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‘ 1. Bowen-Series coding |

This coding is a combinatorial object that was introduced
in [2]. Its dynamical properties hold strong relations with
the geodesic flow on hyperbolic surfaces.

1.1 Construction

We note D the Poincare disk and 0D ~ S! its bound-
ary. Let I' be a cofinite fuchsian group of the first kind
that isn't a triangle group, and that admits a fundamental
domain D satisfying these properties :

— D is geodesically convex ;

— its boundary is a finitely-sided geodesic polygon with
sides I/ and vertices V C D U 0D :

— for every e € F, there exists 7. € ' \ {id} such that
Yele) € B ; and f = e(e) if and only if v¢(f) =¢;

— (Ye)ec Ep generates .

For example, we can take a Dirichlet domain based at any
P € D that isn't the center of an elliptic isometry of I'.
Each side e € E can be extended to an unique geodesic
é. Let N be the network of geodesics y(é) where v € T,
e € E and ~y(é) either passes by an inner vertex or by
two distinct vertices of D. We make the following even
corners assumption : no geodesic in N crosses the
interior of the fundamental domain.

The trace of A/ on JD is a finite set that delimits a finite
partition in intervals. For v € V', we name the endpoints
of geodesics of Ny ={g e N | v € g} :

— when v is an inner vertex, N, contains m, = 2n, el-
ements. We start by calling ag the furthest endpoint of

the left edge that goes through v, and likewise ag"”_l for
the right edge. By the even corners hypothesis, all other
endpoints are in ]ag;avm“_l[ - so we order them a for
0 < k< my—1.

— when v is on the boundary, we artificially set n, = 3,

so that al = a2 = a’ = a} = v.

For v € V, let 7, be the generator associated with the
edge of the domain at the right of v, [, 1 = [ay’; ay]

and I, R :]aﬁv_l; agw_l]. We define the left and right
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Bowen-Series transformations by :

T; st — §!
T < Iv,L — Yu(T)
Tp st — st

T < ]U,R — Yu(T)

T; and Tp are Markov on the partition of St delimited
by all the ar.

For all & > 0, we can also recursively define the left and
right words in the Bowen-Series coding by :

wlz : st - T )
v € I, — 5[] =] TL(@)]w
7]}% : st T

v € I, g+ Yhla] = v}%—l[T R(T)]

1.2 Fundamental lemma

In all the following, T" denote either T, or T'p.

The lemma we're going to state encompasses all the dy-
namical properties of I'. Most of the subsequent results
are corrolaries of this one.

Note T = {]e’® ¢ |0 < a < b < 27}. Let X be a set
on which I' acts on the left. I' acts also naturally on the
left on 1.

We says that F': T x X — C verifies Z(1,~) when :

Vee X, F(l,z)=F(v(I),v(x)).

Lemma 1.2.1. Let F' : I x X — C such that

(i) if F' verifies T(I,~), then it verifies Z(J,~) for all
J C I, J €1l (inclusion) ;

(i)ifI,J, 1LUJ €1, then F(IUJ, x) = F(I,z)+F(J, x)
for all x € X (additivity for contiguous intervals) ;

(iii) if (bp) — b, then (F(la;by],x)) — F(]a;b],x) for
all v € X (continuity).

(iv) F' verifies T(1,,y) for every v € V.

Then F' verifies T(I1,~) forevery I € I and v €T

Basically, it allows us to transport the combinatorics of
intervals under the action of 1T’ to relations in X.

1.3 Periodic points and hyperbolic isome-
tries of [
The lemma can easily prove this famous result :

Theorem 1.3.1 (Series, [2]). T is orbit-equivalent with
the group T, i.e. forall z,y € S,

Fy e,y =~(z) < Ip,q > 0,TP(x) = T(y).

Since I' is a group of the first kind, this implies :

Theorem 1.3.2 (Pre-periodic points).

(i) If y € Per(T), then {x € S' | Ip > 0,TP(x) =y} is
dense in S'.

(i) {z € St 3p>0,TP(z) € Per(T')} C Fix().

The fact that pre-images of a periodic points are dense
forbids us to be able to find a trivial word in the coding :

Theorem 1.3.3. For all z € S' and k > 0, ~*[z] # id.

The fundamental lemma can actually prove stronger vari-
ant of the orbit-equivalence theorem :
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Theorem 1.3.4 (Series, revisited). (z,k) — ~"[z] is
orbit-equivalent with the group I, i.e.

Vo € St ¥y € T, 3p,q > 0,7P[z] = 1I[y(z)]y.

This allows us to prove the other inclusion :

Theorem 1.3.5 (Pre-periodic points, revisited).

(i) {x €S| Tp>0,TP(x) € Per(T)} = Fix(T).

(i) If © € Per(T) has period k, then v*[z] is primitive.
With this, we're now in position to identify periodic 7-
orbits with conjugacy classes of primitive elements of I’
under the extra hypothesis |T’| > 1. This is verified in
particular when edges of the fundamental domain are the
isometric circles of the associated generators, thus for a
Dirichlet domain centered at 0.

Theorem 1.3.6. Suppose that |T’| > 1. There is a bi-
jection between periodic hyperbolic orbits of T' and con-
jugacy classes of primitive hyperbolic elements of T'.

Corollary 1.3.7. Suppose that |T'| > 1. There is a bijec-
tion between periodic orbits of I' that don't pass through
a cusp of I' and conjugacy classes of primitive hyperbolic
elements of T'.

Morita gives a similar result in [4] but a finite number of
periodic orbits are missing from the counting.

‘ 2. Natural extension I

One can wonder what is the relation between the Bowen-
Series coding and the geodesic flow on D/I". We link
them through the geodesic billiard of D.

2.1 Construction

Tr and T'p can be seen as the factors of
Let A be the diagonal of the two-dimensional torus TZ.

Theorem 2.1.1. There exists C C T?\ A and Ty
C' — C such that :

(i) T is a bijection ;

(ii) For every (x,y) € C,

To(x,y) = (vrlyl(@), yrlY)(Y)) = (SL(z,v), TR(Y))
T Yz, y) = (vpl2)(x), v [2] () = (Tr(2), Sr(z,y));

(iii) Te . y) = (2,y) © Tr(z) =z & Thy) = y.
A first construction of an extension of the coding was

given in [1], but only in the cocompact case and for a
specific fundamental domain.

2.2 Extension and geodesic billiard

Let B be the set of all geodesics of ID that either

— cross the interior of D

— pass through a vertice v € V' while keeping the funda-
mental domain on their right ;

— are in V and keep the domain on their left.

We set Tg(x,y) = (Ve(x),ve(y)) whenever (z,y) € B
leaves the fundamental domain by the edge e. Tg is a
bijection of B and (B, Tp) is called the geodesic billiard.
The geodesic flow on ID/I" can be obtained as the suspen-
sion of (B, T'p) by the transit time, and inversely (B, Tg)
can be seen as a Poincare section of the geodesic flow.

Theorem 2.2.1. (B, Tg) and (C,T) are conjugated.
More precisely, we can construct a bijection ¢ : B — C
such that :

(i) o =idon BNC;

(ii) there exists p > 0, X1...X, C T?\ A and
Y1 ---7p €1 for which :

— B\ C = Ug;:le' ;

—C \ B = |_|k:1}/z' where YL = ”)/Z(XZ) ;

—Vi,V(z,y) € Xj, p(x,y) = (vi(z), 7i(y))-

(ii) T = Tep.

The most interesting fact is that the conjugacy is deter-
mined by a finite partition.

2.3 Bordering geodesics

All the precedent results allow us to give a precise de-
scription of what the geodesics that edge the fundamental
domain really are on the surface.

Theorem 2.3.1. Let g be a geodesic of D that borders
the fundamental domain ‘D. Then :
(i) either g projects itself onto a closed geodesic of D /1" ;

(ii) or both endpoints of g are projected onto (possibly
different) cusps of D/T".

3. Transfer operator and eigenfunctions of the
hyperbolic laplacian

3.1 Helgason boundary values

Consider :

(i) £y the space of the eigenfunctions of the hyperbolic
laplacian on DD for the eigenvalue A ;

(ii) £5 those that are at most of exponential growth in the
hyperbolic radius ;

(iii) D’(S1) the space of distributions of S'.

A well-known result says that you can represent every
function f of £ by a couple of distributions Dy ; and
D¢ 1_ the Helgason boundary values of f.

Theorem 3.1.1 (Helgason).

: 1
P® . D'(S') — SESO_S)

T — z— (T P52, .))
is a continuous isomorphism of reciprocal f — Dy .

When the eigenfunctions are bounded, Otal refined this
result in [5]. First, we define the derivative of a continus
function F' defined over |0; 27| by the linear functional

' clshy - ¢

o > (F(2m) — F0)o(0) — [27 (O F ()t

Then take :

(1) 5;7\ the space of bounded functions of &) ;

(i) Ay the space of a-Holder functions over [0; 27| that
vanish at 0 ;

(iii) AL the space of derivates of such functions.

Theorem 3.1.2 (Otal).

oAl b
P° Aﬂ?(s) — 5—3(1—5)

T — z+— (T, P%(z,.))

geometrical approach to Bowen-Series coding of the
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is a continuous isomorphism of reciprocal | — Dy .
More precisely, if f = P*(D’) with D € A, then
Vz € D, |f(2)| < C(s)|| D e @ MO

This implies that if f is a bounded solution of Af =
—5(1 — s) f that is also automorphic for a cofinite group
[, then Ay ¢ is the derivative of a ¥i(s)-Holder function
and nothing more.

3.2 Eigenfunctions and eigendistributions
of the transfer operator

The transfer operator of T' =17 or I'p is given by :
Ls  F — F

. , R /()
f Ls(f) iy es (%jy,T,( e

x
1
The eigendistributions of this operator for the eigenvalue

1 are exactly the Helgason boundary values of eigenfunc-
tions of the hyperbolic laplacian :

Theorem 3.2.1. Let v € Ay, . Then LY pv = v if
(s) s,R
and only if P5(v) € SESO_S) is I'-automorphic.

This result was hinted in [6] for a different setting.
It's natural to focus now on the 1l-eigenfunctions of the

transfer operator. Let d(x,y) = @ be the Gromov dis-
tance on S! and k%(z,y) = d(z,y)~%%. The only thing
we know about the eigenfunctions is that there are more
of them than eigendistributions :

Theorem 3.2.2 (Lopes-Thieullen, [3]). Suppose I" co-
compact. Take D ¢ the boundary value of | € 533(1_8>
[-invariant.  Let ¢ (x) = (Drg k*(z,.)1o(w,.))
where C' is the support of the natural extension (C,T¢)
of T1, and Tp. Then Ly 1r s =1 and Dy g — g g

IS Injective.
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