

1. Bowen-Series coding

This coding is a combinatorial object that was introduced in [2]. Its dynamical properties hold strong relations with the geodesic flow on hyperbolic surfaces.

1.1 Construction

We note $\mathbb D$ the Poincare disk and $\partial \mathbb D \simeq \mathbb S^1$ its boundary. Let Γ be a cofinite fuchsian group of the first kind that isn't a triangle group, and that admits a fundamental domain $\mathcal D$ satisfying these properties :

 $-\mathcal{D}$ is geodesically convex ;

- its boundary is a finitely-sided geodesic polygon with sides E and vertices $V \subset \mathbb{D} \cup \partial \mathbb{D}$:

- for every $e \in E$, there exists $\gamma_e \in \Gamma \setminus {id}$ such that $\gamma_e(e) \in E$; and $f = \gamma_e(e)$ if and only if $\gamma_f(f) = e$; $-(\gamma_e)_{e\in E}$ generates Γ .

For example, we can take a Dirichlet domain based at any $P \in \mathbb{D}$ that isn't the center of an elliptic isometry of Γ . Each side $e \in E$ can be extended to an unique geodesic \tilde{e} . Let \mathcal{N} be the network of geodesics $\gamma(\tilde{e})$ where $\gamma \in \Gamma$, $e \in E$ and $\gamma(\tilde{e})$ either passes by an inner vertex or by two distinct vertices of \mathcal{D} . We make the following *even* corners assumption : no geodesic in \mathcal{N} crosses the interior of the fundamental domain.

The trace of \mathcal{N} on $\partial \mathbb{D}$ is a finite set that delimits a finite partition in intervals. For $v \in V$, we name the endpoints of geodesics of $\mathcal{N}_v = \{g \in \mathcal{N} \mid v \in g\}$:

- when v is an inner vertex, \mathcal{N}_v contains $m_v = 2n_v$ elements. We start by calling a_v^0 the furthest endpoint of the left edge that goes through v, and likewise $a_v^{m_v-1}$ for the right edge. By the even corners hypothesis, all other endpoints are in $]a_v^0;a_v^{m_v-1}[$; so we order them a_v^k for $0 < k < m_v - 1.$

- when v is on the boundary, we artificially set $n_v = 3$, so that $a_v^1 = a_v^2 = a_v^3 = a_v^4 = v$.

by all the a_v^k .

 γ_L^κ :

 γ_R^κ :

1.2 Fundamental lemma

left on \mathbb{I} .

all $x \in X$ (continuity).

tries of Γ

 $\exists \gamma \in \Gamma, g$

Since Γ is a group of the first kind, this implies : **Theorem 1.3.2** (Pre-periodic points). dense in \mathbb{S}^1 . (ii) $\{x \in \mathbb{S}^1 \mid \exists p \ge 0, T^p(x) \in \operatorname{Per}(T)\} \subset \operatorname{Fix}(\Gamma).$ ant of the orbit-equivalence theorem :

A geometrical approach to Bowen-Series coding of the geodesic flow on hyperbolic surfaces of finite volume

Vincent Pit

Bowen-Series transformations by :

$$T_L : \mathbb{S}^1 \to \mathbb{S}^1$$
$$x \in I_{v,L} \mapsto \gamma_v(x)$$
$$T_R : \mathbb{S}^1 \to \mathbb{S}^1$$
$$x \in I_{v,R} \mapsto \gamma_v(x)$$

 T_L and T_R are Markov on the partition of \mathbb{S}^1 delimited

For all $k \ge 0$, we can also recursively define the *left and* right words in the Bowen-Series coding by :

$$\begin{split} \mathbb{S}^{1} &\to \Gamma \\ x \in I_{v,L} &\mapsto \gamma_{L}^{k}[x] = \gamma_{L}^{k-1}[T_{L}(x)]\gamma_{v} \\ & \mathbb{S}^{1} \to \Gamma \\ x \in I_{v,R} &\mapsto \gamma_{R}^{k}[x] = \gamma_{R}^{k-1}[T_{R}(x)]\gamma_{v} \end{split}$$

In all the following, T denote either T_L or T_R .

The lemma we're going to state encompasses all the dynamical properties of T. Most of the subsequent results are corrolaries of this one.

Note $\mathbb{I} = \{ e^{ia}; e^{ib} | 0 \le a \le b \le 2\pi \}$. Let X be a set on which Γ acts on the left. Γ acts also naturally on the

We says that $F : \mathbb{I} \times X \to \mathbb{C}$ verifies $\mathcal{I}(I, \gamma)$ when :

 $\forall x \in X, F(I, x) = F(\gamma(I), \gamma(x)).$

Lemma 1.2.1. Let $F : \mathbb{I} \times X \to \mathbb{C}$ such that

(i) if F verifies $\mathcal{I}(I,\gamma)$, then it verifies $\mathcal{I}(J,\gamma)$ for all $J \subset I, J \in \mathbb{I}$ (inclusion);

(ii) if $I, J, I \sqcup J \in \mathbb{I}$, then $F(I \sqcup J, x) = F(I, x) + F(J, x)$ for all $x \in X$ (additivity for contiguous intervals);

(iii) if $(b_n) \rightarrow b$, then $(F(]a; b_n], x)) \rightarrow F(]a; b], x)$ for

(iv) F verifies $\mathcal{I}(I_v, \gamma_v)$ for every $v \in V$.

Then F verifies $\mathcal{I}(I,\gamma)$ for every $I \in \mathbb{I}$ and $\gamma \in \Gamma$.

Basically, it allows us to transport the combinatorics of intervals under the action of T to relations in X.

1.3 Periodic points and hyperbolic isome-

The lemma can easily prove this famous result :

Theorem 1.3.1 (Series, [2]). *T* is orbit-equivalent with the group Γ , i.e. for all $x, y \in \mathbb{S}^1$,

$$y = \gamma(x) \Leftrightarrow \exists p, q \ge 0, T^p(x) = T^q(y).$$

(i) If $y \in Per(T)$, then $\{x \in \mathbb{S}^1 \mid \exists p \ge 0, T^p(x) = y\}$ is

The fact that pre-images of a periodic points are dense forbids us to be able to find a trivial word in the coding : **Theorem 1.3.3.** For all $x \in \mathbb{S}^1$ and k > 0, $\gamma^k[x] \neq id$. The fundamental lemma can actually prove stronger variUniversité Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France

Theorem 1.3.4 (Series, revisited). (x,orbit-equivalent with the group Γ , i.e.

 $\forall x \in \mathbb{S}^1, \forall \gamma \in \Gamma, \exists p, q \ge 0, \gamma^p[x] = \gamma^q[\gamma(x)]\gamma.$

This allows us to prove the other inclusion : **Theorem 1.3.5** (Pre-periodic points, revisited). (i) $\{x \in \mathbb{S}^1 \mid \exists p \ge 0, T^p(x) \in \operatorname{Per}(T)\} = \operatorname{Fix}(\Gamma).$ (ii) If $x \in Per(T)$ has period k, then $\gamma^k[x]$ is primitive. With this, we're now in position to identify periodic Torbits with conjugacy classes of primitive elements of Γ under the extra hypothesis $|T'| \ge 1$. This is verified in particular when edges of the fundamental domain are the isometric circles of the associated generators, thus for a Dirichlet domain centered at 0.

Theorem 1.3.6. Suppose that $|T'| \ge 1$. There is a bijection between periodic hyperbolic orbits of T and conjugacy classes of primitive hyperbolic elements of Γ . **Corollary 1.3.7.** Suppose that $|T'| \ge 1$. There is a bijection between periodic orbits of T that don't pass through a cusp of Γ and conjugacy classes of primitive hyperbolic elements of Γ .

Morita gives a similar result in [4] but a finite number of periodic orbits are missing from the counting.

2. Natural extension

One can wonder what is the relation between the Bowen-Series coding and the geodesic flow on \mathbb{D}/Γ . We link them through the *geodesic billiard* of \mathcal{D} .

2.1 Construction

 T_L and T_R can be seen as the factors of Let Δ be the diagonal of the two-dimensional torus \mathbb{T}^2 . **Theorem 2.1.1.** There exists $C \subset \mathbb{T}^2 \setminus \Delta$ and T_C : $C \rightarrow C$ such that :

(i) T_C is a bijection ;

(ii) For every $(x,y) \in C$,

 $T_{C}(x, y) = (\gamma_{R}[y](x), \gamma_{R}y) = (S_{L}(x, y), T_{R}(y))$ $T_C^{-1}(x,y) = (\gamma_Lx, \gamma_L[x](y)) = (T_L(x), S_R(x,y));$

(iii) $T_C^p(x,y) = (x,y) \Leftrightarrow T_L^p(x) = x \Leftrightarrow T_B^p(y) = y.$ A first construction of an extension of the coding was given in [1], but only in the cocompact case and for a specific fundamental domain.

2.2 Extension and geodesic billiard

Let B be the set of all geodesics of \mathbb{D} that either – cross the interior of \mathcal{D} ;

- pass through a vertice $v \in V$ while keeping the fundamental domain on their right ;

- are in \mathcal{N} and keep the domain on their left. We set $T_B(x,y) = (\gamma_e(x), \gamma_e(y))$ whenever $(x,y) \in B$ leaves the fundamental domain by the edge e. T_B is a bijection of B and (B, T_B) is called the geodesic billiard. The geodesic flow on \mathbb{D}/Γ can be obtained as the suspension of (B, T_B) by the transit time, and inversely (B, T_B) can be seen as a Poincare section of the geodesic flow.

Institut de Mathématiques de Bordeaux

$$,k) \rightarrow \gamma^k[x]$$
 is

Theorem 2.2.1. (B, T_B) and (C, T_C) are conjugated. More precisely, we can construct a bijection $\varphi: B \to C$ such that : (i) $\varphi = id$ on $B \cap C$; (ii) there exists p > 0, $X_1 \dots X_p \subset \mathbb{T}^2 \setminus \Delta$ and $\gamma_1 \dots \gamma_p \in \Gamma$ for which : $-B \setminus C = \sqcup_{k=1}^p X_i$; $-C \setminus B = \sqcup_{k=1}^p Y_i$ where $Y_i = \gamma_i(X_i)$;

 $-\forall i, \forall (x, y) \in \hat{X}_i, \varphi(x, y) = (\gamma_i(x), \gamma_i(y)).$ (iii) $\varphi T_B = T_C \varphi$.

The most interesting fact is that the conjugacy is determined by a finite partition.

2.3 Bordering geodesics

All the precedent results allow us to give a precise description of what the geodesics that edge the fundamental domain really are on the surface.

Theorem 2.3.1. Let g be a geodesic of \mathbb{D} that borders the fundamental domain \mathcal{D} . Then :

(i) either g projects itself onto a closed geodesic of \mathbb{D}/Γ ; (ii) or both endpoints of g are projected onto (possibly different) cusps of \mathbb{D}/Γ .

3.	Transfer	operator	and	eigenfunctions	of	the
	hyperbolic laplacian					

3.1 Helgason boundary values

Consider :

(i) \mathcal{E}_{λ} the space of the eigenfunctions of the hyperbolic laplacian on $\mathbb D$ for the eigenvalue λ ;

(ii) ${\cal E}^e_\lambda$ those that are at most of exponential growth in the hyperbolic radius ;

(iii) $\mathcal{D}'(\mathbb{S}^1)$ the space of distributions of \mathbb{S}^1 .

A well-known result says that you can represent every function f of $\mathcal{E}_{\lambda}^{e}$ by a couple of distributions $\mathcal{D}_{f,s}$ and $\mathcal{D}_{f,1-s}$, the *Helgason boundary values* of f.

Theorem 3.1.1 (Helgason).

$$\begin{array}{rcl} \mathcal{D}^{s} & : & \mathcal{D}^{\prime}(\mathbb{S}^{1}) \to \mathcal{E}^{e}_{-s(1-s)} \\ & & T \mapsto z \mapsto \langle T, P^{s}(z,.) \rangle \end{array}$$

is a continuous isomorphism of reciprocal $f \to \mathcal{D}_{f,s}$. When the eigenfunctions are bounded, Otal refined this result in [5]. First, we define the *derivative* of a continus function F defined over $[0; 2\pi]$ by the linear functional $F' : \mathcal{C}^1(\mathbb{S}^1) \to \mathbb{C}$

$$\varphi \mapsto (F(2\pi) - F(0))\varphi(0) - \int_0^{2\pi} \varphi'(t)F(t)dt$$

Then take (i) ${\cal E}^b_\lambda$ the space of bounded functions of ${\cal E}_\lambda$; (ii) Λ_{α} the space of α -Hölder functions over $[0; 2\pi]$ that vanish at 0; (iii) Λ^1_{α} the space of derivates of such functions. **Theorem 3.1.2** (Otal).

$$\begin{array}{c} \Lambda^{1}_{\Re(s)} \to \mathcal{E}^{b}_{-s(1-s)} \\ T \mapsto z \mapsto \langle T, P^{s}(z, .) \rangle \end{array}$$

nstitut d Mathématiques de Bordeaux

is a continuous isomorphism of reciprocal $f \rightarrow \mathcal{D}_{f,s}$. More precisely, if $f = \mathcal{P}^{s}(D')$ with $D \in \Lambda_{\alpha}$, then

 $\forall z \in \mathbb{D}, |f(z)| \le C(s) \|D\|_{\alpha} e^{-(\alpha - \Re(s))d(0, z)}.$

This implies that if f is a bounded solution of $\Delta f =$ s(1-s)f that is also automorphic for a cofinite group then $\Delta_{f,s}$ is the derivative of a $\Re(s)$ -Hölder function nd nothing more.

.2 Eigenfunctions and eigendistributions the transfer operator

The *transfer operator* of $T = T_L$ or T_R is given by :

$$\mathcal{L}_s : E \to E$$

$$f \mapsto \mathcal{L}_s(f) : y \in \mathbb{S}^1 \mapsto \sum_{T(x)=y} \frac{f(x)}{|T'(x)|}$$

The eigendistributions of this operator for the eigenvalue 1 are exactly the Helgason boundary values of eigenfunctions of the hyperbolic laplacian :

Theorem 3.2.1. Let $\nu \in \Lambda^1_{\Re(s)}$. Then $\mathcal{L}^{\star}_{s,R}\nu = \nu$ if and only if $\mathcal{P}^{s}(\nu) \in \mathcal{E}^{b}_{-s(1-s)}$ is Γ -automorphic.

This result was hinted in [6] for a different setting.

It's natural to focus now on the 1-eigenfunctions of the transfer operator. Let $d(x,y) = \frac{|x-y|}{2}$ be the Gromov distance on \mathbb{S}^1 and $k^s(x,y) = d(x,y)^{-2s}$. The only thing we know about the eigenfunctions is that there are more of them than eigendistributions :

Theorem 3.2.2 (Lopes-Thieullen, [3]). Suppose Γ cocompact. Take $\mathcal{D}_{f,s}$ the boundary value of $f \in \mathcal{E}^b_{-s(1-s)}$ Γ -invariant. Let $\psi_{f,s}(x) = \langle \mathcal{D}_{f,s}, k^s(x,.) \mathbb{1}_C(x,.) \rangle$ where C is the support of the natural extension (C, T_C) of T_L and T_R . Then $\mathcal{L}_{s,L}\psi_{f,s} = \psi_{f,s}$ and $\mathcal{D}_{f,s} \to \psi_{f,s}$ is injective.

References

- R. Adler and L. Flatto. Geodesic Flows, Interval Maps and Symbolic Dynamics. Bulletin of the American Mathematical Society, 25(2):229–334, 10 1991.
- [2] R. Bowen and C. Series. Markov Maps associated with Fuschians Groups. *Publications de l'IHES*, 50:401–418, 1979.
- A. O. Lopes and P. Thieullen. Eigenfunctions of the Laplacian and eigenfunctions of the associated Ruelle operator. Nonlinearity, 21:2239–2253, 2008.
- T. Morita. Markov systems and transfer operators associated with cofinite Fuchsian groups. *Ergodic Theory* and Dynamical Systems, 17:1147–1181, 1997.
- [5] J.-P. Otal. Sur les fonctions propres du Laplacien du disque hyperbolique. *Comptes-Rendus de l'Académie* des Sciences, 327(1):161–166, 1998.
- [6] M. Pollicott. Some Applications of Thermodynamic Formalism to Manifolds with Constant Negative Curvature. Advances in Mathematics, 85:161-192, 1991.