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Hilbert geometries

are metric spaces (Ω, dΩ), where Ω is a
bounded convex open set of Rn and dΩ is

defined by

dΩ(x, y) =
1

2
log([a, b, x, y]);

[a, b, x, y] = ax/bxay/by is the usual cross-ratio.

dΩ is a Finsler metric, whose corresponding
norm is given by

F (x, ξ) =
|ξ|

2

( 1

xx+
+

1

xx−
)

, x ∈ Ω, ξ ∈ TxΩ.
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Lines are always geodesics and if Ω is not strictly convex, there may be other geodesics. The group of
isometries contains the subgroup PΩ of projective transformations which preserve Ω ; if Ω is strictly
convex, then Isom(Ω, dΩ) = PΩ. Hilbert geometries can behave in different ways, depending on Ω :

• when Ω is a polytope, (Ω, dΩ) is bi-Lipschitz equivalent to the Euclidean space ;

• when Ω is an ellipsoid, (Ω, dΩ) is the Beltrami-Klein model of the hyperbolic space.

The other geometries should have a behaviour “in between”. We can expect Hilbert geometries
defined by strictly convex sets with C1 boundary to exhibit some hyperbolic behaviour, from the
geometrical and dynamical points of view.

In what follows, Ω is a strictly convex subset of Rn with C
1 boundary, Γ < Isom(Ω, d) a

discrete group without torsion and M = Ω/Γ the quotient manifold. The geodesic flow ϕt is
defined on the unitary tangent bundle SM .

1. Compact quotients

For compact quotients, the situation is well understood and summarized by the following

Theorem 1 ([Ben04], [Cra09] ). AssumeM = Ω/Γ is compact. Then the geodesic flow is Anosov,
with topological entropy htop ≤ n− 1. Moreover, the following are equivalent :

• Ω is an ellipsoid (M is hyperbolic) ;

• the geodesic admits an absolutely continuous measure ;

• htop = n− 1.

Thus, the global hyperbolic behaviour of the flow is well preserved. But some dynamical properties
can detect the Riemannian nature of the metric.

2. Noncompact quotients (joint work with L. Marquis)

Even if the situation here is more flexible, most of the definitions and results of hyperbolic geometry
can be extended. The key result is the following lemma about parabolic subgroups, which says that
cusps are indeed hyperbolic.

Lemma 2 ([CM]). If P is a parabolic group acting on Ω, then it is conjugated to a parabolic subgroup
of Isom(Hn).

Geometrically finite quotients can be defined as in hyperbolic geometry. Some work has to be
done for that, but the usual picture of geometrically finite Kleinian groups is the one to have in mind
(work in progress [CM]).
The limit set of Γ is defined as ΛΓ = Γo \ Γo for any point o ∈ Ω. A point p ∈ ΛΓ is said to be

• a conical point if there exists a geodesic c(t) ending at p and C > 0 such that dΩ(c(t),Γ.o) < C
for any t ≥ 0 ;

• a bounded parabolic point if StabΓ(p) is a parabolic group acting cocompactly on ∂Ω.

Definition 3. The group Γ (or the quotient M = Ω/Γ) is said to be geometrically finite if ΛΓ
consists only of conical and bounded parabolic limit points.

Remarks : If M is geometrically finite, then

•M has finite volume, with respect to the Hausdorff measure of dΩ, if and only if ΛΓ = ∂Ω;

• if ΛΓ 6= ∂Ω, then Γ acts on many convex sets Ω. The convex hull C(ΛΓ) of ΛΓ, which is not in
general strictly convex, is the minimal set on which Γ acts.

The nonwandering set N ⊂ SM of the flow is N = Ñ/Γ where

Ñ = {w = (x, ξ) ∈ SΩ, x+, x− ∈ ΛΓ}.

This is the subset of SM on which the dynamics of the flow is recurrent. The geometry of a cusp
being almost hyperbolic, we can control the behaviour of the flow in the cusps, and we obtain the

Theorem 4 ([CM]). Assume M = Ω/Γ is geometrically finite. Then the geodesic flow is Anosov
on the nonwandering set N : there exist a decomposition

TN = R.X ⊕ Es ⊕ Eu,

a continuous Finsler metric |.| and constants C, α, β > 0 such that for any t ≥ 0,

|dϕt(Zs)| ≤ Ce−αt|Zs|, Zs ∈ Es,

|dϕ−t(Zu)| ≤ Ce−βt|Zu|, Zu ∈ Eu.
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Stable and unstable manifolds

3. Entropy and critical exponent

For a dynamical system f : (X, d) 7→ (X, d) with X compact, the variational principle asserts
that htop = supm hm, where the sup is taken with respect to all f -invariant probability measures.
When X is not compact, this can be taken as a definition of htop.

When M = Ω/Γ is compact, there is a unique probability measure on SM achieving this sup, called
the Bowen-Margulis measure. This picture was extended in [OP04] for noncompact manifolds of
pinched negative curvature. This can also be done here.

Patterson-Sullivan measures. As for Kleinian groups, we can define conformal densities of di-
mension α > 0, that is families (µx) of measures such that

dµx
dµy

(ξ) = e−αbξ(x,y),

where bξ(x, y) = limp→ξ d(x, p)− d(y, p) are the usual Busemann functions.
Patterson and Sullivan explained how to construct conformal densities from the Poincaré series

gΓ(x, s) =
∑

γ∈Γ
e−sd(x,γo). The critical exponent δΓ of this series is

δΓ = lim sup
R→+∞

♯{γ ∈ Γ, d(o, γo) < R},

such that the series diverges for s < δΓ and converges for s > δΓ.

Theorem 5 (Patterson, Sullivan). Let δΓ be the critical exponent of the Poincaré series of Γ. Then
there exists a Γ-invariant conformal density (µx)x∈Ω of dimension δΓ.

To this family of measures on ∂Ω with support in ΛΓ, we associate a ϕt-invariant measure µ
on SM with support in N , which coincide with the Bowen-Margulis measure when M is com-
pact. The following proposition and its corollary were proved by Sullivan for hyperbolic manifolds.

Proposition 6. If M = Ω/Γ is geometrically finite, then µ is finite.

Corollary 7 (Sullivan, Kaimanovich, Roblin). If M = Ω/Γ is geometrically finite, then the
Poincaré series diverges at δΓ and µ is ergodic.

The method developed in [DPPS09] is very simple and efficient in our context to prove the

Proposition 8. If M = Ω/Γ has finite volume, then hvol = δΓ.

Here hvol = lim sup
R→+∞

1

R
log vol(B(o,R)) denotes the volume entropy.

As a counterpart, for geometrically finite manifolds, it is quite reasonable to expect that

δΓ = hvol(C(ΛΓ), dC(ΛΓ)).

Variational principle and entropy rigidity Based on the work of [LY85] and
[OP04], we can prove the following variational principle for geometrically finite quo-
tients. This is true for more general quotients, under the hypothesis that the flow
has no zero Lyapunov exponent, which can be expected to be true for any group.

Theorem 9. Assume M = Ω/Γ is geometrically finite. Then

htop = hµ = δΓ,

and µ is the unique measure to achieve the equality in htop := supm hm.

As a corollary, we have a counterpart of the main theorem of [Cra09] for geometrically finite manifolds.

Theorem 10. If M = Ω/Γ is geometrically finite, then htop ≤ n− 1, with equality if and only if
M has finite volume and is hyperbolic.

Among all the structures with finite volume on M , the topological entropy thus detects hyperbolic
ones. For general geometrically finite quotients, we can expect to prove that the following propositions
are equivalent :

• µ = µSRB ;

• Γ is conjugated to a Kleinian group.

Here the SRB measure would be a counterpart of the equilibrium measure of the potential
f = − ddt|t=0 log det dϕt|Eu, that appears for Anosov flows on Riemannian manifolds [BR75].
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