Bony attractors in random dynamical systems and smooth skew products

Yury G. Kudryashov^{*}

November 15, 2009

The study of possible structures of attractors is very important for dynamical systems theory. There are well-known examples of dynamical systems such that their attractors are either smooth manifolds or locally look like a product of a smooth manifold and a Cantor-like set (Lorentz attractor, Smale–Williams solenoid). The talk is devoted to a new type of attractors so-called "bony" attractors.

Recall that a map $F: Y \times Z \to Y \times Z$ is called a *skew product* if F(y, z) = (f(y), h(y, z)) for some f, h. We will say that an attractor A of a skew product $F: Y \times Z \to Y \times Z$ is *«bony»* if A is a union of a graph of a continuous function defined on some subset of the base Y and an uncountable set of vertical segments ("bones") that belong to the closure of the graph.

Denote by Σ^k the space of bi-infinite sequences of numbers 1, ..., k. Define a Bernoulli measure μ on Σ^k using some probabilities p_0, \ldots, p_{k-1} . Let d be a "k-adic" metric on Σ^k ,

$$d(\omega,\widetilde{\omega}) = k^{-\min\{i|\omega_i \neq \widetilde{\omega}_i \text{ or } \omega_{-i} \neq \widetilde{\omega}_{-i}\}}.$$

Let $\sigma: \Sigma^k \to \Sigma^k$, $(\sigma \omega)_i = \omega_{i+1}$ be the Bernoulli shift.

Let us consider the space of *step skew products* over the Bernoulli shift with a fiber I = [0; 1], i. e. the space of dynamical systems of the form

$$F: \Sigma^k \times I \to \Sigma^k \times I, \quad (\omega, x) \mapsto (\sigma \omega, f_{\omega_0}(x)),$$

where $f_1, \ldots, f_k \colon I \to I$, f_i are C^1 -smooth.

The main result is the following theorem and its smooth analogue.

Theorem 1. For every $k \ge 2$ there exists an open non-empty subset of the space of C^1 -smooth step skew products F over the Bernoulli shift $\sigma \colon \Sigma^k \to \Sigma^k$ with a fiber I = [0; 1] such that for every dynamical system that belongs to this subset the following conditions hold:

^{*}The work is supported by the following grants: RFBR 07-01-00017-a and RFBR-CNRS 05-01-02801-CNRS _a

- the maximal attractor A_{max} = ∩_{n≥0} Fⁿ(Σ^k × I) is a union of a graph Γ of a continuous function g: D → I, D ⊂ Σ^k and a set of vertical segments ("bones"), one bone over each point ω ∉ D;
- dim_H(Ω) < dim_H(Σ^k) where Ω = Σ^k \ D is a set of fibers that contain bones; moreover, μ(Ω) = 0;
- the set Ω is uncountable and dense in Σ^k ;
- for every subset $S \subset \Sigma^k$ of a full measure the maximal attractor of the map F coincides with the closure of the set $A_{max} \bigcap S \times I$; in particular, the "bones" belong to the closure of the graph;
- the maximal attractor coincides with the Milnor attractor.

Note that the maximal attractor must belong to the set $\Sigma^k \times J$ where

$$J = J(f_0, \dots, f_{k-1}) = [\min_i \min(\operatorname{Fix} f_i); \max_i \max(\operatorname{Fix} f_i)].$$
(1)

The following sufficient conditions play the key role in the proof of Theorem 1

Theorem 2. Let $f_0, \ldots, f_{k-1} \colon I \to I$ be strictly monotone maps. Let J be the segment $J(f_0, \ldots, f_{k-1})$ (see (1)). Suppose that the following conditions hold:

- 1. there exists a finite set of finite compositions of the maps f_i such that the complements to the images of the segment I under these compositions cover the segment I.
- 2. there exists a finite composition of the maps f_i such that one of its fixed points is a repellor;
- 3. there exists a finite set of finite compositions of the maps f_i such that each composition contracts on the segment I and the images of the segment J under these compositions cover the segment J.

Then the conclusions of Theorem 1 hold for the corresponding step skew product $F: \Sigma^k \times I \to \Sigma^k \times I$.