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Curvature of torsion-free connections

Basic background

@ Given a connection on a smooth, connected manifold M, its curvature
tensor is defined as the tensor field RY € I(A? T*M @ End(TM))
defined as

RY(X,Y)Z =VxVyZ-VyVxZ - VxyZ.
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Curvature of torsion-free connections

Basic background

@ Given a connection on a smooth, connected manifold M, its curvature
tensor is defined as the tensor field RY € I(A? T*M @ End(TM))
defined as

RY(X,Y)Z =VxVyZ-VyVxZ - VxyZ.

o If V is torsion-free (i.e. it satisfies VxY — VyX = [X, Y]), RY
satisfies the Bianchi identities:
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> RY(X,Y)Z=0€ex(M),
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Curvature of torsion-free connections

Basic background

> RY(X,Y)Z=0€ex(M),
cyc(X,Y,Z)

> VxRY(Y,Z)=0¢€T(End(TM)).
cyc(X,Y,Z)
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Algebraic curvature tensors

The Bianchi identities can be algebraically encoded:
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The Bianchi identities can be algebraically encoded:
Let V a finite real vector space. Let h C g := End(V) be a Lie subalgebra.
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Algebraic curvature tensors

The Bianchi identities can be algebraically encoded:
Let V a finite real vector space. Let h C g := End(V) be a Lie subalgebra.
The space of algebraic curvature tensors is defined as the subspace

2
K(h) = RE/\ V*®h Z R(x,y)z=0€ VV¥x,y,ze V
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Algebraic curvature tensors

The Bianchi identities can be algebraically encoded:
Let V a finite real vector space. Let h C g := End(V) be a Lie subalgebra.
The space of algebraic curvature tensors is defined as the subspace

2
K(h) = RG/\ V*®h Z R(x,y)z=0€ VV¥x,y,ze V

The space of algebraic curvature derivatives is defined as the subspace

Kih) =0V @K®b) | D, o(x)y.2)=0ehVxy zeV

cyc (x,y,2)
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Algebraic curvature tensors

A consequence of the Ambrose-Singer Holonomy Theorem is the fact that
the curvature tensor RV satisfies, for every x € M:

RY €K (ol (V)),
(VRY), eKl(hol (V)).
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G R
The problem

These observations naturally lead to the following question:
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G R
The problem

These observations naturally lead to the following question:

Under which conditions can it be guaranteed, that a given curvature map
S: U C V — K(g) can be induced by the curvature tensor of a
torsion-free connection?
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Local problem

By choosing a normal coordinate system around a fixed p on the manifold
M we can restrict ourselves, without loss of generality, to the case in which
M = U, where U denotes an open subset of V, which is also star-shaped
around 0 such that the exponential map expy: U C V = ToU — U
associated to a torsion-free connection V on TU = U x V is the identity.
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Ui CETS ECT
The principal bundle setting

=G
o Let F(U) = U x GL(V) denote the frame bundle of U.
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o Let F(U) = U x GL(V) denote the frame bundle of U.
o Let # € QY(F(U), V) denote the tautological form of F(U).
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o Let F(U) = U x GL(V) denote the frame bundle of U.

o Let # € QY(F(U), V) denote the tautological form of F(U).
o wV € QYF(U),g) denotes the connection form associated to V.
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Ui CETS ECT
The principal bundle setting

=G
o Let F(U)=U x m denote the frame bundle of U.
o Let # € QY(F(U), V) denote the tautological form of F(U).
o wV € QYF(U),g) denotes the connection form associated to V.
o FV :i=dwY +wVY AwY denotes the curvature form.
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The principal bundle setting
=G
——
Let F(U) = U x GL(V) denote the frame bundle of U.
Let & € QL(F(U), V) denote the tautological form of F(U).

wV € QY(F(U), g) denotes the connection form associated to V.
FV = dwY +wY AwY denotes the curvature form.

e 6 6 o o

In this setting, the fact that V is torsion-free is equivalent to

dd+wY AH=0.
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The principal bundle setting
=G
——
Let F(U) = U x GL(V) denote the frame bundle of U.
Let & € QL(F(U), V) denote the tautological form of F(U).

wV € QY(F(U), g) denotes the connection form associated to V.
FV = dwY +wY AwY denotes the curvature form.

e 6 6 o o

In this setting, the fact that V is torsion-free is equivalent to

dd+wY AH=0.

The Bianchi identities can be restated as follows:

FY A6 =0,
dFY +ad(w") A FY =0.
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Ui CETS ECT
The principal bundle setting

o Let R € C®(F(U),K(g))® be the unique G-equivariant map
associated to RV that satisfies

FY = R(6,06).
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Ui CETS ECT
The principal bundle setting

o Let R € C®(F(U),K(g))® be the unique G-equivariant map
associated to RV that satisfies

FY = R(6,06).

o Parallel translation along radial geodesics defines a smooth section of
F(U). Concretely, the map h: U — G defined by h(v) = P,, is a
smooth map, and so o = (v, h) € T(F(V)).
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The principal bundle setting
o Let R € C®(F(U),K(g))® be the unique G-equivariant map
associated to RV that satisfies
FY = R(6,06).

o Parallel translation along radial geodesics defines a smooth section of
F(U). Concretely, the map h: U — G defined by h(v) = P,, is a
smooth map, and so o = (v, h) € T(F(V)).

o Along this section we obtain:

0 :=c*0 = h1dv,
& =c*wY =Ad(h"Y) ol + h*pg,
F=c*FV =Ad(h™}) o RY.

where F,- = (Ffj)kd
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Ui CETS ECT
The principal bundle setting

From the relation F¥ = R(6,6), we thus obtain:
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Ui CETS ECT
The principal bundle setting

From the relation F¥ = R(6,6), we thus obtain:

F=R(0,0), (1)
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Ui CETS ECT
The principal bundle setting

From the relation F¥ = R(6,6), we thus obtain:
F=R(.96), (1)

where
R=h1.RV.
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An initial value problem

Let W C Q™ V* ® g be a subspace.

Basurto-Arzate, E. (TU Dortmund) B e BRI TS R TTVE T Symmetry and Shape, 2024 14 /30



An initial value problem

Let W C Q™ V* ® g be a subspace.
Let Ls: QK(U, W) — QK(U, W) denote the Lie derivative along the
Euler vector field & = eje’.
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An initial value problem

Let W C Q™ V* ® g be a subspace.
Let Ls: QK(U, W) — QK(U, W) denote the Lie derivative along the
Euler vector field & = eje’.

Proposition

There exists an integration map /: Q(U, W) — Qk(U, W) such that for
n e Qk(U, W):
1 k=1,

2
n—mn k=0. )

ILen = Lgln = {

where g = n(0) € C>*(U, W).
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An initial value problem

The integration map / gives us the following characterization for the
pulled-back forms 6, &:
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The convenient setting

An initial value problem

The integration map / gives us the following characterization for the
pulled-back forms 6, &:

Proposition
It holds for the pulled-back forms 0, &:

o f=dv+I(@-&).
o & =I(R(&,6)).
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An initial value problem

The main consequence of Proposition 1.2 is the following:
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An initial value problem

The main consequence of Proposition 1.2 is the following:
Proposition

The pulled-back form @ is a solution to the singular initial value problem

(3)

v

Le(Le —id)0 = R(&,0)&,
0o = id, dfp = 0.
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Main Results Main Results

Main Theorem

The key observation is the fact that solutions to the singular initial value

problem (3), for suitable curvature maps U — K(g), are decisive for the
existence of torsion-free connections.
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Main Results Main Results

Main Theorem

The key observation is the fact that solutions to the singular initial value

problem (3), for suitable curvature maps U — K(g), are decisive for the
existence of torsion-free connections.

We break down the Main Result in a series of 3 principal statements:
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Main Results Main Results

Main Theorem

Proposition

Let S: U — K(g) be a real analytic map. Then, the singular initial value
problem

{ﬁg(ﬁg —id)f = 5(¢,0)¢, (4)

0o = id, dfp = 0

admits a unique real analytic solution.
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Main Results Main Results

Main Theorem

Proposition

Let S: U — K(g) be a real analytic map. Let 6 be the real analytic

solution to the singular initial value problem (4). Set w = I(5(&,0)). It
then holds:

) =dv+I(w-&),
i) Le(dd+wANl)=(dw+wAw—5(0,0))-&.
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Main Results Main Results

Main Theorem

Theorem

Let U C V a star-shaped around 0 open subset, let S: U — K(g) be a
real-analytic map, 6 the analytic solution to the singular initial value
problem (4), and suppose w = 1(S(&,0)) satisties the consistency relation
dw+w Aw = 5(0,0). Then there exists a unique torsion-free analytic
connection ¥ on a sufficiently small open neighborhood U’ C U of 0 such
that for all v € U':

-1 v
S, =P RV, (5)

v
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

Thanks to the auxiliary results preceeding the Main Theorem, we can
provide a short sketch of its Proof:
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

Thanks to the auxiliary results preceeding the Main Theorem, we can
provide a short sketch of its Proof:

o Let g: U — G be the map such that § = gdv, and let
I e QYU g) be defined by:

M=Ad(g How+ g dg.
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

Thanks to the auxiliary results preceeding the Main Theorem, we can
provide a short sketch of its Proof:

o Let g: U — G be the map such that § = gdv, and let
I e QYU g) be defined by:

M=Ad(g How+ g dg.

o This g-valued 1-Form satisfies ' A dv = 0 ( i) in Proposition 2.2).
This implies that, for any /., k,
re=re,

where [ = Fg.e" ® e ® e.
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

o [ thus defines a torsion-free connection on U’ by the formula

Vxs =ds(X)+(X)s.
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

o [ thus defines a torsion-free connection on U’ by the formula

Vxs =ds(X)+(X)s.

@ The curvature RY = dI' + T AT satisfies
RV=g1.5.

That is:
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Basic Ideas for the Proof of the Main Theorem
Sketch of the Proof

o [ thus defines a torsion-free connection on U’ by the formula

Vxs =ds(X)+(X)s.

@ The curvature RY = dI' + T AT satisfies
RV=g1.5.
That is:

S=g-RV=35,=g(v)-R) =P, - R}y
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Corollary

In the context of Theorem 1, one notices that

(dS+pu(w) A S)(g™') =g VRY.
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Corollary

In the context of Theorem 1, one notices that

(dS+pu(w) A S)(g™') =g VRY.

In other words: The map (dS + p.(w) A S)(g71): U — V* ® K(g)
actually takes values in the subspace K(g).
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Applications Holonomy of torsion-free connections

Holonomy of torsion-free connections

Theorem 1 is well-suited for the study of holonomy theory. Indeed one has
the following:
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Applications Holonomy of torsion-free connections

Holonomy of torsion-free connections

Theorem 1 is well-suited for the study of holonomy theory. Indeed one has
the following:

Theorem

Let S: U — K(g), 0 € QY(U, V), w € QY(U, g) as in Theorem 1. Let V
be the torsion-free connection on TU' which satisfies S, = P, L. R,yvv(l) on
U'. It holds:

holg(V) =span {S,(x,y) [ve U, x,y € V}. (6)

v
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Applications Holonomy of torsion-free connections

Holonomy of torsion-free connections

An immediate consequence of the last Theorem is the following:
Corollary

In the situation of Theorem 1. The holonomy algebra of the torsion-free
connection induced by the analytic map S is contained in the Lie subalgebra
b C g if, and only if, the map S takes values in the subspace K(b).
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Summary

@ The main takeaway is the fact solutions to the singular IVP

Le(Le —id)0 = S(&,0)8,
0o = id, dfo = 0

are key in the problem of prescribing torsion-free connections.
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Summary

@ The main takeaway is the fact solutions to the singular IVP

Le(Le —id)0 = S(&,0)8,
0o = id, dfo = 0

are key in the problem of prescribing torsion-free connections.

@ In contrast to the classical Ambrose-Singer Holonomy Theorem,
Theorem 2 offers a significant simplification of that statement.
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Summary

@ The main takeaway is the fact solutions to the singular IVP

Le(Le —id)0 = S(&,0)8,
0o = id, dfo = 0

are key in the problem of prescribing torsion-free connections.

@ In contrast to the classical Ambrose-Singer Holonomy Theorem,
Theorem 2 offers a significant simplification of that statement.

@ OQutlook
o How big is the set

{§: U— K(g)| dw+wAw=5(6,0)}?
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Summary

@ The main takeaway is the fact solutions to the singular IVP

Le(Le —id)0 = S(&,0)8,
0o = id, dfo = 0

are key in the problem of prescribing torsion-free connections.

@ In contrast to the classical Ambrose-Singer Holonomy Theorem,
Theorem 2 offers a significant simplification of that statement.

@ OQutlook
o How big is the set

{§: U— K(g)| dw+wAw=5(6,0)}?

o Global results?
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For Further Reading |

E. Basurto-Arzate.
Torsion-free Connections with prescribed Curvature.
https://doi.org/10.48550/arXiv.2406.01530
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