follows:

00 1
g=|0 ¢ 0
1 0 f(t,xy)

for some function f (t,x,y), where € = £1 and the parallel degenerate line
field becomes D = ( )
If 9; is a parallel null vector field then f=f(,y) and conversely.
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Introduction
Codazzi hypersurface

Totally geodesic hypersurface

Parallel hypersurface

In dimension three, a Walker manifold admits local coordinates (,x,y),
with respect to which its Lorentzian metric tensor is expressed as follows:

0 0 1
g=|0 ¢ 0
1 0 f(t,xy
for some function f (t,x,y), where € = £1 and the parallel degenerate line

field becomes D = ( )
If 9; is a parallel null vector field then f=f(,y) and conversely.

M is locally symmetric <= f(x,7) = ax® + xB(y) +y()), where a is a real
constant and S, y are arbitrary functions.

B
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Codazzi hypersurfaces

Consider the normal vector field ¢ = ad; + bd, + cd3 + dd4, for some func-
tions a, b,c,d: U — R. Then, the following vector fields are tangent to the
hypersurface:

X; =ad; —p0d, X = c0y — p0d3, X3 =d01 — p0y,
X4 = c0p — ads, X5=d0,—ady,  Xs=d03—cly,

where we put p = a(k3x§ + k4xi) +b. If his Codazzi, then R(X;, X;)¢ = 0 for
every i,je€{1,...,6}.
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Intrc
Codazzi hypersurfaces

Consider the normal vector field ¢ = ad; + bd, + cd3 + dd4, for some func-
tions a, b,c,d: U — R. Then, the following vector fields are tangent to the
hypersurface:

X)=ad,-p0s, Xo=c01-p03,  X3=d01—p0y,
Xy = c0y — ads, X5 = do, — ady, Xg = d0s — c04,
where we put p = a(k3x§ + k4xi) +b. If his Codazzi, then R(X;, X;)¢ = 0 for
every i,je{l1,...,6}. In particular, we have
0= R(X1, X3)¢ = ~@ k3 X,

which gives necessarily a = 0.
Therefore, g(¢,¢) = A+ d? and so, M is necessarily timelike and ¢ and d
cannot both vanish.
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Intr tion
Codazzi hypersurfaces

Consider the normal vector field ¢ = ad; + bd, + cd3 + dd4, for some func-
tions a, b,c,d: U — R. Then, the following vector fields are tangent to the
hypersurface:

X)=ad,-p0s, Xo=c01-p03,  X3=d01—p0y,
Xy = c0y — ads, X5 = do, — ady, Xg = d0s — c04,
where we put p = a(kgxg + k4xi) +b. If his Codazzi, then R(X;, X;)¢ = 0 for
every i,je{l1,...,6}. In particular, we have
0= R(X1, X3)¢ = ~@ k3 X,

which gives necessarily a = 0.
Therefore, g(¢,¢) = A+ d? and so, M is necessarily timelike and ¢ and d
cannot both vanish. Moreover, from

0=R(X5,X5)¢ = cd(ks — ka) X4

we deduce that we have to consider separately two cases, depending on
whether k3 = ky.
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Codazzi hypersurfaces

Theorem 1 (Codazzi hypersurfaces)

Let F: M — M be a hypersurface with a Codazzi second fundamental form
and ¢ the unit normal vector field, with g(¢,¢) =€ € {—1,1}.

Consider the coordinate vector fields {3;} on M introduced above. Then,
g(¢,02) =0 and M is a timelike hypersurface. Moreover, some of the
following holds:

every point of M has an open neighbourhood in M, on which either
&=Db0y+ 03 oré = bl + 0y4;

M is an e-space, that is, ks = ks = k.
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Codazzi hypersurfaces

Theorem 1 (Codazzi hypersurfaces)

Let F: M — M be a hypersurface with a Codazzi second fundamental form
and ¢ the unit normal vector field, with g(¢,¢) =€ € {—1,1}.

Consider the coordinate vector fields {3;} on M introduced above. Then,
g(¢,02) =0 and M is a timelike hypersurface. Moreover, some of the
following holds:

every point of M has an open neighbourhood in M, on which either
&=Db0y+ 03 oré = bl + 0y4;

M is an e-space, that is, ks = ks = k.

Theorem 2

Any hypersurface F: M — M with a Codazzi second fundamental form in a
Cahen-Wallach spacetime is a Brinkmann manifold.
Moreover, if M is not an & -space, then M is minimal.
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Totally geodesic hypersurfaces
Parallel hypersurface

Case (I): & = b0, + 03 (or & = bo2 + 04).
If ¢ = bo, + 03, for some smooth function b on M, the vector fields
Y1 =0>, Y> =01 — b03, Y3 =04

span the tangent space to M at every point.
The symmetry conditions for z implies Y; (b) = Y3(b) = 0).
Then h is completely determined by h(Y2, Y2) = Ya(b) + k3 x3.
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Totally geodesic hypersurfaces

Case (I): & = b0, + 03 (or & = bo2 + 04).
If ¢ = bo, + 03, for some smooth function b on M, the vector fields
Y1 =0>, Y> =01 — b03, Y3 =04 1)

span the tangent space to M at every point.
The symmetry conditions for z implies Y; (b) = Y3(b) = 0).
Then h is completely determined by h(Y2, Y2) = Ya(b) + k3 x3.

Let us observe that
1 _
trgy 1= 38y (Yo, ¥2) (Y3, ¥2) =0,
so that all such hypersurfaces with Codazzi second fundamental form are
minimal. The case where ¢ = bd; + 9, is analogous.

M is totally geodesic if and only if
Yz(b) = —k3X3. (2)
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Totally geodesic hypersurfaces

It is easy to check that [Y;, ¥;] = 0 for all indices i, j. So, the vector fields
Yl :61?’ 1]Z:ay) Y3=6x (3)

may be taken as coordinate vector fields on M. Since Y; (b) = Y3(b) = 0 we
then get that b= b(y) and condition (2) can be rewritten in the form

b (y) = —ksxs. 4)

Denote now by F: M — M the immersion of the hypersurface in the local
coordinates (¢,x,y) introduced above. We obtain

Acosh(v/ks ) + Bsinh(y/ksy)  ifks >0,
Acos(v/=ksy) +Bsin(\/—ksy) ifks <0,
5)

A,Be R. Hence, it is an open part of the cylindrical hypersurface spanned
by the curve of equation x3 = ¢p(x;) in the (x;, x3)-plane.

F(t,x,y) = t,d(),x), ¢y = {
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Totally geodesic hypersurfaces

The case where ¢ = b0, + 04 can be treated exactly in the same way. It leads
to the following explicit expression of the immersion:

F(t,x,y) =, t,x,v(Qy),

where
{ Acosh(\/k_4y) +Bsinh(\/k_4y) ifky >0,
() = (6)
Acos(\/—ksy) + Bsin(y/—kyy) ifks <O,

for some real constants A, Band b(y) = —¢'(y).
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Totally geodesic hypersurfaces

Case (II): a= 0 and lks=Ik,;=k. In this case, { = bd, + c03 + d04, where b, c,d
are smooth functions on M. As ||¢’||2 = %+ d® = 1, there exists a smooth
function 6 on M such that ¢ = cosf and d = sinf.

There exists a dense open subset Q of M, such that each point p € Q either
admits a neighbourhood where b = 0 or a neighbourhood where b # 0 at
any point. Thus, we consider separately the two cases.
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Totally geodesic hypersurfaces

Case (II.a): a=b= 0 and lkz=Ik,=k. In this case, { = cos003 +sin0d, and M
is totally geodesic if and only if 0 is constant and

Xx3c080 + x48inf = 0. (7)

The map

A:M — M,

. . (8)
(x1,%2,%3,%4) +— (x1,X2,c080x3 +sinOxy, —sinOx3 + cosOxy)

is an isometry of the ambient £-space M, for every real constant 6. Then
it suffices to consider the case where 8 = 0 and so, ¢ = 93 (equivalently, we
canset 6 = 7 and get { = 04).

Hence, this case corresponds to the special solution of Case (I) with

b=g(<f,01) =0.

Correspondingly, the totally geodesic condition written in (7), namely, ap-
plying the above isometry reads x3 = 0 (equivalently, x4 = 0) so that the
totally geodesic hypersurface is an open part of the hyperplane x3 = 0 (re-
spectively, x4 = 0).
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Totally geodesic hypersurfaces

Case (I1.b): a= 0 #band ksz=I,=k. We now have ¢ = b0, + cos003 +sin60dy,.
Next, assuming that M is totally geodesic, we get that 0 is constant. The-
refore, as in Case (II.a), it suffices to consider the case where 8 = 0 and so,
¢ = b0, + 03 (or, equivalently, 8 = %, whence, ¢ = b, + 04). Thus, we obtain
again the totally geodesic hypersurfaces described in Case (I).
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Totally geodesic hypersurfaces

Case (I1.b): a= 0 #band ksz=I,=k. We now have ¢ = b0, + cos003 +sin60dy,.
Next, assuming that M is totally geodesic, we get that 0 is constant. The-
refore, as in Case (II.a), it suffices to consider the case where 8 = 0 and so,
¢ = b0, + 03 (or, equivalently, 8 = %, whence, ¢ = b, + 04). Thus, we obtain
again the totally geodesic hypersurfaces described in Case (I).

Theorem 3 (Classification of Totally Geodesic hypersurfaces)

Let M denote a totally geodesic hypersurface of a Cahen-Wallach
spacetime M. If M is not an e-space, then one of the following holds:

M is an open part of the cylindrical hypersurface of equation
X3 = ¢p(x1), where ¢ is given by (5).
M is an open part of the cylindrical hypersurface of equation
Xy =W(x)), wherey is given by (6).
If M is an e-space, then M admits an open dense subset Q such that any

point p € Q admits a neighbourhood as described in one of above cases (a)
and (b).
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Totally geodesic hypersurfac
Parallel hypersurfaces

When, ¢ = bd,+03, the second fundamental form is completely determined
by
h(Y,, Y2) = —(Ya(b) + k3 x3).

Next, VM = 0 if and only if V;((V>, ¥»)) = 0 for all indices i = 1,2, 3.
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Parallel hypersurfaces

When, ¢ = bd,+03, the second fundamental form is completely determined
by
h(Y,, Y2) = —(Ya(b) + k3 x3).

Next, VM = 0 if and only if V;((V>, ¥»)) = 0 for all indices i = 1,2, 3.

Taking into account the symmetry conditions for 4, these equations hold
if and only if Y>(Y> (D)) = k3 b, that is, with respect to the local coordinates
(t,x,y) introduced in (3), b" () = ksb.

After a reparametrization, we then get the immersion

F(t,x,y) =, 5, o) + C,x).

By Theorem 3, this immersion is totally geodesic if and only if C = 0.
The case ¢ = b0, + 04 can be treated exactly in the same way.
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Parallel hypersurfaces

Theorem 4 (Parallel hypersurfaces of proper Cahen-Wallach spaces)

Let F: M — M be a proper parallel hypersurface of a Cahen-Wallach
spacetime. If M is not an €-space, then there exist local coordinates (t, x, y)
on M such that up to isometries, one of the following holds:

M is an open part of the cylindrical hypersurface of equation
x3 =) +C.

M is an open part of the cylindrical hypersurface of equation
X4 = 1//()61) +C.
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Parallel hypersurfaces

Theorem 4 (Parallel hypersurfaces of proper Cahen-Wallach spaces)

Let F: M — M be a proper parallel hypersurface of a Cahen-Wallach
spacetime. If M is not an €-space, then there exist local coordinates (t, x, y)
on M such that up to isometries, one of the following holds:

M is an open part of the cylindrical hypersurface of equation

x3=¢x) +C.
M is an open part of the cylindrical hypersurface of equation
X4 = 1//()61) +C.

Remark 1

When g(¢,0;) =0, as ¢ = ¢ =0, from Theorem 4 we get as special cases of
proper parallel hypersurfaces the hyperplanes of equation x3 = C and
x4 = C, where C # 0 is a real constant.
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Parallel hypersurfaces

We already know from Theorem 2 that parallel hypersurfaces M, as de-
scribed in Theorem 4, are Brinkmann manifolds and minimal. Moreo-
ver, being parallel hypersurfaces in a locally symmetric space, they must
be locally symmetric.

In fact, with respect to local coordinates (z, x, y), the function f(x, y) which
appearsd in the metric gys can be expressed by

kax® + [ksp()? +2k3 Cp(y) + C* + (¢ (1))?]  in case (a),

(x, ) =
Jeoy { ksx? + [kaw () + 2ks Cy (y) + C* + (W' (1))?]  in case (b),

so that they are locally symmetric Brinkmann manifolds.
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Parallel hypersurfaces

Parallel hypersurfaces also exist in e-spaces, but in this case they do not
provide a full classification as for general Cahen-Wallach spacetimes.

Let us assume that b= g(¢,0;) = 0; then the unit vector field normal to M
is given by ¢ = cosf0s; +sinfd, and a direct calculation yields that M is
parallel if and only if

k(x3sinf — xgcos0)Y3(0) =0, Y3(Y3(0)) =0. 9)

Using the symmetry condition and the coordinates (, x, y) already introdu-
ced, we get that 8 = 0(x) and, from (9) we have the following cases.

o Case (1):0'(x) =0.
o Case (2):0'(x) =1 #0.
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Parallel hypersurfaces

Case (1): 8'(x) = 0.

Then, 6 is a real constant. By the isometry A of an e-space described in (8),
without loss of generality we reduce to the case where ¢ = 03 (equivalently,
¢ = 04). So, we obtain the special cases of proper parallel hypersurfaces
listed in Theorem 4, which we already described in Remark 1.

Lorenzo PELLEGRINO (Universita del Salento)



Parallel hypersurfaces

Case (1): 8'(x) = 0.

Then, 6 is a real constant. By the isometry A of an e-space described in (8),
without loss of generality we reduce to the case where ¢ = 03 (equivalently,
¢ = 04). So, we obtain the special cases of proper parallel hypersurfaces
listed in Theorem 4, which we already described in Remark 1.

Case (2): 0'(x) = A #0.
Integrating, we then have 8(x) = Ax+ y, for some real constants A # 0 and
1. Moreover, from (9) we deduce

Xx3sinf = x4 cosf.

Therefore, applying isometries of the ambient space, we obtain the follo-
wing parametrization:

cos(Ax+ ) sin(Ax+ )
A ’ A 4

F(t,x,y) =yt

which is never totally geodesic.
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Parallel hypersurfaces

Let M be a proper parallel hypersurface of a four-dimensional € -space.
Assume that the normal unit vector field ¢ of M satisfies g(&,01) = 0.
Ifthe immersion F is not included in one of the cases listed in Theorem 4,
then there exist local coordinates (t,x,y) on M, such that up to isometries,
M is the cylindrical hypersurface of equation

1

x§+xi=ﬁ-
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Parallel hypersurfaces

Theorem 5

Let M be a proper parallel hypersurface of a four-dimensional € -space.
Assume that the normal unit vector field ¢ of M satisfies g(&,01) = 0.
Ifthe immersion F is not included in one of the cases listed in Theorem 4,
then there exist local coordinates (t,x,y) on M, such that up to isometries,
M is the cylindrical hypersurface of equation

1
F.

B4xi=

With regard to geometric properties, we have the following.

Proposition 1

Proper parallel hypersurfaces M of an e-space M, as described in
Theorem 5, are flat and CMC.
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FOR LISTENING!

GRACIAS

por escuchar!

G. Calvaruso, — . Totally Geodesic and Parallel hypersurfaces of
Cahen-Wallach spacetimes, Results in Mathematics, deccepted.
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