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" INTRODUCTION

In the previous paper [7] we gave a classification
for almost contact metric (a. ct. m.) structures on odd-
dimensional manifolds. Doing thfs, some new classes of
a. ¢ct. m. structures have been defined and all the in-
clusion relations between old and new classes have been
stablished,

The main point of the present paper is to study
whether the ihc]usion relations in ocur classification are
strict; this is done by the method of constructing ex-
b]icit examples. In fact,‘these examples show the strict-
ness of the inclusions for all the cases except two, one
of which is actually an equality and the other remains as_
an open question. A V

The paper is structured in théee paragraphs. §1 and
§2 a#e devoted to the framework of semi-cosymplectic and
semi-Sasakian structures respectively, and §3 is devoted
to the remaining classes.

- .The technique we use to construct each appropriate
example goes as follows: we consider an aimostcHermitian
manifold (M,J,h) and make the product of M with R or with
an odd-dimensional unit sphere; chen, a suitable a. ct. m.
structure can be defined on the product manifold and this

a. ¢t. m. structure provides the examples, depending cn -



the class of the almost Hermitian structure considered on
M and on the metric on the product manifold. Of course,

. many of the examples constructed here belong to the new
classes and, thus, thevnon triviality of them is demons-
trated. In particular, we must emphasize the case of the
called trans-Sasakian structures; this class plays a
central role in our classification because'it contains and,
in a certain sense, separates both cosymplectic and
Sasakian structures, such as the qUasi-Sasakian_c]ass
(Blair [1]) does. Here we show, by constructing explicit
examples, that no inclusion relation exists between both
trans-Sasakian and quasi-Sasakian structures; actually, we
give examples of manifolds of each of these cTasses which
do not belong to the other.

Notations and terminoiogy in this paper will be the
same as those employed in [7], to which we refer for the
explicit definitions of the différent classes of a. ct. m.
structures here involved. Furthermore, when speaking of
an a. ct. m. manifold, cosymplectic hanifo]d, Sasakian

manifold, etc., we shall mean the manifold with the corres-

ponding structure and |c|, |S], etc., will denote respective-

ly the class of cosymplectic manifolds, Sasakian manifolds,
etc.
I wish to express here my hearty thanks td Prof. L.A.

Cordero for his valuable suggestions and gquidance.
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1 SEMI-COSYMPLECTIC STRUCTURES

In this section we shall be concerned with those
classes of a. ct. m. structures which can be assembled
under the common denomination of semi—ﬁosymp]ectic
structures; the inclusion relations between them, as
stablished in 7], are graphically shown in the following

diagram

|ac|
[66cl  Jake]  |6,ac]
el IS
lnke]  lscN]  ac]
\IL/
DIAGRAM I

where the arrows (——+j mean inc]usioné (C).

In order to construct examples of manifolds with
semi-cosymp]ectic stfuctures, which make the strictness
of the inclusions -in Diagram I clear, we shall proceed

as follows.



Let M be dn almost Hermitian manifoid, dim M = 2y,
with metric h, almost complex structure J, Riemannian
- connection ¥ and Kaehler form F defined by F(X,y) =
R{X,JY)s X,¥ e %(M), the Lie algebra of ¢ vector fields
on M. Next, let us consider»the product manifold MxR;
a vector field on MR will be denoted by (X,aj%), where
Xe x(M), £ is the coordinate of R.énd a is a ¢* function
on MxiR., As jt is well known, starting from the almost
Hermitidn structure (J,h) on M, an a., ct. m. structure

can be defined on MxR by setting

?(Xsaa%f) = (JX,O), g = (O’dt)’ _n(Xsa'ch
(1.1) o
9 ((afD) (v,655)) = h(X,y) + ab,

and whose fundamental 2-form satisfies
<I>((X,a 7). (Y, bos )) = F(X,V)

If Vv denotes the Riemannian connection of the metric g on

MxR, the following identities are easi1y‘verif1ed:

(7 (X afl) BV 2055) = ((0,7)7,0),
Otk Db o)) = 0P (v,2),

dfb((X,a £ (Vb ) (Z,c )) = dF(X,v,2).




80 (X,az%) = 6F(X),

Vo d £ =0, 9V, dyn=0, dn=0,  6én-=0,
(X_’ad_/t) ’ (X’ad,t) ) }

for arbitrary X,¥,Z e x(M), a,b,c c® functions on MxR
and wherg § denotes indistinctly both the coderivatives

of (M,h) and of (MxR,g).

PROPOSITION 1.1. We have

(<) MxR €|c| (on MxR [£S]) L44 M is Kaehlediian.

oy

(£i) MR e [nkC| (on MxR | ntS|) i§§ M {8 nearnly Kaehlernian.

[{ik) MxR € |aC| (on MXR  |atS|) if§ M is almost Kaehtlernian.

(iv) MxR elqKC| lon MxR™ [qzS|) iff M is quasi-Kaehlerdian.

(v) MxR e |sC|  if§ M is semi-Kaehlenian.

(vi) MxR € |N| L4 M 48 Henmitian.

(vii) MxR e |sCN| 4if§ M £8 Henmitian and semi-KaehlLerdan.

(viid) MxR €]6,S| &§§ M is a 6;-manifold.

(ix) MxR €|G,S| 4ff M is a Gy-manifold.
(x) MxR e |G aC] 464 M L& a semi-Kaehlen G,-manifold.
(x4) MR e|6,5C| i§ M 4 a semi-Kaehler 6,-manifold.

Furthenmone, MxR does not belong to |4S].

We omit the proof because it follows directly from

the definitions of the differenf classes involved through

direct calculations and in which no special devices have

to be used.



Let < denote strict inclusion and O the empty class.

THEOREM 1.2. ALL the inclusiens in Diagram 1 are .
sindfet, and in fact, we have:
(&) @< jc| < |rke] < |ncl, |c| < lac|, lc| < |scn].
(£4) |nkcl v |aC] < |qKC].
(£4c) tnKel v |sCN] < IGIACI.
(<v) faC] u |asCN]| < IGZAC[.
(v) {nc] v Jgkel v [6,8c] U |6, sC| < [aC].

Proof: Firstly, the a. ct. m. structure on the unit
sphere 55 inherited from the almost Hermitian structure
on s% when considered as a hypersurface [2] is a nearly
éosymp1ect1c structure which is ﬁot neaf1y-K—coéympiectic,
and this proves [rkC| < |nC].

In order to construct examples which show the
remaining relations, let us consider the fo]]owing mani-
fclds: |
a)lRZn endowed with the standard Kaehler structure.

b) T{N), the total space of tangent bundle of a nonflat
~Riemannian manifold N, endowed with the standard almost
Kaehler structure [8].

2, nb

c) s, strt, N;WR4 (N, being a nonplanar minimal surface

in R3) endowed with the almost complex structure in-

duced from the Cayley numbers [4].
By, = xR, u, = st x (et

endowed with the product almost Hermitian structures.

d) ¥, = sz(N,xR




Then, if M is an arbitrary manifold iﬁ (a), (b), (c)
or (d), the product manifold MxR admits an a. ct. m.
- structure defined by (1.1). Now, taking 1nto account
Proposition 1.1 and the results in [4],[5], we obtain
1) R2™Y e jcl, sOaR e |nke]-|c], TIN)xR e |ac|-|C],
N1><IR5 e [4CN|-|C|, which completes the proof of ({].

2) $ZxRr® |gkC|-(|nKC|V |aC|), which proves ([44).

3) MR € |6 8C|-(|nkc| L [sCN]), which proves (L]

m

4) M,xR € |GyaC|-(]ac|v |sCN|), which proves (iv).
5) HyxR € [sc|-([nc| U lqke]u |6 ac| V16, 8C]), which

proves {v).

2. SEMI-SASAKIAN STRUCTURES

The inclusion relations between the different classes
of a. ct. m. structures, which we assemble under the
common denomination of semi-Sasakian structures, are

graphically shown in the following diagram



35|
— 1 |
la 881 lqks|  [6,s8]
s T>< XT
| nks| | 5SN| fel
et
NG
[s]
DIAGRAM I

In order to study the inclusions in this diagram,
Tet us bégin by recalling that the unit sphere 52r+1
Vinherits a Sasakian structure from the standard Kaehler
structure on RZ"*2 [9]. On the other hand, in (7] we
have shown that a Sasakian structure is nearly-K-Sasakian

-and conversely. Moreover, Blair [3] gives a nearly

Sasakian structure .on S5 which is not Sasakian. Therefore,
0O < |s| = [nkS| < |nS].

Also, it is well known that a principal circle bundie
over ait almost Kaehler manifold has a K-contact structure,

wiiicn is no Sasakian if the base is no Kaehlerian [6].




Moreover, the tangent sphere bundles are contact manifolds
whose structure is not in general a K-contact structure [10].

~Thus,

S| < lKe] < lel.

' %
Next, let (M,J,h) be an almost Hermitian manifold

of dimension 2n and let M' be a (2m'+1)-dimensional mani-
fold endowed with an a. ct. m. structure (%',&",n'sg')s
on the product manifold MxM', dim MxM' =‘2m+1, m=n+m'

we define an a. ct. m. structure (¢,€,ﬁ,§) by setting

Faxn) = (%), £ = Mo,et), filx,x') = Dy(xr),
(2.1) |
FLOGK ), (V,97)) = h(X,y)+iag? (0,17),

where (X,x'), (v,¥') denote arbitrary vector fields on
MxM's X,V e x(M)s X',¥' € x(M'). The fundaméntal 2-form 3

of the (%,£,7,g)-structure satisfies

- - 2 .
B (V,y1)) = FOGY) + Baer (X, 0
F being the Kaehler form of (J,h) and &' the fundamental
2-form of the (?',g’,n’,g')-structure. Let D,V’;V dehbte the
~Riemannian connections of the metrics h, g', g, respective-

lys then, for X,Y,Z € x{M), X",¥',2' ¢ x(M'), we have
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(g, x )Py = (0], (7008 My ),
(Viy,x) @ () a(2,27)) = (DXF)(V,Z)+%;(V’X,®')(V',z'),

dEC0GXT), (V)4 (2,21)) = dF(Y,2] + Moder (0 ,yr,20 )3

SO(X,X') = 6F(X) + &'0'(X'),

n

V(X,X,')g %;(O=V’Xrg')",

e ~ !
(V(.X’X,)n)(V,V’) = ;':"(V'x,n’)y’ ’

AR(XX1)5(v,¥1)) = Dan' (x7,y1),

where §, §', § denote the coderivatives of (M,A), (M',g'),
{M=M',5), respectively. From these identities, a straight-

forward calculation leads to

PROPOSITION 2.1. Let M denote the product manifold

MxM' endowed with the a. ct. m. structure (?,E,H,E). Then

~

(£) M e [8S] 44§ M is semi-Kaehtferian and #' € |58].
(ee) e |N| ifd M s Henmitian and M' € [N|. .

[(ii2) W e 16,S|  &§f M 48 « Gy-manifold and M' € |6,S].
(tv) N e 16,S] 4§ M is a G,-manifold and M' € |G,S]|.

Furnthenmone, M does net befong to |gKS]|..
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1f we now take as almost Hermitian manifold M one of

the manifolds leR4, MI’ Mz or Ms, which have been

"considered in the proof of Theorem 1.2, and as a. ct. m.

!
Conifold M' the Sasakian manifold s2™ *1, proposition 2.1

- above allows us to check that: ' -

!
R e qasnl-1s)

Sunt
ioxs?m e (6 58]~ [aSN],

1
, |
Hyxs?M' L ¢ 16,88]- (Tel v 1ssN]),

M

xS2M*L e [as]-(Ins| v [aKs| v [6,88]V [6yS]).

Summing up,

THEOREM 2.2. For the classes of semi-Sasakian Athuc-

tunes 4in Diagram 1T we have:

i) o< 8] = Inks] < [ns], Is| < IKe] < lel, IS} < lasu].

(£<) |asSN| < IGIASI.
(i4) le| v |asSN| < IGZASIL

(Lu)'lnslleqxs|ujlejasln;lezési < |s8].

NOTE. Remark that this theorem does not prove the
strictness of the inclusion |c| € |qKS|s which remains

as an open question.



-

12

3. THE REMAINING CLASSES

Let us consider the following diagram

Y

(6,81 lats]  |6,s|

IR d

| nts| IN] [azs|

A

IISI qSI

DIAGRAM TIII

In this section, we $ha11 be concerned with proving
iot only the strictness of the inc1ﬁsions in this diagram,
but also the strictness of all the possible inclusions of
semi-cosymb]ectic and semi-Sasakian classes in the classes
which are represented in it. - ‘

First of all, we can state

THEOREM 3.1. (£) |4CN| v |sSN| v |£8|v [gS] < |N].
(<<} [gsclv |6,88]u [nts|uln]| <-|6,S].
(£id) quéc]ulezaslu latS!u{‘N] < [6,8].
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Proof: (£1. Let us consider the Calabi-Eckmann

S2h+1X32,£+1

manifolds for &£, > 1; then, from Propositions

1.1 and 2.1, sPEPL2llp ong s2R¥L, 2241 (2r]
are normal a. ct. m. manifolds which do not belong to
|sCN|v |sSN| U |2£S] v |48].

(ii) and (£44). Let us denote H, and M, the manifolds
which are obtained from the manifolds M, and M2 in the
prodéf of Theorem 1.2-by making a {nontrivial} conformal
change of the metric.‘Then, taking into account Theorem
5.2 in [ﬂ » Which §1assifies the almost Hermitian
structure of Hi'and Hz, and by using the results in

Proposition 1.1, it easily follows:

=R € |6,8]| - (IG,A?}&;iGIAS{tJ[ntS! ulnN),

xR e [6,8] - (]6,5C{V [G,88| L [atS] V[N]),

Now, let M be a 2n-dimenszional manifold with almost
Hermitian structure (J,2); on the product manifold MxR
we consider again the (%¢,Z.n,g)-structure defined by {1.1).
A conformal change of this a. ct. m. Structure on MxR

can be defined by setting
(3.1) ¥¢° = ¢, E° = e "L, n°_ = eTns g° = e g,

where 1t denotes the canonical projection MxR—R. Then,

dt = n and the fundamental 2-form ¢° of the,(?°,£°,n°,g°)"
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structure on MxR is given by
3° = e2Tp,

Let v, 6 (v°,6°) denote the Riemannian connection and

: : - °y . ¥ = dy 7= dy
the coderivative of g (g°), X (X,adi), V (y’bdi)’

7 = (Z,aj%) arbitrary vector fields on MxR; then,
(TR #IT = (1T - (DR - o(RET)E,
(v°20°)(7,7) = e2T{(v0)(7,) - n(V)e(X,T) + a(X.T)n(D)},

do° = e2T(2nas + do),

©8°9° = 80,

|3

vexEs = e T(X - (X)),

8°n° = ~2pe” T,
In the sequel; MxR denotes this product manifold with the
a. ct. m. structure (%,£.n.,g) and (MxR)° denotes the same
manifold with the a. ct. m..structure (¢°,8°,n°,g°).

From the identities above, a straightforward

calculation leads to . ST :
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PROPOSITION 3.2. Suppose MxR € |sC|. Then (MxR)°

does not belong to |4C|V 14S], and moreover

(£)  (MxR)° € |£S| 444
(c€)  (MxR)° € |ntS| 4£f4
(£i4)  (MxR)° € |atS| 4f4
[tv)  (R)® e [q2S| 464

MxIR
MxiR
MR
MxiR

€

€

m

|C

|nKC]|.
laC].

| gkC| .

The strictness of the inclusions between the

remaining classes of a. ct. m. manifolds is now an easy

consequence of Proposition 3.2. In fact, we can state

THEOREM 3.3. (£) |cju |S| < |zs].

(£4) |nKkC| v |2S] < |ntS].

{<ie) |aclv el v |tS] < |azS].

(iv) |qKC| v |gkS| v |ntS| v |atS| < [qzS].

Proof: Let .us consider the manifolds R

T(N)xR and S2

as defined in §1. Then

(‘Q2}1+1

(sbxr)° e lngs| - (|nkc| v |£S]),

) e les| - (lelvis)),

2n+1, SGXR,

XR5 endowed with their a. ct. m. structures

(T(N)*R)°e [atS| - (|aC|V |e|V |2S]),

(SZXIR5)° € Iqtsl’ - (|qKe|V |qkS| v |ntS|v |azS]).
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REMARK 1. In [7] we have introduced the almost-K-
contact structures (|aKel|) as- those (¥,£.,n,g)-structures
-‘which verify Vg? = 0 and proved the inclusion
IN|v [gke| v |gKS| C laKe|; actually this inclusion is
also strict. To prove this, note that all the product
manifolds MxR, MxM’ and (MxR)?, as considered in §1, §2

1
and §3, respectively, belong to the class |aKe|, but

2r+1

in fact, MpxR, MaxS ) (SZXR5)° do not belong to

[N ulgke| v |qks].

REMARK 2. In [7] we have studied some relations
between the classes of trans-Sasakian and quasi-Sasakian
structures. As it is known, both classes contain those
6f cosymplectic and Sasakian str&ctures, that is
iclv]si © |£S| n|qS|. However, |£S| and |¢S| are not
related by inclusion. For instance, if (M,J,h) is a
Kaehler manifold and (?',g’,n',g') is a Sasakian structure
on M', then the a. ct. m. structure (P,&£.n,g) defined on
MxM' by (2.1) is quasi-Sasakian but not trans-Sasakian.
ConQersely, Tet (¥,2,n,9) be the a. ct. m. structure on

2n+l

R = RZHXR defined by (1.1) from the standard Kaehler

structure oanZ"; if we make the con%orma] change given
by (3.1), the a. ct. m. structure ($°,£°,n°,g°) on R2A+1

is trans-Sasakian but not quasi-Sasakian.
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