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Context: Smooth metric measure spaces

Smooth metric measure space
Triple (M, g , h dvolg ) where

M: smooth manifold

g : semi-Riemannian metric. We focus on Lorentzian metrics.

dvolg : Riemannian volume element

h ∈ C∞(M): positive density function (∇h ̸= 0)

Some notation
ρ: Usual Ricci tensor (ρij = Rk

ikj)

Ric: Ricci operator
(Ricij = g ikρkj)

τ : Scalar curvature (τ = ρii )

Hesh: Hessian tensor of h
Hesh(X ,Y ) = g(∇X∇h,Y )

∆h: Laplacian of h (∆h = (Hesh)ii )
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Motivation: Lorentzian geometry
On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

G = ρ− τ

2
g

Aim
To define a weighted analogue of the GR Einstein tensor G for smooth metric measure
spaces.

Characterizing properties of G :

Symmetric

Concomitant of the metric and its
first two derivatives

Divergence-free

Linear in the first two derivatives of
the metric

It is the only tensor with these properties.

Variational approach:
The Einstein tensor is
obtained through a variation
of the Einstein-Hilbert
action:

S =

∫
V
τ dvolg

—————————————————————
D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12, (1971), 498–501.
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The weighted variational problem
Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert
functional with density:

Sh =

∫
V
τh dvolg

Variational problem:
Critical points of this functional under variations

g [t] = g + tδg , h[t] = h + tδh

Variations of the metric and its first derivatives vanish at the integration boundary

We want to preserve the distinguished measure dV = h dvolg , whose variation is
dV [t] = h[t]dvolg [t]

We impose the condition
d

dt

∣∣∣∣
t=0

dV [t] = 0

The variation of the action at critical points reads

δSh =
d

dt
Sh

∣∣∣∣
t=0

=

∫
M

dτ [t]

dt

∣∣∣∣
t=0

dV +

∫
M

τ
d

dt

∣∣∣∣
t=0

dV [t] = 0
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The Einstein tensor
The variation of the action reads

δSh =

∫
M

⟨hρ+∆hg − Hesh, δg⟩dvolg =

∫
M

⟨Dτ∗
g (h), δg⟩dvolg

where ⟨T ,K⟩ = T ijKij , vanishing for all δg at critical points.

We define the weighted Einstein tensor

G h = hρ+∆hg − Hesh

Properties:

Symmetric

Concomitant of the metric, the density function and their first two derivatives

Linear in the first two derivatives of the metric and the density function

Not divergence-free in general: divG h = 1
2hdτ

Vacuum weighted Einstein field equation

G h = hρ+∆hg − Hesh = 0
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The vacuum weighted Einstein field equation

Vacuum weighted Einstein field equation

hρ+∆hg − Hesh = 0

Taking its trace, we have

∆h = − hτ

n − 1
⇒ Hesh = h

(
ρ− τ

n − 1
g

)
In Riemannian signature, this is the equation of a vacuum static space

Second aim
To understand the geometry of solutions to the vacuum weighted Einstein field equation.
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Types of solutions
Depending on the character of ∇h, we have different possibilities:

isotropic solutions if g(∇h,∇h) = 0. The level sets of h are degenerate
hypersurfaces.

non-isotropic if g(∇h,∇h) ̸= 0. The level sets of h are non-degenerate
hypersurfaces:

∇h is timelike
∇h is spacelike

The Jordan form of the Ricci operator also plays a role:

Type Ia

Ric =


α1 0

. . .
0 αn


Type Ib

Ric =


a b

−b a

. . .


{e1, . . . , en} orthonormal basis

Type II

Ric =


α 0
ε α

. . .


Type III

Ric =


α 0 1
0 α 0
0 1 α

. . .


{u, v , e1, . . . , en−2} pseudo-ortho. basis
(g(u, u) = g(v , v) = 0, g(u, v) = 1)

We assume the Jordan form is constant
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Isotropic solutions

Lemma

Let (M, g , h dvolg ) be an isotropic solution of the vacuum weighted Einstein field
equation. Then Ric is nilpotent and ∆h = 0.

The vacuum weighted Einstein equation reduces to hρ = Hesh

Theorem
Let (M, g , h dvolg ) be an isotropic solution of the vacuum weighted Einstein field
equation. Then one of the following possibilities holds:

1 (M, g) is Ricci-flat and Hesh = 0

2 The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave

3 The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime

Brinkmann wave: (M, g) with a recurrent lightlike geodesic vector field V
(∇XV = α(X )V , for a 1-form α)
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2 The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave

3 The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime

Kundt spacetime: (M, g) with a geodesic lightlike vector field which is

Expansion-free Shear-free Twist-free

θ = 1
n−2∇iV

i σ2 = (∇iV j)∇(iVj) − (n − 2)θ2 ω2 = (∇iV j)∇[iVj]
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Locally conformally flat solutions

Theorem
Let (M, g , h) be a locally conformally flat solution.

1 If g(∇h,∇h) ̸= 0 at a point p, then, on a neighborhood of p, (M, g , h) is locally
isometric to a warped product (I × N, dt2 ⊕ φ2gN), where

N has constant sectional curvature
h(t) and φ(t) satisfy the following system of ODEs:

0 = h′φ′ − hφ′′,

0 = h′′ + (n − 1)hφ′′

φ
+ ε τ

n−1h.

2 If g(∇h,∇h) = 0 on an open subset U ⊂ M, then (U, g |U) is a plane wave with
the metric

g(u, v , x1, . . . , xn−2) = 2dvdu + F (v , x1, . . . , xn−2)dv
2 +

n−2∑
i=1

dx2
i ,

where F (v , x1, . . . , xn−2) = − h′′(v)
(n−2)h(v)

∑n−2
i=1 x2

i +
∑n−2

i=1 bi (v)xi + c(v).
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Looking for more solutions

Less restrictive conditions than W = 0

Einstein equation gives information on ρ ⇝ We impose divW = divR = 0

hesh = h
(
Ric− τ

n−1 Id
)

divR = 0

 ⇒ Ric(∇h) = λ1∇h, λ1 ∈ C∞(M)

∇h timelike
g is positive definite on ∇h⊥

Ric is self-adjoint

Ric(∇h) = λ1∇h

 ⇒ Ric is diagonalizable (Type Ia)

If ∇h is spacelike, Ric does not diagonalize in general

We focus on 4-dimensional solutions
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Theorem

Let (M, g , h) be a 4-dimensional solution with divR = 0 (not locally conformally flat).

Then, the eigenvalues of Ric are real and one of the following is satisfied:

1 Ric diagonalizes on (M, g) and g(∇h,∇h) ̸= 0. Furthermore, there exists an open
dense subset MRic of M such that, for every p ∈ MRic, (M, g) is isometric on a
neighborhood of p to:

1 A direct product I2 × M̃, where M̃ = I1 ×ξ N is a 3-dimensional solution with
τ̃ = 0 and N a surface of constant Gauss curvature.

2 A direct product N1 × N2 of two surfaces of constant Gauss curvature κ
2 and

κ, respectively.

2 (M, g) is a Kundt spacetime and, depending on the causal character of ∇h, one of
the following applies:

1 If g(∇h,∇h) = 0, then Ric is nilpotent and ∇h determines the lightlike
parallel line field. Moreover, if Ric vanishes or is 2-step nilpotent, the
underlying manifold is a pp-wave.

2 If g(∇h,∇h) ̸= 0, then ∇h is spacelike and the distinguished lightlike vector
field is orthogonal to ∇h.
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Sketch of the proof (non-isotropic case)

Type Ia

Ric =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


Type Ib

Ric =


λ 0 0 0
0 a b 0
0 −b a 0
0 0 0 α



{e1, . . . , en} orthonormal basis with e1 = ∇h/|∇h|

Type Ia: We analyze the geometric structure according to the number of distinct
eigenvalues of Ric

λ2, λ3, λ4 cannot be pairwise distinct ⇝ Multiply warped product

Type Ib: Use divR = 0 and the Einstein equations to obtain information on the
eigenvalues, the curvature and the Christoffel symbols

Polynomial system on 5 variables
Show b = 0
There are solutions with divR ̸= 0
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Non-diagonalizable case with real eigenvalues

divR = 0 ⇒ Non-diagonalizable case only possible when ∇h is spacelike

The 2 remaining normal forms for Ric:

Type II

Ric =


λ 0 0 0
0 α 0 0
0 ε α 0
0 0 0 β


Type III

Ric =


λ 0 0 0
0 α 0 1
0 0 α 0
0 0 1 α


{∇h, u, v , e1} pseudo-orthonormal basis (g(u, u) = g(v , v) = 0, g(u, v) = 1)

Type II: solutions are Kundt spacetimes with geodesic vector field v .

We classifed 4D pr -wave solutions.

Type III: solutions are Kundt spacetimes with geodesic vector field u.
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Thank you!
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