Ricci solitons as submanifolds of complex hyperbolic spaces

Angel Cidre-Díaz (joint work with Víctor Sanmartín-López)

Universidade de Santiago de Compostela - CITMAga

Symmetry and shape 2024

CENTRO DE INVESTIGACIÓN E TECNOLOXÍA MATEMÁTICA DE GALICIA

The author has been supported by Grant PID2022-138988NB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF, EU: by ED431F 2020/04 and by ED431C 2023/31 (Xunta de Galicia, Spain). The author also acknowledges support of a FPU fellowship (Ministry of Universities, Spain)

Index

Introduction

2 Symmetric spaces of non-compact type

3 Ricci soliton submanifolds of complex hyperbolic spaces

Index

Introduction

2 Symmetric spaces of non-compact type

Ricci soliton submanifolds of complex hyperbolic spaces

(M,g) Riemannian manifold.

(M,g) Riemannian manifold.

Definition

M is a Ricci soliton if

$$Ric = cg + \mathcal{L}_X g$$

for some $c \in \mathbb{R}$ and $X \in \mathfrak{X}(M)$.

(M,g) Riemannian manifold.

Definition

M is a Ricci soliton if

$$Ric = cg + \mathcal{L}_X g$$

for some $c \in \mathbb{R}$ and $X \in \mathfrak{X}(M)$.

Einstein metrics: Ric = cg.

(M,g) Riemannian manifold.

Definition

M is a Ricci soliton if

$$Ric = cg + \mathcal{L}_X g$$

for some $c \in \mathbb{R}$ and $X \in \mathfrak{X}(M)$.

Einstein metrics: Ric = cg.

Classes

- c > 0, shrinking.
- c = 0, steady.
- c < 0, expanding.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

• If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.
- If $c < 0 \implies M$ isometric to a solvsoliton. (Alekseevskii conjecture)

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.
- If $c < 0 \implies M$ isometric to a solvsoliton. (Alekseevskii conjecture)

Definition

An algebraic Ricci soliton is a Lie group G with left-invariant metric such that

$$Ric = c id + \mathcal{D}$$
,

with $\mathcal{D} \colon \mathfrak{g} \to \mathfrak{g}$ a derivation.

Solvsoliton: Solvable algebraic Ricci soliton.

Nilsoliton: Nilpotent algebraic Ricci soliton.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.
- If $c < 0 \implies M$ isometric to a solvsoliton. (Alekseevskii conjecture)

Equiv. statement to Alekseevskii conj. [C. Böhm, R. Lafuente (2021)]

A homogeneous Ricci soliton with c < 0 is isometric to a solvsoliton.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.
- If $c < 0 \implies M$ isometric to a solvsoliton. (Alekseevskii conjecture)

Equiv. statement to Alekseevskii conj. [C. Böhm, R. Lafuente (2021)]

A homogeneous Ricci soliton with c < 0 is isometric to a solvsoliton.

M. Jablonski (2018)

Any solvsoliton can be isometrically and isomorphically embedded in the *solvable model* of a symmetric space of non-compact type.

M homogeneous Ricci soliton (M Ricci sol. + I(M) acts transitively on M).

- If $c > 0 \implies M \cong E \times \mathbb{R}^n$, E compact Einstein manifold.
- If $c = 0 \implies M \cong \mathbb{R}^n \times \mathbb{T}^m$.
- If $c < 0 \implies M$ isometric to a solvsoliton. (Alekseevskii conjecture)

Equiv. statement to Alekseevskii conj. [C. Böhm, R. Lafuente (2021)]

A homogeneous Ricci soliton with c < 0 is isometric to a solvsoliton.

M. Jablonski (2018)

Any solvsoliton can be isometrically and isomorphically embedded in the *solvable model* of a symmetric space of non-compact type.

Any homogeneous Ricci soliton with c<0 is isometric to a Lie subgroup of the solvable model of a symmetric space of non-compact type.

Index

Introduction

2 Symmetric spaces of non-compact type

3 Ricci soliton submanifolds of complex hyperbolic spaces

lwasawa decomposition and solvable model

 $\widetilde{M}\cong G/K$ symmetric space of non-compact type $\implies G$ real semisimple.

Iwasawa decomposition theorem

G = KAN, K compact, A abelian, N nilpotent.

 $K \curvearrowright \mathbb{R}H^3$

 $A \cap \mathbb{R}H^3$

 $N \curvearrowright \mathbb{R}H^3$

Iwasawa decomposition and solvable model

 $\widetilde{M}\cong G/K$ symmetric space of non-compact type $\implies G$ real semisimple.

Iwasawa decomposition theorem

G = KAN, K compact, A abelian, N nilpotent.

 $A \cap \mathbb{R}H^3$

 $N \curvearrowright \mathbb{R}H^3$

 $\rightsquigarrow \widetilde{M}$ diffeomorphic to AN.

lwasawa decomposition and solvable model

 $\widetilde{M}\cong G/K$ symmetric space of non-compact type $\implies G$ real semisimple.

Iwasawa decomposition theorem

G = KAN, K compact, A abelian, N nilpotent.

 $A \curvearrowright \mathbb{R}H^3$

 $N \curvearrowright \mathbb{R}H^3$

 $\rightsquigarrow M$ diffeomorphic to AN.

Solvable model

M is isometric to the Lie group *AN* with a left-invariant metric.

- Tamaru (2011): Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds.
 - \rightsquigarrow Einstein solvmanifolds as minimal Lie subgroups of AN.

- Tamaru (2011): Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds.
 - \rightarrow Einstein solvmanifolds as minimal Lie subgroups of AN.
- Domínguez-Vázquez, Sanmartín-López, Tamaru (2021):
 <u>Codimension one</u> Ricci soliton subgroups of solvable Iwasawa groups.

- Tamaru (2011): Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds.
 - \rightsquigarrow Einstein solvmanifolds as minimal Lie subgroups of AN.
- Domínguez-Vázquez, Sanmartín-López, Tamaru (2021):
 <u>Codimension one</u> Ricci soliton subgroups of solvable Iwasawa groups.
- Sanmartín-López (2022): <u>Codimension one</u> Ricci soliton subgroups of nilpotent Iwasawa groups.

- Tamaru (2011): Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds.
 - \leadsto Einstein solvmanifolds as minimal Lie subgroups of AN.
- Domínguez-Vázquez, Sanmartín-López, Tamaru (2021):
 <u>Codimension one</u> Ricci soliton subgroups of solvable Iwasawa groups.
- Sanmartín-López (2022): <u>Codimension one</u> Ricci soliton subgroups of nilpotent lwasawa groups.

Objective today: Classify Lie subgroups of $AN \cong \mathbb{C}H^n$ that are algebraic Ricci solitons with the induced metric.

- Tamaru (2011): Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds.
 - \rightsquigarrow Einstein solvmanifolds as minimal Lie subgroups of AN.
- Domínguez-Vázquez, Sanmartín-López, Tamaru (2021):
 <u>Codimension one</u> Ricci soliton subgroups of solvable Iwasawa groups.
- Sanmartín-López (2022): <u>Codimension one</u> Ricci soliton subgroups of nilpotent Iwasawa groups.

Objective today: Classify Lie subgroups of $AN \cong \mathbb{C}H^n$ that are algebraic Ricci solitons with the induced metric.

 $\rightsquigarrow \mathbb{C}H^n$: Simplest symmetric space of non-compact type where the classification is open.

Index

Introduction

2 Symmetric spaces of non-compact type

3 Ricci soliton submanifolds of complex hyperbolic spaces

Complex hyperbolic space $\mathbb{C}H^n$: only complete, simply connected Kähler manifold with constant holomorphic sectional curvature < 0.

• $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.

- $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.
- We can induce an orthogonal complex structure J in $\mathfrak{a} \oplus \mathfrak{n} \equiv T_p \mathbb{C} H^n$.

- $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.
- We can induce an orthogonal complex structure J in $\mathfrak{a} \oplus \mathfrak{n} \equiv T_p \mathbb{C} H^n$.
- $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{a} := \mathbb{R}B$.

- $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.
- We can induce an orthogonal complex structure J in $\mathfrak{a} \oplus \mathfrak{n} \equiv T_p \mathbb{C} H^n$.
- $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{a} := \mathbb{R}B$.
- ullet $\mathfrak{n}=\mathfrak{g}_1\oplus\mathfrak{g}_2,\quad \mathfrak{g}_1\simeq\mathbb{C}^{n-1}\ (\implies J\mathfrak{g}_1\subset\mathfrak{g}_1\),\ \mathfrak{g}_2=J\mathfrak{a}\simeq\mathbb{R},\ \mathfrak{g}_2:=\mathbb{R}Z$

Complex hyperbolic space $\mathbb{C}H^n$: only complete, simply connected Kähler manifold with constant holomorphic sectional curvature < 0.

- $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.
- We can induce an orthogonal complex structure J in $\mathfrak{a} \oplus \mathfrak{n} \equiv T_p \mathbb{C} H^n$.
- $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{a} := \mathbb{R}B$.
- $\bullet \ \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2, \quad \mathfrak{g}_1 \simeq \mathbb{C}^{n-1} \ (\Longrightarrow \ J\mathfrak{g}_1 \subset \mathfrak{g}_1 \), \ \mathfrak{g}_2 = J\mathfrak{a} \simeq \mathbb{R}, \ \mathfrak{g}_2 := \mathbb{R}Z$

 $Lie(AN) = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$ orthogonal sum with respect to $\langle \cdot, \cdot \rangle$ (Induced metric from $\mathbb{C}H^n$).

Complex hyperbolic space $\mathbb{C}H^n$: only complete, simply connected Kähler manifold with constant holomorphic sectional curvature < 0.

- $AN \cong \mathbb{C}H^n$ solvable model, $Lie(AN) = \mathfrak{a} \oplus \mathfrak{n}$ metric Lie algebra.
- We can induce an orthogonal complex structure J in $\mathfrak{a} \oplus \mathfrak{n} \equiv T_p \mathbb{C} H^n$.
- $\mathfrak{a} \simeq \mathbb{R}$, $\mathfrak{a} := \mathbb{R}B$.
- $\bullet \ \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2, \quad \mathfrak{g}_1 \simeq \mathbb{C}^{n-1} \ (\Longrightarrow \ J\mathfrak{g}_1 \subset \mathfrak{g}_1 \), \ \mathfrak{g}_2 = J\mathfrak{a} \simeq \mathbb{R}, \ \mathfrak{g}_2 := \mathbb{R}Z$

 $Lie(AN) = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$ orthogonal sum with respect to $\langle \cdot, \cdot \rangle$ (Induced metric from $\mathbb{C}H^n$).

Approach to the problem: the nilradical

Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of $AN \cong \mathbb{C}H^n$.

Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of $AN \cong \mathbb{C}H^n$.

Structure of solvsolitons [J. Lauret, 2011]

S solvmanifold with metric Lie algebra $(\mathfrak{s}, \langle \cdot, \cdot \rangle)$. Consider the orthogonal decomposition $\mathfrak{s} = \mathfrak{b} \oplus \operatorname{Nil}(\mathfrak{s})$. Then S is a solvsoliton iff

- Nil(S) is a nilsoliton.
- b is abelian.
- Some conditions on the vectors of b must be satisfied.

Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of $AN \cong \mathbb{C}H^n$.

Structure of solvsolitons [J. Lauret, 2011]

S solvmanifold with metric Lie algebra $(\mathfrak{s}, \langle \cdot, \cdot \rangle)$. Consider the orthogonal decomposition $\mathfrak{s} = \mathfrak{b} \oplus \operatorname{Nil}(\mathfrak{s})$. Then S is a solvsoliton iff

- Nil(S) is a nilsoliton.
- b is abelian.
- Some conditions on the vectors of b must be satisfied.

Subgroups S < AN that are algebraic Ricci solitons.

Nilsolitons L < AN and their possible non-nilpotent extensions in AN.

Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of $AN \cong \mathbb{C}H^n$.

Structure of solvsolitons [J. Lauret, 2011]

S solvmanifold with metric Lie algebra $(\mathfrak{s}, \langle \cdot, \cdot \rangle)$. Consider the orthogonal decomposition $\mathfrak{s} = \mathfrak{b} \oplus \operatorname{Nil}(\mathfrak{s})$. Then S is a solvsoliton iff

- Nil(S) is a nilsoliton.
- b is abelian.
- ullet Some conditions on the vectors of ${\mathfrak b}$ must be satisfied.

Subgroups S < AN that are algebraic Ricci solitons.

Nilsolitons L < AN and their possible non-nilpotent extensions in AN.

Nilsolitons L < N and their possible rank-one non-nilpotent extensions in AN.

Let V be a real subspace of \mathbb{C}^n .

Definition

V constant Kähler angle $\varphi \in [0, \frac{\pi}{2}]$ if $\angle(V, i v) = \varphi$ for all $v \in V$, $v \neq 0$.

Let V be a real subspace of \mathbb{C}^n .

Definition

V constant Kähler angle $\varphi \in [0, \frac{\pi}{2}]$ if $\angle(V, i v) = \varphi$ for all $v \in V$, $v \neq 0$.

• If $\varphi = 0$: V complex subspace.

Let V be a real subspace of \mathbb{C}^n .

Definition

V constant Kähler angle $\varphi \in [0, \frac{\pi}{2}]$ if $\angle (V, i v) = \varphi$ for all $v \in V$, $v \neq 0$.

- If $\varphi = 0$: V complex subspace.
- If $\varphi = \frac{\pi}{2}$: V totally real subspace.

Let V be a real subspace of \mathbb{C}^n .

Definition

V constant Kähler angle $\varphi \in [0, \frac{\pi}{2}]$ if $\angle (V, i v) = \varphi$ for all $v \in V$, $v \neq 0$.

- If $\varphi = 0$: V complex subspace.
- If $\varphi = \frac{\pi}{2}$: V totally real subspace.

Theorem [Díaz-Ramos, Kollross, Domínguez-Vázquez, 2017]

Let $V \subset \mathbb{C}^n$ be any real subspace. Then $V = V_1 \oplus \ldots \oplus V_r$ such that:

- V_k has constant Kähler angle φ_k and $\varphi_k \neq \varphi_l$ if $k \neq l$.
- $\mathbb{C}V_k \perp \mathbb{C}V_l$ for every $k \neq l$.

 $AN \cong \mathbb{C}H^n$ solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h}\subset\mathfrak{n}=\mathfrak{g}_1\oplus\mathfrak{g}_2$ $(\mathfrak{g}_1\simeq\mathbb{C}^{n-1},\ \mathfrak{g}_2\cong\mathbb{R})$ be a Lie subalgebra.

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

Example

$$\mathfrak{m}\subset \mathfrak{g}_1$$
,

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

Example

$$\mathfrak{m}\subset\mathfrak{g}_1,\quad\mathfrak{m}\oplus\mathfrak{g}_2$$

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

Example

$$\mathfrak{m}\subset\mathfrak{g}_1$$
, $\mathfrak{m}\oplus\mathfrak{g}_2=\mathfrak{m}_{\varphi_1}\oplus\ldots\oplus\mathfrak{m}_{\varphi_r}\oplus\mathfrak{g}_2$.

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

Example

$$\mathfrak{m}\subset\mathfrak{g}_1$$
, $\mathfrak{m}\oplus\mathfrak{g}_2=\mathfrak{m}_{\varphi_1}\oplus\ldots\oplus\mathfrak{m}_{\varphi_r}\oplus\mathfrak{g}_2$.

Each one of the \mathfrak{m}_{φ_i} imposes some condition on $c = c(\varphi_i)$ iff $\varphi_i \in [0, \frac{\pi}{2})$.

$$AN \cong \mathbb{C}H^n$$
 solvable model, $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

Let $\mathfrak{h} \subset \mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ ($\mathfrak{g}_1 \simeq \mathbb{C}^{n-1}$, $\mathfrak{g}_2 \cong \mathbb{R}$) be a Lie subalgebra. Is $\mathcal{D}(c) := c \operatorname{id} + \operatorname{Ric}^H$ a derivation of \mathfrak{h} for some $c \in \mathbb{R}$?

$$\mathcal{D}(c)[X,Y] \stackrel{?}{=} [\mathcal{D}(c)X,Y] + [X,\mathcal{D}(c)Y], X,Y \in \mathfrak{h}.$$

Example

$$\mathfrak{m}\subset\mathfrak{g}_1$$
, $\mathfrak{m}\oplus\mathfrak{g}_2=\mathfrak{m}_{\varphi_1}\oplus\ldots\oplus\mathfrak{m}_{\varphi_r}\oplus\mathfrak{g}_2$.

Each one of the \mathfrak{m}_{φ_i} imposes some condition on $c=c(\varphi_i)$ iff $\varphi_i\in[0,\frac{\pi}{2})$.

$$c(\varphi_i) \neq c(\varphi_j) \text{ if } i \neq j \implies \mathfrak{m} = \mathfrak{m}_{\varphi_1} \oplus \mathfrak{m}_{\frac{\pi}{2}}.$$

Subalgebra	Isometric to	Einstein?

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes
$\mathbb{R}(B+U+xZ)\oplus\mathfrak{m}_{\pi/2}\oplus\mathbb{R}(V+tZ)$	$\mathbb{R}H^k$	Yes

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes
$\mathbb{R}(B+U+xZ)\oplus\mathfrak{m}_{\pi/2}\oplus\mathbb{R}(V+tZ)$	$\mathbb{R}H^k$	Yes
$\mathbb{R}(B+U)\oplus \mathfrak{m}_{\pi/2}\oplus \mathfrak{g}_2$	Non-Einstein solv. ext. of a \mathbb{R}^k	No

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes
$\mathbb{R}(B+U+xZ)\oplus\mathfrak{m}_{\pi/2}\oplus\mathbb{R}(V+tZ)$	$\mathbb{R}H^k$	Yes
$\mathfrak{m}_{\varphi}\oplus\mathfrak{m}_{\pi/2}\oplus\mathfrak{g}_{2}$	$H_k imes \mathbb{R}^l$	No
$\mathbb{R}(B+U)\oplus \mathfrak{m}_{\pi/2}\oplus \mathfrak{g}_2$	Non-Einstein solv. ext. of a \mathbb{R}^k	No

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes
$\mathbb{R}(B+U+xZ)\oplus\mathfrak{m}_{\pi/2}\oplus\mathbb{R}(V+tZ)$	$\mathbb{R}H^k$	Yes
$\mathbb{R}(\mathit{B}+\mathit{U})\oplus\mathfrak{m}_{arphi}\oplus\mathfrak{g}_{2}$	ℂH ^k	Yes
$\mathfrak{m}_{\varphi}\oplus\mathfrak{m}_{\pi/2}\oplus\mathfrak{g}_{2}$	$H_k imes \mathbb{R}^l$	No
$\mathbb{R}(B+U)\oplus \mathfrak{m}_{\pi/2}\oplus \mathfrak{g}_2$	Non-Einstein solv. ext. of a \mathbb{R}^k	No

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Subalgebra	Isometric to	Einstein?
$\mathfrak{m}_{\pi/2} \oplus \mathbb{R}(V+tZ)$	\mathbb{R}^k	Yes
$\boxed{\mathbb{R}(B+U+xZ)\oplus\mathfrak{m}_{\pi/2}\oplus\mathbb{R}(V+tZ)}$	$\mathbb{R}H^k$	Yes
$\mathbb{R}(\mathit{B}+\mathit{U})\oplus\mathfrak{m}_{arphi}\oplus\mathfrak{g}_{2}$	ℂH ^k	Yes
$\mathfrak{m}_{arphi}\oplus\mathfrak{m}_{\pi/2}\oplus\mathfrak{g}_2$	$H_k imes \mathbb{R}^l$	No
$\mathbb{R}(B+U)\oplus \mathfrak{m}_{\pi/2}\oplus \mathfrak{g}_2$	Non-Einstein solv. ext. of a \mathbb{R}^k	No
$\mathbb{R}(B+U)\oplus \mathfrak{m}_{arphi}\oplus \mathfrak{m}_{\pi/2}\oplus \mathfrak{g}_2$	Non-Einstein solv. ext. of $H_k imes \mathbb{R}^I$	No

^{*} $\mathfrak{m}_{\varphi} \subset \mathfrak{g}_1$ of ct. Kähler angle $\varphi \in [0, \pi/2]$, $U, V \in \mathfrak{g}_1$, $\mathbb{R}B = \mathfrak{a}$, $\mathbb{R}Z = \mathfrak{g}_2$.

Corollary 1

 $S < AN \cong \mathbb{C}H^n$, considered with the induced metric. Then:

S Einstein \iff S is a symmetric space.

Corollary 1

- $S < AN \cong \mathbb{C}H^n$, considered with the induced metric. Then:
- S Einstein \iff S is a symmetric space.

Corollary 2

Every nilsoliton of $AN \cong \mathbb{C}H^n$ can be extended to a non-nilpotent solvsoliton in AN.

Corollary 1

- $S < AN \cong \mathbb{C}H^n$, considered with the induced metric. Then:
- S Einstein \iff S is a symmetric space.

Corollary 2

Every nilsoliton of $AN \cong \mathbb{C}H^n$ can be extended to a non-nilpotent solvsoliton in AN.

Sanmartín-López, 2022

Codimension one Ricci soliton Lie subgroups of any nilpotent Iwasawa are minimal in N.

Corollary 1

 $S < AN \cong \mathbb{C}H^n$, considered with the induced metric. Then: S Einstein $\iff S$ is a symmetric space.

Corollary 2

Every nilsoliton of $AN \cong \mathbb{C}H^n$ can be extended to a non-nilpotent solvsoliton in AN.

Sanmartín-López, 2022

Codimension one Ricci soliton Lie subgroups of any nilpotent Iwasawa are minimal in N.

Corollary 3

Let $S < AN \cong \mathbb{C}H^n$. Suppose that S is an algebraic Ricci soliton with the induced metric.

Nil(S) is non-flat \iff Nil(S) is a minimal submanifold of N.

 \mathbb{R}^n [A. Di Scala, 2002], $\mathbb{R}H^n$ [A. Di Scala, C. Olmos, 2001]

In \mathbb{R}^n and in $\mathbb{R}H^n$ minimal homogeneous submanifolds are totally geodesic.

 \mathbb{R}^n [A. Di Scala, 2002], $\mathbb{R}H^n$ [A. Di Scala, C. Olmos, 2001]

In \mathbb{R}^n and in $\mathbb{R}H^n$ minimal homogeneous submanifolds are totally geodesic.

\mathbb{R}^n [A. Di Scala, 2002], $\mathbb{R}H^n$ [A. Di Scala, C. Olmos, 2001]

In \mathbb{R}^n and in $\mathbb{R}H^n$ minimal homogeneous submanifolds are totally geodesic.

This does no longer hold in general for sym. spaces of non-compact type!

\mathbb{R}^n [A. Di Scala, 2002], $\mathbb{R}H^n$ [A. Di Scala, C. Olmos, 2001]

In \mathbb{R}^n and in $\mathbb{R}H^n$ minimal homogeneous submanifolds are totally geodesic.

This does no longer hold in general for sym. spaces of non-compact type!

Corollary 4

Let $S < AN \cong \mathbb{C}H^n$.

S Einstein and minimal in $AN \iff S$ totally geodesic in AN.