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(M, g) Riemannian manifold.

Definition

M is a Ricci soliton if
Ric=cg + Lxg

for some c € R and X € X(M).

Einstein metrics: Ric = cg.

@ ¢ > 0, shrinking.

@ ¢ =0, steady.
@ ¢ < 0, expanding.
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Definition
An algebraic Ricci soliton is a Lie group G with left-invariant metric such

that
Ric = cid +D,

with D: g — g a derivation.
Solvsoliton: Solvable algebraic Ricci soliton.
Nilsoliton: Nilpotent algebraic Ricci soliton.
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M homogeneous Ricci soliton (M Ricci sol. + /(M) acts transitively on M). J

e lfc>0 = M=E xR", E compact Einstein manifold.
olfc=0 = M=ZR"xT™
e If c <0 = M isometric to a solvsoliton. (Alekseevskii conjecture)

Equiv. statement to Alekseevskii conj. [C. Bhm, R. Lafuente (2021)]

A homogeneous Ricci soliton with ¢ < 0 is isometric to a solvsoliton.

M. Jablonski (2018)

Any solvsoliton can be isometrically and isomorphically embedded in the
solvable model of a symmetric space of non-compact type.

Any homogeneous Ricci soliton with ¢ < 0 is isometric to a Lie subgroup
of the solvable model of a symmetric space of non-compact type.
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lwasawa decomposition and solvable model

M = G /K symmetric space of non-compact type = G real semisimple.

Iwasawa decomposition theorem
G = KAN, K compact, A abelian, N nilpotent.

K ~ RH3 A~ RH3 N ~ RH?3

~ M diffeomorphic to AN.

Solvable model

M is isometric to the Lie group AN with a left-invariant metric.
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Subgroups of AN and Einstein and Ricci soliton metrics

@ Tamaru (2011): Parabolic subgroups of semisimple Lie groups and
Einstein solvmanifolds.
~ Einstein solvmanifolds as minimal Lie subgroups of AN.

e Dominguez-Vazquez, Sanmartin-Lépez, Tamaru (2021):
Codimension one Ricci soliton subgroups of solvable Iwasawa groups.

e Sanmartin-Lépez (2022): Codimension one Ricci soliton subgroups of
nilpotent Iwasawa groups.

Objective today: Classify Lie subgroups of AN = CH" that are algebraic
Ricci solitons with the induced metric. J

~» CH": Simplest symmetric space of non-compact type where the
classification is open.
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Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of AN = CH". J

Structure of solvsolitons [J. Lauret, 2011]

S solvmanifold with metric Lie algebra (s, (-, -)). Consider the orthogonal
decomposition s = b @ Nil(s). Then S is a solvsoliton iff

e Nil(S) is a nilsoliton.

@ b is abelian.

@ Some conditions on the vectors of b must be satisfied.

Nilsolitons L < AN and their
— possible non-nilpotent
extensions in AN.

Subgroups S < AN that are
algebraic Ricci solitons.

Nilsolitons L < N and their
possible rank-one non-nilpotent
extensions in AN.
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Kahler angle

Let V be a real subspace of C".

Definition

V constant Kahler angle o € [0, 5] if Z(V,iv) =g forallve V, v#0.

e If o =0: V complex subspace.

o If ¢ = 7: V totally real subspace.

Theorem [Diaz-Ramos, Kollross, Dominguez-Vazquez, 2017]

Let V C C" be any real subspace. Then V = Vi & ... & V, such that:
@ V) has constant Kahler angle i and i # ¢ if k # 1.
o CVi L CV, for every k £ I.
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Kahler angle and algebraic Ricci soliton condition

AN = CH" solvable model, a®n=a® g1 @ go. J

Let h Cn=g1® g2 (g1 ~C"L, g2 = R) be a Lie subalgebra.
Is D(c) := cid+ Ric" a derivation of § for some ¢ € R?

D()[X, Y] = [D(c)X, Y] + [X,D(c)Y], X, Y € b. |

mCgy, MOg=my S...0My,, O go.

Each one of the m,, imposes some condition on ¢ = c(y;) iff ¢; € [0, 5).

c(pi) # c(p)) if i #j = m=my, ©mz.
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Corollaries

S < AN = CH", considered with the induced metric. Then:
S Einstein <= S is a symmetric space.

Every nilsoliton of AN = CH" can be extended to a non-nilpotent
solvsoliton in AN.

Sanmartin-Lépez, 2022

Codimension one Ricci soliton Lie subgroups of any nilpotent Iwasawa are
minimal in N.

Let S < AN = CH". Suppose that S is an algebraic Ricci soliton with the
induced metric.
Nil(S) is non-flat <= Nil(S) is a minimal submanifold of N.

S S S S S A
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Corollaries 11

R” [A. Di Scala, 2002], RH" [A. Di Scala, C. Olmos, 2001]

In R” and in RH" minimal homogeneous submanifolds are totally geodesic.

This does no longer hold in general for sym. spaces of non-compact type!

Corollary 4

Let S < AN = CH".
S Einstein and minimal in AN <= S totally geodesic in AN.
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