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1. Bowen-Series coding

This coding is a combinatorial object that was introduced
in [2]. Its dynamical properties hold strong relations with
the geodesic flow on hyperbolic surfaces.

1.1 Construction

We note D the Poincare disk and ∂D ' S1 its bound-
ary. Let Γ be a cofinite fuchsian group of the first kind
that isn’t a triangle group, and that admits a fundamental
domain D satisfying these properties :
−D is geodesically convex ;
− its boundary is a finitely-sided geodesic polygon with
sides E and vertices V ⊂ D ∪ ∂D ;
− for every e ∈ E, there exists γe ∈ Γ \ {id} such that
γe(e) ∈ E ; and f = γe(e) if and only if γf (f ) = e ;
− (γe)e∈E generates Γ.
For example, we can take a Dirichlet domain based at any
P ∈ D that isn’t the center of an elliptic isometry of Γ.
Each side e ∈ E can be extended to an unique geodesic
ẽ. Let N be the network of geodesics γ(ẽ) where γ ∈ Γ,
e ∈ E and γ(ẽ) either passes by an inner vertex or by
two distinct vertices of D. We make the following even
corners assumption : no geodesic in N crosses the
interior of the fundamental domain.
The trace of N on ∂D is a finite set that delimits a finite
partition in intervals. For v ∈ V , we name the endpoints
of geodesics of Nv = {g ∈ N | v ∈ g} :
− when v is an inner vertex, Nv contains mv = 2nv el-
ements. We start by calling a0

v the furthest endpoint of

the left edge that goes through v, and likewise amv−1
v for

the right edge. By the even corners hypothesis, all other
endpoints are in ]a0

v; a
mv−1
v [ ; so we order them akv for

0 < k < mv − 1.
− when v is on the boundary, we artificially set nv = 3,
so that a1

v = a2
v = a3

v = a4
v = v.
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For v ∈ V , let γv be the generator associated with the
edge of the domain at the right of v, Iv,L = [anvv ; anww [

and Iv,R =]anv−1
v ; anw−1

w ]. We define the left and right

Bowen-Series transformations by :

TL : S1 → S1

x ∈ Iv,L 7→ γv(x)

TR : S1 → S1

x ∈ Iv,R 7→ γv(x)

TL and TR are Markov on the partition of S1 delimited
by all the akv.
For all k ≥ 0, we can also recursively define the left and
right words in the Bowen-Series coding by :

γkL : S1 → Γ

x ∈ Iv,L 7→ γkL[x] = γk−1
L [TL(x)]γv

γkR : S1 → Γ

x ∈ Iv,R 7→ γkR[x] = γk−1
R [TR(x)]γv

1.2 Fundamental lemma

In all the following, T denote either TL or TR.
The lemma we’re going to state encompasses all the dy-
namical properties of T . Most of the subsequent results
are corrolaries of this one.
Note I = {]eia; eib] | 0 ≤ a ≤ b ≤ 2π}. Let X be a set
on which Γ acts on the left. Γ acts also naturally on the
left on I.
We says that F : I×X → C verifies I(I, γ) when :

∀x ∈ X,F (I, x) = F (γ(I), γ(x)).

Lemma 1.2.1. Let F : I×X → C such that
(i) if F verifies I(I, γ), then it verifies I(J, γ) for all
J ⊂ I , J ∈ I (inclusion) ;
(ii) if I, J, ItJ ∈ I, then F (ItJ, x) = F (I, x)+F (J, x)
for all x ∈ X (additivity for contiguous intervals) ;
(iii) if (bn) → b, then (F (]a; bn], x)) → F (]a; b], x) for
all x ∈ X (continuity).
(iv) F verifies I(Iv, γv) for every v ∈ V .
Then F verifies I(I, γ) for every I ∈ I and γ ∈ Γ.

Basically, it allows us to transport the combinatorics of
intervals under the action of T to relations in X .

1.3 Periodic points and hyperbolic isome-
tries of Γ

The lemma can easily prove this famous result :

Theorem 1.3.1 (Series, [2]). T is orbit-equivalent with
the group Γ, i.e. for all x, y ∈ S1,

∃γ ∈ Γ, y = γ(x)⇔ ∃p, q ≥ 0, T p(x) = T q(y).

Since Γ is a group of the first kind, this implies :

Theorem 1.3.2 (Pre-periodic points).
(i) If y ∈ Per(T ), then

{
x ∈ S1 | ∃p ≥ 0, T p(x) = y

}
is

dense in S1.
(ii)
{
x ∈ S1 | ∃p ≥ 0, T p(x) ∈ Per(T )

}
⊂ Fix(Γ).

The fact that pre-images of a periodic points are dense
forbids us to be able to find a trivial word in the coding :

Theorem 1.3.3. For all x ∈ S1 and k > 0, γk[x] 6= id.

The fundamental lemma can actually prove stronger vari-
ant of the orbit-equivalence theorem :

Theorem 1.3.4 (Series, revisited). (x, k) → γk[x] is
orbit-equivalent with the group Γ, i.e.

∀x ∈ S1,∀γ ∈ Γ,∃p, q ≥ 0, γp[x] = γq[γ(x)]γ.

This allows us to prove the other inclusion :

Theorem 1.3.5 (Pre-periodic points, revisited).
(i)
{
x ∈ S1 | ∃p ≥ 0, T p(x) ∈ Per(T )

}
= Fix(Γ).

(ii) If x ∈ Per(T ) has period k, then γk[x] is primitive.

With this, we’re now in position to identify periodic T -
orbits with conjugacy classes of primitive elements of Γ
under the extra hypothesis |T ′| ≥ 1. This is verified in
particular when edges of the fundamental domain are the
isometric circles of the associated generators, thus for a
Dirichlet domain centered at 0.

Theorem 1.3.6. Suppose that |T ′| ≥ 1. There is a bi-
jection between periodic hyperbolic orbits of T and con-
jugacy classes of primitive hyperbolic elements of Γ.

Corollary 1.3.7. Suppose that |T ′| ≥ 1. There is a bijec-
tion between periodic orbits of T that don’t pass through
a cusp of Γ and conjugacy classes of primitive hyperbolic
elements of Γ.

Morita gives a similar result in [4] but a finite number of
periodic orbits are missing from the counting.

2. Natural extension

One can wonder what is the relation between the Bowen-
Series coding and the geodesic flow on D/Γ. We link
them through the geodesic billiard of D.

2.1 Construction

TL and TR can be seen as the factors of
Let ∆ be the diagonal of the two-dimensional torus T2.

Theorem 2.1.1. There exists C ⊂ T2 \ ∆ and TC :
C → C such that :
(i) TC is a bijection ;
(ii) For every (x, y) ∈ C,

TC(x, y) = (γR[y](x), γR[y](y)) = (SL(x, y), TR(y))

T−1
C (x, y) = (γL[x](x), γL[x](y)) = (TL(x), SR(x, y));

(iii) T
p
C(x, y) = (x, y)⇔ T

p
L(x) = x⇔ T

p
R(y) = y.

A first construction of an extension of the coding was
given in [1], but only in the cocompact case and for a
specific fundamental domain.

2.2 Extension and geodesic billiard

Let B be the set of all geodesics of D that either
− cross the interior of D ;
− pass through a vertice v ∈ V while keeping the funda-
mental domain on their right ;
− are in N and keep the domain on their left.
We set TB(x, y) = (γe(x), γe(y)) whenever (x, y) ∈ B
leaves the fundamental domain by the edge e. TB is a
bijection of B and (B, TB) is called the geodesic billiard.
The geodesic flow on D/Γ can be obtained as the suspen-
sion of (B, TB) by the transit time, and inversely (B, TB)
can be seen as a Poincare section of the geodesic flow.

Theorem 2.2.1. (B, TB) and (C, TC) are conjugated.
More precisely, we can construct a bijection ϕ : B → C
such that :
(i) ϕ = id on B ∩ C ;
(ii) there exists p > 0, X1 . . . Xp ⊂ T2 \ ∆ and
γ1 . . . γp ∈ Γ for which :
−B \ C = tpk=1Xi ;

−C \B = tpk=1Yi where Yi = γi(Xi) ;
− ∀i,∀(x, y) ∈ Xi, ϕ(x, y) = (γi(x), γi(y)).
(iii) ϕTB = TCϕ.

The most interesting fact is that the conjugacy is deter-
mined by a finite partition.

2.3 Bordering geodesics

All the precedent results allow us to give a precise de-
scription of what the geodesics that edge the fundamental
domain really are on the surface.

Theorem 2.3.1. Let g be a geodesic of D that borders
the fundamental domain D. Then :
(i) either g projects itself onto a closed geodesic of D/Γ ;
(ii) or both endpoints of g are projected onto (possibly
different) cusps of D/Γ.

3. Transfer operator and eigenfunctions of the
hyperbolic laplacian

3.1 Helgason boundary values

Consider :
(i) Eλ the space of the eigenfunctions of the hyperbolic
laplacian on D for the eigenvalue λ ;
(ii) Eeλ those that are at most of exponential growth in the
hyperbolic radius ;
(iii)D′(S1) the space of distributions of S1.
A well-known result says that you can represent every
function f of Eeλ by a couple of distributions Df,s and
Df,1−s, the Helgason boundary values of f .

Theorem 3.1.1 (Helgason).

Ps : D′(S1) → Ee−s(1−s)
T 7→ z 7→ 〈T, P s(z, .)〉

is a continuous isomorphism of reciprocal f → Df,s.
When the eigenfunctions are bounded, Otal refined this
result in [5]. First, we define the derivative of a continus
function F defined over [0; 2π[ by the linear functional

F ′ : C1(S1) → C
ϕ 7→ (F (2π)− F (0))ϕ(0)−

∫ 2π
0 ϕ′(t)F (t)dt

.

Then take :
(i) Ebλ the space of bounded functions of Eλ ;
(ii) Λα the space of α-Hölder functions over [0; 2π[ that
vanish at 0 ;
(iii) Λ1

α the space of derivates of such functions.

Theorem 3.1.2 (Otal).

Ps : Λ1
<(s)
→ Eb−s(1−s)

T 7→ z 7→ 〈T, P s(z, .)〉

is a continuous isomorphism of reciprocal f → Df,s.
More precisely, if f = Ps(D′) with D ∈ Λα, then

∀z ∈ D, |f (z)| ≤ C(s)‖D‖αe−(α−<(s))d(0,z).

This implies that if f is a bounded solution of ∆f =
−s(1− s)f that is also automorphic for a cofinite group
Γ, then ∆f,s is the derivative of a <(s)-Hölder function
and nothing more.

3.2 Eigenfunctions and eigendistributions
of the transfer operator

The transfer operator of T = TL or TR is given by :

Ls : E → E

f 7→ Ls(f ) : y ∈ S1 7→
∑

T (x)=y

f (x)

|T ′(x)|s

The eigendistributions of this operator for the eigenvalue
1 are exactly the Helgason boundary values of eigenfunc-
tions of the hyperbolic laplacian :

Theorem 3.2.1. Let ν ∈ Λ1
<(s)

. Then L?s,Rν = ν if

and only if Ps(ν) ∈ Eb−s(1−s) is Γ-automorphic.

This result was hinted in [6] for a different setting.
It’s natural to focus now on the 1-eigenfunctions of the

transfer operator. Let d(x, y) =
|x−y|

2 be the Gromov dis-

tance on S1 and ks(x, y) = d(x, y)−2s. The only thing
we know about the eigenfunctions is that there are more
of them than eigendistributions :

Theorem 3.2.2 (Lopes-Thieullen, [3]). Suppose Γ co-
compact. Take Df,s the boundary value of f ∈ Eb−s(1−s)
Γ-invariant. Let ψf,s(x) = 〈Df,s, ks(x, .)1C(x, .)〉
where C is the support of the natural extension (C, TC)
of TL and TR. Then Ls,Lψf,s = ψf,s and Df,s → ψf,s
is injective.

References

[1] R. Adler and L. Flatto. Geodesic Flows, Interval Maps
and Symbolic Dynamics. Bulletin of the American
Mathematical Society, 25(2):229–334, 10 1991.

[2] R. Bowen and C. Series. Markov Maps associated with
Fuschians Groups. Publications de l’IHES, 50:401–418,
1979.

[3] A. O. Lopes and P. Thieullen. Eigenfunctions of the
Laplacian and eigenfunctions of the associated Ruelle
operator. Nonlinearity, 21:2239–2253, 2008.

[4] T. Morita. Markov systems and transfer operators as-
sociated with cofinite Fuchsian groups. Ergodic Theory
and Dynamical Systems, 17:1147–1181, 1997.

[5] J.-P. Otal. Sur les fonctions propres du Laplacien du
disque hyperbolique. Comptes-Rendus de l’Académie
des Sciences, 327(1):161–166, 1998.

[6] M. Pollicott. Some Applications of Thermodynamic
Formalism to Manifolds with Constant Negative Cur-
vature. Advances in Mathematics, 85:161–192, 1991.
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