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INTROBDUCTION

A (2pnt+i)-dimensional differenfiab]e manifoid M of
class C? is said to have an almost contact structure (J.W.
Gray [6]) if the structural group of its tangent bundle
reduces to u(n)£1; equi#a]ent1y (S. Sasaki and Y. Hatake-
yamé.[8,9]), an-almost contact structure is given by a
tripie (¢,E,n) {also called (¢,£5n)-structure) satisfying
certafn conditions. Mahy different types of almost contact
. structures are defined in the literature (normal, Sasakian,
cosymplectic; nearly Sasakian, nearly cosymb]ectic, quasi-
Sasakian, etc., [1,2]).

L If- M has ah almost contact struéiﬁre,'on MxR there
exists a.canocally associated almost complex structure. The
purpose of this paper is to,give‘a classification, which
contaims Tashiro's [11,12], of the different types of almost
contact structures on a manifold ‘M through the types of
the associated almost complex stfuctures on MxR, by usihg
Gray-Hervella's classification of a]mdst Hermitian mani-
folds [s]. ’

In §1 we give, first of all, the basic definitions
and some results from the theory of almost contact struc-
tures. Next, we cbnsider the product metric h on MxR of a
Riemannian metric g on é manifold M with a (¢.Esn)-struc-
ture and the Euclidean metric on R, and ‘we considerAa cer-

tain Riemannian metric h° confomally re}aied to h. He givé



some fofmu1as for the later use. In'§2, we define and
characterize the almost contact metric structureé throﬁgh
the almost Hermitian manifolds (MxR,h) and (MxR,h°); those
" obtained from h generalize cosymplectic structures and
those obtained from h° genera]iie Sasakian structures;v
furthermore, there appears a new class df almost contact
structures which contains, and in a certain sense separates,
both cosymplectic and Sasakian and that we call trans-
Sasakian structures. In §3 we relate the different types
of aimost contact metric structures, we compare quasi-
Sasakian and trans-Sasakian structures and illustrate the
“inclusion relations with a diagram. Finally, the case n'= 1
is considered. |

I wish to express my hearty thanks to Professor L.A.
Cofdero for Ris kind guidance to this subject and his

constant encouragement.

1. REVIEW OF DEFINITIONS AND NEEDED RESULTS

A (2n+1)-dimensional real differentiable ménif01d M
of c1a$s c® is said to have a (¥,Z,n)-structure or an al-
most contact structurne if it admits a field ¢ of endomor-
phisms of the tangent spaces, a vector field &, and a 1-

form n satisfyng
(1.1) ' - . n(E) =1,

(1.2} . 2 =-1+net,




where I denotes the identity transformation [8] . Then ¢ = O
and nd = 0; moreover, the endomorphism ¥ has rank 2n.[2].

Denote by x(M) the Lie algebra of c®~vector fields on
M. If a manifold M with a (#,£,n)-structure admits a'RTe«

mannian metric g such that

sy g(RX,#Y) = g(X,¥) - n(X)n(¥),

where X,Y ¢ x(M), then M is said to have a (%,g.n,g)-étnud—
Zune or an-almost cohtact metnic structure and g is called
a compatible metric [8}. An imme&iate consequence is n(X) =
g(X,€). A manifold with a (P,&,n)-structure admits a com-

_ pafib]e metric g [8]. The 2-form & on M defined by

(1.4} S (X, V) = g(X,PY)

js-called theréundamentaz 2-4onm of the almost contact me-
tric structure. |
If vis the Riemannian connection of g, it is easy to

prove
(1.5)  (vyn)¥ = g(VyvxE)s
and hence VXg = 0 if and only 1f vyn = 03

(1.6)  (7g2)(1,2) = gV, (TyM2) = g ((DY,2),

(1.7) (7,0) (V,%2)= (7@ )87,2) = n(¥) (Tgn)Zen (D) (gn)V
(1.8)  (9,0) (V. 2)+(7,@) (£7,2) = n(2) (Tgn)e¥-n(¥) (gn)t2s
(1.9 (vynly = (&%@)(E{?V§4

(1.10) (Vyn)pY = (V42)(Y.E).



The exterior derivatives of n-and ¢ are given by

(1.11) 2dn(X,¥) = (74} - (7ym)x,

(1.12)  3de(X,¥,2) = G?(VX@)(Y:Z).

where & denotes the cyclic sum over X,Y,Z € ¥(M). 1f
{X,¥X, 585 4=1,...,n} is a local orthonormal basis, defined
an an open subset of M, the coderivatives of n and ¢ are |

computed to be

. . " .
(1-13) én-. “z {(inﬂ)x(c“”(v?,\(‘:n)-?xi}s

L:

n .
(1.14) se(x) = - } {(vx.é)(XL,X)+(v?X,@)(?xi,X)}-(vg®>(€,X).
L L

47F
" Let M be a manifold with an almost contact structure
($5£.n) - .8nd consider the manifold M~R. We denote a vec-
tor field on MxR by (X,aé%), where X € x(M), £is the coor-
dinate of R and a is 2 ¢ function on M~xR. S. Sasaki and Y.

Hatakeyama [9] define an almost complex structure J on MxR by

(1.15) J(afy) = (#X - ag,n(x)2)

and thzy prove that J is integrable if and only if
(1.16)  [¢,¢] + 2dnec = o,
where [¢.¢] is the Nijenhuis torsion of $. An almost con-
tact structure is said to be noamal if J is integrable.
Different kinds of almost contact metric structures

have been dsfined. A (¥,£.n,g)-structure is said to be

cééympﬂectéc'[l,Z] if it is normal with ¢ and n closed,




neanly cosymplectic [2] if (VX?)V +’(Vy?)X‘= 0, nearly
Sasakian [2] if (v,f)v+ (v,f)X = 2g(X,¥)E-n(X)Y-n(¥)X,
quasi-Sasakian [1] if it is normal with d¢ = 0. An almost
v'contact.metric structure with & = dn is called a contact
metrnic siructune [2,8]; a contact metric structure such
that £ is a Killing vector field with respect to g is said
to be a K-contact structure [2,7]. If a contact metric
structure is normal, it is called a Sasakian structure [2].
We shall denote by |N[, |c|, [aC|, [nS|, |aS|, |S|,
| Ke| and le| the éfasses of normal, cosyhp1ect1c, nearly
cosymplectic, near]y Sasakian, quési—Sasakian, Sasakian,
- K-centact and contact metric structures, respeétively.
Now, if g is a Riemannian metric on the manifold M
‘with~a»(?,g,n)-structure,»we define a Riemannian metric

on MxR by
d doy _ |
(1.17)  h((Xeag) (V.b5)) = g(X,Y) + ab
and another by
(1.18) h° = 2%,

where o:MxR —> R is defined by o{x,t) = ¢ for all
(x,t) € MxR. Then, the identity of MxR is a conformal di-
ffeomorphism between the Riemannian manifolds (MxR,h) and

{(MxR,h°).

LEMMA 1.1. The {offowing condifions are equivalent:
{({) g <5 a compatible metnic with the (%,g,n)-structure.
(£4) h 48 a Heamditian meirnic on (MxR, T},

({4L) h° &5 a Hemmitian metndic on (MxR,T) .



Proof: We have -
h{JT(X, “dz) IV bz )) = g(¥X,¥Y) + n(X)n(¥) + ab.

" The equivalences follow from (1.3),(1.17) and (1.18).

Hereafter, we suppose that the equivalent conditions
of Lemma 1.1 are satisfied.

The Kaehler form F of (MXR,j,h) is giveﬁ by
FOKaf) o (v, ) = h((Kaah) T (Y, b))
vHence,
(1.19)  F((Xyagz ) (Vsb% )) = o(X,Y) - bn(X) + an(V),
.and for the.Kather form-F° of (MxR,J,h°), we have
(1.20)  Fo((X,a), (v,6)) = e%9a (X, ¥)-bn(X)+an(V]}.

If (x ,t'}eAMR, we consider injections {:M — MR
and §:R —> MxR defined by 4(x) = (x.z ) qnd i(z) = (~°,t);
if X e *(M) and a is a €~ function on MxR, X(ae4) and

j%(aoj) will be simp]y,denofeqvx(a) and %%.

Let v, D and D° be the Riemannian connections of

(Msg), (MxR,h) and {MxR,h°), respectively.

PROPOSITION 1.2. Let X,Y ¢ x(M), a,b C° functions on
R, Then,

db. d
Frrtak

]

(1.21) D )(v b d) (vxv,{x(b) ' a

(Xsagz
"
it

(1.22) D§y , d)(Vb

i db d
(VXV+bX+aV,{-g(X,V)+X(b)+ zz*ab}dt)_




Prood: (1.21) follows from (1.17) and from the following

formu]a:

2h(D(X,add)(V b) s (2,e2)) =

(X, ag) (Y, b (Z,C-adz))) + (V. b) (WX, ah), (2,02 ))

" (e (0t 0o+ L0l (00 et

* R([Zsegehs (Koo 1L (1 0)) + (06 ah), [(2oefh) s (b2,

(1.22) is obtained from the ana]bgous formula for D° or from
j (1{21) and the formula expressing the Riemannian connection

D® in terms of D [3].

PROPOSITION 1.3. Let X, ¥ .« (M), a,b C° functions
~on MxR. Then, '

(1.23) (0, ad)J)(V b = (7,81 - b9, (7,n) ),

]

(1.24) ~(D‘zx,a3c_[;)J)(V ba—;)'

“

((vxv)wn(v X- g(X y)e-bex- ovxg {-2(X,¥)+(vyn v}d#).

Proof: (1.23) follows from (1.15) and (1.21); (1.24)
follows from (1.4), (1.15) and (1.22).

PROPOSITION 1.4. Let X,Y,Zex(M), a,b,c C° functions

on MxR. Tnen,



(1.25) (0(y , d)F)((v oLy, (Z,cdt))?
(7,)(4,2) = e(v,m)¥ + b(V,n)Z,
(1.26) (Dy o ) F*) (Us0fg) s (Zoeifel) = e T (va2) +

h(z)g(X,V)-n(V)g(X.Z)+c¢(x,V)-b@(X,Z)-c(VXn)V+b(VXn)Z}

Proog: (1.25) follows from (1.5), (1.6), (1.17),-(1.23) and

from formula
0oy P s (Zoegfg)) = h(UY, b0 (0 (. adhy 2 o))

In a similar way, replacing D, h and F by D°, h° and F°,
respectively, in the formula above, and using (1.18) and

_ (1.28) we obtain (1.26].

PROPOSITION 1.5. Let X,V,Z € %(M], a,b,c C” functions
on MxR. Then, |
(1.27) 3dr((X adi) (V b ) (Z cdt)')-_=
3d¢(X ¥,2) - 2{edn(X, V)+add(v Z)+bdn(z X))},

| (1.28) 3dF° ((x,a ) (v, b },(Z.adt)) e29(3do(X,¥,2) *+

2¢{0(X,¥)-dn{X,¥)}+2b{8(Z,X}-dn(Z,X)}+2a{2(V:Z)-dn(V,2)}).

Proof: (1.27) follows from (1.12), (1.25) and from

formula



3FLag)  (Vbfg)  (2oegfp)) = & (0 )P (0bfp) s (Zoeif))

Simitarly, (1.28) follows from (1.12), (1.26) and from the

; formula above replacing F and D by F° and D°, respectively.

We denote by §, § and §° the coderivative operators of

(Myg)s (MxR,h) and (MxR,h°), respectiveiy.

'PROPOSITION 1.6. Let X € x(M) and a a C” function on

MxR. Then,
L . ) 3r —d— = -
- {1.29) Gf-(X,adt) 8§06 (X) ‘aﬁn,
(1.30) °  T°F°(L,a j%) = §6(X) - 2un(X) - aén.

4

Proof: We consider a local orthonormal basis

{Xl,...,Xn,?kl,...,?xn,g} defined on an open subset U of M.
Then, {(xl,O),,..,(xn,o),(?xl,O),.,.,(?xn,o),(g,O),(o,dt)}

is an orthonormal frame field with respect to h on the

open UxR of MxR. .The coderivative of F is given by
TF (X, afs) *
n '
- d d
izl{(D(XL,O)F)((Xi’O)’(X’adt))+(D(?XL,O)F)((?XL’O)’(X’adt))}

A

- (D(E,O)F)((g,o),(x;aj%)) "v(D(O’jé)F)((Qaj%),(X,aj%))?

By (1.13), (1:14) and (1.25). we obtain (1.29). Similarly,

we prove (1.30), using (1.26) and the fact that
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1e79(X150)5. 0,70 (X,,0),e (X400, .. e (B X ,0),

e-c(E,O),e'G(O,j%)} is an orthonormal frame field with’

( respect to h° on UxR.

2. NEW TYPES OF ALMOST CONTACT STRUCTURES

The classification of A. Gray and L.M. Herve]1a [5] of
almost Hermitian manifolds has been accomplished by means
~of a representation of the unitary group on a certain space
W, which can be interpreted as the épace of tensors which
satisfy the same identities as the covariant derivative of
the Kaehler form on an almost Hermitian manifold. This re-
~presentation has four irreducible components, w=wJ@w2@w5ew4,
and it is possible td_form sixteen different invariant
subspaces from these four and each.one of them corresponds
to a different class of almost Hermitian manifolds. So,

’ W, corresponds to the class of nearly Kaehler manifolds,

wz to that of almost Kaehtlerian, w1$w2 to that of quasi-Kaeh-
lerian, W]@WZ@W3 to that of semi-Kaehlerian, w3ew4 to that
of Hermitian, Wwewe ol o

4 5774 277374
-manifolds and w4 to a class which contains

to that of Gijmanifolds, W
to that o7 Gz
Tocally conformal Kaehler manifolds. Furthermore, in [5] it
iﬁ proved that eQEry class contéining w4 is preserved under

a conformal diffeomorphism.
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Let M be a manifold with an almost contact metric
structure (¥,&,n,g9). Then, by Lemma 1.1, we may consider

the almost Hermitian manifolds (MxR,J,h) and (MxR,J,h°).

The manifold (MxR,J,h) is Hermitian (wsew4) if J is
integrable; a useful alternate characterization of Hermitian

‘manifolds is given by the condition (cf. [3])

_ ) d . -
(2.1) (D(x’aa%).?)(y,‘fv)'az) - (DJ(X’a_fE)J)(J(V,b—JZ))’— 0.

THEOREM 2.1. The 5a££owing conditions are aéuivaﬁeni:
(L) The almost contact metrnic structure (?,E,n,g) L4 normal.
(i) (M<R,T,h) is Henmitian. |
(i{i) (MR, J,h°) is Heamitian.
{¢v) [%,¥] + 2dne®tg = 0.
(V) (9,19 - (Ve PIPY + nlY1Tp8 = 0 for X,V € x(M).

{vd) (VXM(V,Z)-W(PX(@)(?V,Z)—n(w(vﬁaxn)z' = 0 fon X,Y,Z€x(M].

Proog: (4] <=%> [{£] follows from the definition of
normal structure;‘(éé) <¥=>_(LLL) because the class of Her-
mitian manifolds is presefved under a conformal diffeomor-
phism. (&) <=> (&v) by (1.16). (v] <=> [vi] by (1.5) and
(1.6). We shall prove [(4<i)} <==> (v]. By (1.23), (2.1) is

separated into the equations

(6] (7yn)¥ - (%, )FV = 0,

el -V E 4 (m%x?)g‘= 0, -



(d) (v PPV - n{¥)v.e = 0,
(e—” (vg?)g = 0:

() (Vgn)‘i"v = 0.

A11 these equations can be deduced from (a). In fact,
setting X=£ in {a) we obtain Vg? = 0; thus we obtain (d],
(e) and (4). Setting V=£ in (a) we deduce (c). Finally,
(b} is obtained from {a) using (1.6), (1.9) and (1.10).

The manifold {MxR,J,h) (resp. (MxR,J,h°)) is almost
Kaehlerian (wz) if dF = 0 (resp. dF° = 0). By Proposition

1.5, we have

THEOREM 2.2. (L) (MxR,J,h) is almost Kaehferian £if

and only L§ do 0 and dn = 0.
(£4) (MR,J,h°) is almosi Kaehlendidn Lif and only Lf

(¥,E,n,8) 45 a contact metnic structune.

The manifold (M«R,J,h)- is Kaehlerian if

| | dy _
(2.2) (D(X’ai%)J)(V,bgz) = 0.

THEOREM 2.3. The foffowing conditions axe equivalent:

(4] The afmost contact metaic structure (¥,E,n,a) <8 co-
symplectdid,
(4d) (MxR,T,h) is Kaehlerian.

(£44) 9,% = 0 fon X € x(M].

12
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Proof: (&) <=> (44} is obtained from Theorems 2.1
and 2.2 and from the fact that a manifold is Kaehlerian
if and only if it is almost Kaehlerian and Hermitian.

({4) <==> (4ii) follows from (1.23) and (2.2).

Similarly, using (1.24), we obtain

THEOREM 2.4. The fofLlowding conditicns are equivalent:
(L) The almost contact metrnic structure (¥,&,n,g) L& Sasakdian.
(£4) (MXF,J,h°) i5 Kaehlenian.

(id) (9, 8)Y = g(XY)E = n(VIX for X,V e x(M].
(BEIME) = = 406N T(R) +46.2) )

DEFINITION 2.5. An almost confact metrnic structunre

(#,8,1n,9) 45 called almost-cosymplectic 4§ (MxR,J,h) 48 glmost

Kaehlenian.

We shall denote by |aC| the class of almost-cosymplec-

tic structures.

The manifold (MﬂR,J,h) is nearly Kaehlerian (w,) if

dy . d
. - IV {X,a5=) = 0.
(2 3) (D(X,aa(—if)J)(y’bd/t) + (D(V'ba%) )( adi)
DEFINITION 2.6. An almost contact metrnic structusie
(%,£,n,g) is catled neanly-K-cosymplectic [nKC| (resp.
“neanly-K-Sasakian |[nKS|) 44 (M<R,JT,n) (resp. (MxIR,Jsh%))

L8 nearnly Kaehlenian.
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THEOREM 2.7. (£} (%,&,n,9) <& nearly-K-cosymplectic
L§ and only 4if ‘

Co2.8) {7, @)Y+ (9,0)X = 0, (<35§)(y§7):'o

(2.5) v,& = o0,

for all X,Y e x(M].

(44) (¥,E,n,g9) 48 nearnly-K-Sasakian if and onty if

(2.8)  (vyp)¥ + (v,9)X = 2g(X,¥)E - n(X)Y - n(¥)X,

(2.7) ng = -?X,

for all X,Y € x(M].
Furthenmone, 4§ (2.4) (resp. (2.6)) 4is satisfied, the

condition (2.5) (nesp. (2.7)) is equivalent to

(2.8) Vé? = 0.

L4

Proof: (4) Proposition 1.3 implies that the equation (2.3)

is separated into
(v #Y + (v, 9)x = 0, Wy =0, (7)Y + (vyn)x = 0.

Since Vy£ = 0 implies Vyn = 0, the third equation follows
“from the seécnd. Setting VY=£ in (2.4) we see that (2.5) is
equivalent to (2.8). , ,

(£4) Simi]af1y, (MxR,J,h°) is nearly Kaehlerian if and
oniy if | '

(7, 81 v+ (7, P xan(x) y4n(y) x-2g (X, ¥)E=0, vyertx=0, (vyn)y+(vynix=o.

By (1.4) and (1.5), the second equation implies




(2.9) (7yn)y = e(X,Y)

and hence we obtain the third. Setting V=g in (2.6) we see

* that (2.7) 1is equivalent to (2.8).

The manifold (MxR,J,h) is quasi—Kaeh]efian (w]®w2) if

,(2'10) (D

d .
(X,a d)J)(V s b= ) + (D j%)J)(J(V’be)) = 0.

DEFINITION 2.8. An afmosit contact meftric structunre

{%,E,n,9) 44 called quasi-K-cosymplectic lqgkC| (resp.
' quasi-K-Sasakian |aKS|1 <4 (MxR,JT,h) (nesp. (MxR,J,h°))

is quasi-Kaehlendian.

THEOREM 2.6. {£) (®,£,n,9] 45 quasi-K-cosymplectdic

44 and onty i (%), %) +(°wg<?)(‘?7;2)+16V)<v\0x1)?=

(2.11) (T0)Y + (T, 0PV = n(¥) Tk

fon all X,V € k(M)

(<] (%, E,n,g) L5 qua5¢ V Saéak&an Lﬂ and only Lﬂ

(2.12) (7,000 + (T, I8 = 29001)E + (V) 7gE - 20X

15

0

(Vxé)w)*(?‘,xé Joon2) 42 § 1)) +9(4) gD 2 18] § k=0

for all X,¥Y € x(

Proof: Me shall prove (4). By Proposition 1.3, (2.10)

is separated into the equations

bl (7)Y * (TP = 0
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e) VB (YeyP)E = O,
(4) - (7 01Py + nly)veE = 9;

(e] A(vg?)a = 0,

(4 (Vn)ty =0,

where all of these equations follow from the first. In fact,

setting X=& in {(a) we obtain (e} and hence VEE = 0. Therefore,
we have (d} and {(4). Setting V=& in [a) we obtain (c}. {b)
foliows from {a) using (1.6), (1.8) and (1.10). (i£) is

proved in a similar way.

The manifold (MﬂR,J,h) (reép. (M<R,J,h°)) is semi-Kaeh-
lerian (UJ;@Wé@WS) if §F = 0 (resp. §°F° = 0).

DEFINITION 2.10. An almost contact mefnic struciunre
(P,E,n,9) 48 called semi-cosymplLeciic |sC| (resp. semi-Sasa-

kian |8S|} i (MxR,J,h) (resp. (MxR,J,h°)) 48 semi-KaehlLenian.

By Proposition 1.6, we have

THEOREM 2.11. (£l (®,&,n,g) 48 semi-cosymplectic Lif and

only A4
(2.13) §¢ = 0,  &n = 0.

(£4) (¥,&,n,8) <4 semi-Sasakian Lif and only £

(2.14) . n = =50
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An aimost Hermitian manifold is a w3-manifo1d if it is

semi-Kaehlerian and Hermitian.

DEFINITION 2.12. An afmost contact metrnic structune
(?,E,n,g) it called semi-cosymplectic nonmal. [sCN| (resp.
semi-Sasakian nonmal |8SN|) 4§ (MxR,J,k) (nesp. (MxR,J,h°))

L8 a w3-manigo£d.
By Theorems 2.1 and 2.11, we have

THEOREM 2.12. (<) (?,E,n,g) 44 semi-cosymplectic normal

) ,4:5 and only if A, 2»)..(\7%{@){\?\*3)'Vl(\l)(/q?x@%:o
‘ §¢ = 0, én = 0, ‘l(v,‘(ﬂy - (V?X?)?y + n(y)véxg = 0.

(£4) (P,E,n,g) L& semi-Sasakian normal if and only A

n-= 560, (V, )V - (Ve ®)FY + n(¥)VpyE = 0.

Since the class w4 of almost Hermitian manifolds is
preszrved under a conformal diffeomorphism, (MxR,J,h°) is
a W,-manifold if and only if (MxR,J,h) is a W,-manifold,

and this is equivalent to {cf. [5])

(2.15)  (Dy, adi) FY((y, bdt) (z, °dz))
‘_Zlﬁ{h((x’aadf)’(y'b‘ff))gﬂz’cadf)'h((x'aff)'(Z'Cac‘i{))a:(ysbadg)

~R(Xa ) 1TV, bfl) JBF (I (Zuef i (Xaafg) 3 (2 efE) ITF (I (Y, b)) -

Note that djm(M%R) = 2n+2. _ < (an\ %Wﬁ§fwwLLA¥(kL‘?f MmdQ
: f (n27)

"
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DEFINITION 2.14. An almosit contact metrdic structute
(¢,€,n,9) 48 catled trans-Sasakian |[tS| if (MXR,J,h) i85 a

w4—maniﬁo{d;

/,1 @1 == 72| 0 Ut~ J iy Sy +§ ) A1) S =4 5 PR p(1Sy |
, (S,.ﬂ’ THEOREM 2.15. (¢,£,n,9) 46 trans-Sasakian &f and only if

I(2.16) (V,2)(¥,7) =
58 (%, 9)88(2) -9 (X,2) 82 (V) +g (X,Y)n(2) 6n-9 (X,$Z)n (V) 8n)

ol @FGE) =0

for .all X,Y,7 e x(M}.

- Proof: By using (1.15), (1.17), (1.25) and (1.29), the

~equation (2.15) is separated into

(@) (7,0)(¥.2) = -5L0g(X,¥)60(2)-g(X,2)60(¥)-g(X,FV) 50 (P7)

+g(X,?V)ﬁ(i)Sn%g(X,FZ)6@(?v)-g(x,?z)n(V)an},
(b)) (T,n)Y = ~zh{g(X,¥)6n-g (X, ¥Y) 80 (£)+n(X)68(BY)-n(X)n(¥)en},
(o) - n(¥)se(p2) + n(2)s6(¥Y) = o,

(d) - 83(Y) + n(v)se (&) =_o.i

Setting Z=¢ in (c) we obtain so(®Y) 0, and hence, by (1.2)

we have 80(YV) = 68(-¥2v)+se(n(v)g) = n(v)se(g); therefore
(c) impfies (d). Conversely, replacing ¥ by ¥Y in (d), we
obtain 8¢(fY) = 0 and (c) becomes an*identity._Hence,-the
con&itions {c), (d) and 6®(?V)'= 0 are mutually equivaient.

Therefore, the system of equations (a}-(d) is equivalent to

‘the system of equations




Mo, & s eas o ywove that (&) and (') wayxt) (110,

Cono oresely, | S(V“”‘ (24 g) vwabwg,use C‘f(h\"\) we ofteun (cy
bad hemee (a') . Towably, sattag ?,"—ﬁ aad replacag bty
/_ in (fi\‘\) fad Wiy (5.9) we oltin (b') .« T hug, 6?.\@'3&‘9(245)
[ Vi pvalt &t et fequalions () =(c)

(') (V) (V,7) = -5-Lg(X,¥)68(2)-g(X,2)58(Y)

g (X, EVIn(2)n-g (X.EZ)n(¥)sn}s

i

(6') (7yn)¥ = .- Z-{g(PX.P¥)n - g(X.B¥)se(c)],

[}
(]

{e') 88(PX)
Sgiting Z=g and repiaéing VY by v in (a') ;ﬁgfﬁaking usé
ofw(1{9)\we obtain {b'). Setting X=Z in LK?) we have Vg”=0'
Onnthe'otﬁér hand, setting X=V=§ and‘rép1acing Z by®z

in {a'] we obfajn

By (1.9), we have N

’ . (Vgn)z = (VE\&)\}\(@'?’Z)
o \\

-

%from whicﬁywe obtain {e'). Thus (a!f‘is the only indepen-

hentytondition. : ) ‘
e e el W\=zp tn %Lﬁ Meorewn  above My be
N Vanb cordiion @M§3yzo th T ve
sub 3R] by the coneltion V20 Sulack, sty Xie§ ua (B) hte (Guiz-258(¢Y

The almost Hermitian manifold (MxR,J.h) is a G,-mani—

fold (w,ew3ew4) if

! ) | d ] ‘ -
(2.17) ‘D(x,aj%)J)(%’“EE) * J(Dj(x,aj%)J)(Xa“é%) 0.

DEFINITION 2.16. An almosi contact metrnic structune

(P,€,n,9) 4£s called G;-Sasakian Ist[ if (MxR,JT k) f(ox,

equivabently, (MR,J,h°)) 44 a G -manifold.

- o et e L et
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THEOREM 2.17. (%,Z,n,g) 4is G;-Sasakian if and only £if

(2.18)  (7,8)X - (T, ®IFK + n(X)¥g, & = 0

Proog: By (1.23), (2.17) is separated into the equations

(a) | »(vx?i)'x * (Ve PIX - (Vg n)X)E = 0,
Bl (T)X + (T PIX)  = 0,

le) VyE + é(vgq«’)x + P(Tgx8) - U(Ven)xIg = 0,
[ER (KO g

(\e} ?(Vgg) = 0.

A11 the previous equations can be deduced from (a). In
fact, setting X=f in {a}, we obtain (VE?)E = 0 and hence

Vgg = 0; thus we obtain (e]. Furthermore{

X} = - ¢X = 0, -
n((VE?) ) .(VEH)TX 0 |
which is the _equation (dl. By (1.6), (a) implies
(vy2)(v,x) - (V?XQ)(?V:X) -vn(V)(V@Xn)X = 0.

Setting ¥=f in the above equation and using (1.10), we

cbtain
(7, )X + (Voyn)x = 0.

Replacing X by X+?X.in the last équation we obtain

R I CRY PO TS

.\‘

. / *b . ) » » ' j
for att X e x(M). L (‘:}&)(‘h :t),—\UY‘;(@')(‘?X,V)*'[@C)()’??XQ)\I o
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which is equivalent to (b). Now, repiacing X by X+£ in (a),

we have
(v, + (V. IX + $(VyPIE = 0.

Applying  to this equation we obtain (e). Therefore (a) is

the only independeht condition. Taking into account that

(Vo PE+E(Te 0) = Vgu®? = Tgy (-1416E) = (Vgun)@E+n8Tp,E

we may conclude that (a) is equivalent to (2.18).

“The almost Hermitian manifold (MxR,J,h) is a Gz-mani-

fold (w2$w3®w4)-if

(2.19) (s, (Y, 050, T(ZoefidF (3 (X,a5) s (V2 b5) 3 (2, 055))

e d . d . d .. d d d
+dr(J(X,aEz;,J(%,bEE);(L,czzh-dF(@,aHz),(V,baz),(z,czz))= 0.

DEFINITION 2.18. An almost contacit metric structure
(%, E,n,g) 48 called Gz—Saéakian IGZSI L4 (MXR,J,h) {on,

equidaﬂentﬂy, (MXR,T,h°)) 43 a Gz-manigaid.
THEOREM 2.19. Tﬂe 5o££;wzng bonditions are equivalent:
‘({) (?,é,n,g) L8 Gz-SaAakian.A
i) 3d®(x,?v}?z)+3d¢(?x,v,?2)+3d¢(%x,?v,z)43d¢(x,v,z)
t-2n(2)(dn(X,?V)+dﬁ(?X,V))fzn(V)(dn(Z,?X)+dn(?Z»X))
~2n(X) (dn(V,$2)+dn(PV,2)) = 6 fon 2t %9,2 e x(M). 

(4] G 1(7,0) (¥,7)=(Tpy®) (BY,2)-n(Y) (Fp,n) 2} = 0

for atl X,Y,7 € x(M).
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Proof: (LL] <==> [(LLL) follows from (1.7), (1.8) and
(1.12). We shall prove (&) <=> (44). By (1.27), (2.19) is

separated info the conditions {44} and

'qu}(xﬁ?yr’:)'*' Zﬂ(y)dﬂ(isx) = 3de>(?‘X,V,£)

+ 2n(X)dn{V,£) - 2dn{FX,?Y) + 2dn(X,V) = 0.

This equation follows from (4i4) replacing X by £X and

setting Z=t.

“An- almost Hermitian manifold'is,a (w,®w3)-man1fo1d

' if it is a Gifmanifold‘and semi-Kaehlerian.

DEFiNITION 2.20. An almosl confact metrdlc sthuciure
(f,&,n,9) 45 called G,—aemé¥coagmp£ectéc lGléC] (rnesp.
Gi—AemL—Saéakian-[Glésl) Lf (MxR,J,h) {(rnesp. (MxR,JT,h°)
s @ (WeU,]-manifold. |

4
By Theorems 2.11 and 2.17, we have

THEOREM 2.21. {4) (P,&,n,g) 44 G]-Aemi-ccéympﬂectic

4§ and onty 4§ 08 1) = Ve ) (B ) =) Gou DY

R} ,
a® = 0, 671 = 0, (VX?’)X - (V?X(P)?’X + n_(X)V?,xg = 0.

(£4) (P,&,n,g) 48 G,—Aemi—SaAahLdn i§ and only L§

=gt (TX - (T PP+ n(X)TpyE = 0.

22
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An almost Hermitian manifold is»a'(wzwws)-manifold

if it is a Gz-manifoid and semi-Kaehlerian.

DEFINITION 2.22ﬂ An almost contact metnic sirnucture
(P, E,n,8) £s called G,-semi-cosymplectic [G,4C| (resp.
G, -semi-Sasakian |G,88|) 4§ (MxR,J,h) (resp. (MxR,J,h°))
8 a (U@W,) -manifold.

By Theorems 2.11 and 2.19, we have

THEOREM 2.23. (&) (¢,E,n,8) 44 G,-semi-cosymplectic

" 4§ and only if

5020, dnz0, G (7,0)(V,2)-(75,8) (FY,2)-n(¥)(Tpyn)2} = 0.

i

{£4) (?,E,n,g) L5 Gz—éemL—SaéahLan if and only L4

n = f%ﬁ@’: S (7, 2) (V,2) = (Vg 8) (FY, 1) -0 (V) (Vgyn) 2} = O

The almost Hermitian manifcld (MHR,J,h) is a (w,@w4)-

manifold if

d d

(tsa o) N L) (b TR0 a) s (X, a2 B (¥, b)

CchCKeah) o (V2 bf) VBF (X afh) - (T (X, , (¥, 6220 )5 (T (Xaag) )

"o MDEFINITION 2.24; An almost contact metric sLtruciune
(?,E,n,5) 4is called nearty-trnans-Sasakian |ntS| £ (MxIR ,J k)

{on, equivalently, (MxR,J,h°)) 48 a (w1®w4)—manigo£d.
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THEOREM 2.25. (%,E,n,9) 44 nearly-trnans-Sasakian if
and onty if it satisfies the foLlowing conditions:

(2.21) (Vx@)(X.V)=-f%{g(xsx)5@(y)-g(X.V)SQ(X)+9(?X,V)U(X)dn},

(2.22) (vyn)¥ = -5%{9(?X,?V)6n + g(Px,v)s2(g)},

fon alt X,Y € x(M).

“Proof: By (1.25) and (1.29), the equation (2.20) is

sepaﬁated into
(a) (9 0)(X,Y) =

(g (X, X180 (¥) =g (X,¥) 50 (X)-g (FX,¥) 50 (EX) +g (PX,¥In(X)8n}

It

(6] (Tyn)Y = ghlalex, £¥) snea(PX, ) s0(E) (V) 8s (B}

(e} §0(X) n{X)8e(g).

We shall prove that (a) and (b} imply (c). Setting

X=£ in (a), we obtain

(7o) (59 = - Ltse(y) - n(v)se(e)}.
By (1.10),"

T RE) = - (T,

Setting X=g in (b) we have van = 0; thus, from the last two
equations we obtain (c). Moreover, the condition e} implies

§0(¢X) = 0. Thus, the system o% equations (al-le) is equi-

SRR S

valent to the two equations'(Z.Zl)—(é.ZZ).

S et e Tkt
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The almost Hermitian manifold (MxR,J,h) is a (W,0,)-

manifo_]d if , ' ‘ (“zilfw VVMA/Q q,(\,.,m(’_\(éiuf/v
| DATA Y di (MR 2
(2.23) | &F = Fas, AT diw (MAR) 26

(Aj Aon (M) =Y ome \mcg)

where 0 is the Lee form of (MXIR,J,h), given F adA dps0
d d
S(X,a'a'jt'_) = 6F(J(X ad/t))

which, by (1.29), may be written

(2.24) o (Xrazf) = L(6e(PX)-n(X)en-asa(e)).

" We define a 1-form w on M by

(2.25)  w(X) = 6(X,0) = H(s2(FK)=n(X)sn).

DEFINITION 2.26. An almost contact meiric structure
(P,E,n,8) L& called almost-trans-Sasakian |atS| £f (MxR,J, k)
{on, equivalently, (MXI'R,J,h"\)) i8 a ~.((1LZ@(&I,4)- manifold.

THEOREM 2.27. (%,£,7n,g) 48 afmost-trans-Sasakian <f

and only 44 Zhe foLlowing conditions are satidfied:

" (2.26) dé? = 9dAw,

(2.27) dn

ﬁ(ﬁ@(g)@ - 2nAF(62)}.

Proog: By (1.19), (1.27), (1.29) and (2.24), the
equation (2.23) is separated into the equations (2.26)

and (2.27).
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The almost Hermitian manifold (MxR,J,h) is a (w,@wzew4)-
manifold. if

d

(2.28) (0y . d)F)((V b7z t) (Z,e- t))+(DJ(X d)F)(J(V boz) s (Z,cai,it—))"

= (o) (V5 b TF ()R (Ko agfe) , (2,eg5) JBF (V. b)
h((x,adi),J(v,bE%))EF(J(z,cj%))+h«x,aj%),J(z,ca%»EF(J(v,ba%»},

DEFINITION 2.28. An almost contact metrnic sthuciture
(?,&,n,9) 48 called quasi-trans-Sasakian| qtS| if (MxR,JT,h)
{on, equivalently, (MxR,J,h°)) 1is a (W,60,0W,) -manifold.

THEORE# 2.29. (P,&,n,9) 45 quabi—t&anb-Sabafian L4 and
only if '

(2.29) (7,0)(¥22) + (9g,)(FY,2) + n(¥) (Tpyn)Z =

- g (6y)80(1) - g(X,2)68(Y)

~ g(X.9Y)(s0(%7)- 7)8n) + g(x $2) (80 (®Y)-n(v)én)}

; N for all X,Y,7 € x(M).

Piroof: By (1.10), (1.25) and (1.29), the equation (2.28)

is separated into

(a] (7,8)(Y,2) + (Tg,0) ($Y,2) + n(¥) (T m)Z =

- %{g(x,y)a@.(z) - g(x,2)88(¥) - g(X,Py)se(PI)

e L R R e i e

+ g(X:$YIn(z)en + g(X,P2)60(Py) - g(x,PZ)n(Y)en},
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(b)  (vyn)¥ + (Veun)eV =
- Lig(x,v)6n = gEv)sa(e) + n(x)se(#¥) = n(XIn(¥)en},
() (7,8)®¥,2) + n(¥)(7pn)Z = -Hin(V)sa(PZ)-n(Z)80(FV)),

(d) (7gnfY = - (- 88(Y) + n(¥)se(£)},

~from which, the first is the only independent equation. In

fact, setting Z=£ in (a), replacing V by PY and using (1.9)

and (1.10) we obtain (b). Setting X=£ in (a) and replacing

Y by ?Y, we have .

(v,0) (PY,2) = 2(n(2)8e(#¥)}.

“Setting X=£ in {b), interchanging ¥ and 2 and multiplying

by n(v¥), we obtain
n(v) (7,2 = - Lin(v)se(P1)}.

From the last two equations we obtain (el

7 d

3, INCLUSION RELATIONS

Before comparing the classes of the almost contact
metric structures, we shall define a new class which con-

tains some of the other classes.

DEFINITION 3.1. An almost contact metiic structune

(P, 5, n,9) 44 called an almosi-K-contaet structuie if v $=0,
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We shall denote by |aKe| the class of the almost-K-

contact structures., By Theorems 2.1 and 2.9, we have
PROPOSITION 3.2. |N|U |qKC|U|gKS| C |aKel.

Keeping in mind that an almost Hermitian maQifo]d is
Kaehlerian if and only if it is almost Kaeh1eriaﬁ and
nearly Kaehlerian, that an almost Kaehler or nearly Kaehler
manifold is qdasi-Kaéh1erian and that a quasi-Kaehler mani-
fold is semi-Kaehlerian, we have

THEOREM 3.3. (4] |C| = |aC|n|rKC|C|aC|ulnKC]c |gKC| € [5C].

(<4} S| = le|n|nKS|C |e|UnKS|C |qKS|C |4S].

THEOREM 3.4. Eveny neanly cosymplectic structure L&

semi-cosymplectic.

Procf: IF:(P,E,n,g) is a nearly cosymplectic structure
then, by (1.6), (Vxé)(X,V) = 0, and hence, by (1.14), §¢ = 0.
Furthermore, (Vé?)g = O-and 50 VEE = 0. Differentiating
the compatibility condition of the metric (1.3) with res-
pect to £ we have g((VgP)k,?X) = 0, from which the nearly
cosymplectic condition gives g((vx?)g,?x) = 0 and, by
using (1.6) and (1.9), (vyn)X = 0; therefore, by (143), &n=0.

The éonclusion fo]iows'from Theorem 2.11.

THEOREM 3.5. Every nearly Sasakdian structune L8 semd-

Sasakian.

.Pnoaﬁr Let X be orthogonal to & with g(XsX) = 1. Then,
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pacotl ST,

by (1.6) and the nearly Sasakian condition, we have

(Vxé)(X.V)=-g((vx?)x,v)=-g(g(x,x)g-n(X)X.V)=—g(s,v1=-ﬁ(v).

¢

-

On the other‘hand,
(vgé)(a,v) = -g((vgv)s,v) = 0.

Hence, 6®(Y) = 2nn(Y). From Theorem 2.11, we may conclude

that the structure is semi-Sasakian.:

Since the identity is a non homothetic conformal

.'diffeomorphism between the almost Hermitian manifolds

(MxR,JT,h) and (MxR,J,h°) (or by Theorem 2.11), we have
that if one of them is semi-Kaehlerian, the other is never

semi-Kaehlerian [3]. As a consequence, we have

THEOREM 3.6. |sC|n |4S| <& the empty class. Then.
if (®,E,n,3) is in one of the classes |C|, |aC|, |nKC|,

aKC{, |né|, lsC|, 4t is never in any of the classes |S|,

-

le|, |nKS|, |qKS|, |nS|, |48

If an almost Hermitian manifold is Kaehlerian then
it is a w#-manifo1d and if a manifold is a w4-manifold then
it is Hermitian. The nearly Kaehler manifolds are G,—mani-
folds and the almost Kaehler manifolds are Gz-manifolds.

Furthermore, an almost Hermitian manifold is Hermitian if

and oniy if it is a'Gl—manifold'and a Gq—manifold. Thus

‘we have

29
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 THEOREM 3.7. |clu (S| c || < IN],
|nke| U [nkS|UIN] € |6,S], |ac|u |e]UIN]| € [6,S],

16,81n 16,S] = |N].
THEOREM 3.8. |nkC| = [nC|n ]ake| = |nC|N [qKC]| =
lnc|nl6,S| = |nc(n |qts].

Proog: Since every nearly-K-cosymplectic structure fs
nearly cosymplectic, quasi-K-cosymplectic, G1-Sasakian and
quasi-trans-Sasakian and making use of Proposition 3.2, we

obtain that |nKC| is contained in the four intersections of

_classes above. [nC|N |gKe| € [nC|naKe| follows from

Proposition 3.2 and |nC|N |aKe| € |nKC| from Theorem 2.7.

If (?,g,n,g)kis nearly cosymplectic then, by Theorem 3.4,

it is semi-cosymplectic; if it is also quasi-trans-Sasakian,

-then it is quasi—K¥cosympTectic, since an almost Hermitian

manifold is quasi-Kaehlerian if and-only if it is semi—Kaéh-’
lerian and it is a'(w1®w29w4)-manifo1d. Therefore, |

fnc|l n|ets| C inle}[qKC(. We shall now prove [nC|n|G;S|c [nKC].
If (Ps€4nsg) is nearly cosymp1ectic,'(vx%)x = Orand hance,

by Theorem 2.17, the G;-Sasakian condition (2.18) becomes
n(x)v?xg = 0, from which, replacing X by X+Y, we obtain
n(x)v§yg+n(V)v?xg = 0; setting Y=£, we havé VpyE = 0 and

hence V@ZXE = 0; since v££-= 0, by (1.2), we obtain VyE = 0;
applying Theorem 2.7, we may conclude that (¥,g.n,g) is

nearly-K-cosymplectic.

THEOREM 3.9. |C| = |aC| n|nkC| = |ac|n [nC] = |nC|NIN] =

-

laCl A [N] = ke AIN| = [sC|n|tS
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Proof: It is evident that the class IC| is contained..
in all the intersections of classes &bove. The first equality
is in Theorem 3.3. If C?,E,n,é) is an almost-cosymplectic
structure, then it is quasi-K-cosymplectic and hence, by
Propocgition 3.2, it is an almost-K-contact structure; thus, if

it is also nearly cosymplectic then,Aby Theorem 3.8, it is

“nearly-K-cosymplectic. Then |aC| n |nC| C [aC|C |nKC].

fgkc] nn |N| ¢ |c| since a quasi-Kaehler and Hermitian mani-
fold is Kaehlerian. |nC|n [N]c |qKC|n |N] siﬁcé, by Theorem
2.7Qand Proposition 3.2, a normal nearly cosymplectic
structure - is nearly-K-cosympliectic aqd hence quasi-K-co-
symplectic. Iaclp;[N[c:[ch[/\1N| because every almost-co-
symplectic structure is quasi-K-cosymplectic.|sC|Nn|tS| = |C]|
since an almost Hérmitian manifold is semi-Kaehlerian and

it. is a Wy-manifold if and only if it is Kaehlerian.

PROPOSITION 3.10. Every nearnly-K-Sasaklan structure

is a contact metrnde sthucturne.

Prcof: This is immediate from (1.11) and (2.9).

THEOREM 3.11. |S] = |nKS| = |ake|n [nS]| = |e|n |nS] =
kel n|ns] = |nS|N [N = [nS|N|aKS| = 1nS|f\fG]S[ =
|nS A laes] = [eks|MN] = |ss|n[2S].

Proof: |S| = |nKS| follows from (il] of Theorem 2.2,
Proposition'3.10 and from the fact that an almost Hermitian
manifold is Kaehlerian if and only if it is nearly Kaeh-

Terian and almost Kaeh]érian. The proof of the other equalities

is similar to those of Theorems 3.8 and 3.9. B
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PROPOSITION 3.12. If (?,E,n,8) 44 a quasi-K-Sasakian

sthuctune,
(3.1) dnkx,V) + dn(PX,2V) =»2¢(X,V)
forn X,Y € x(M). |
Proog: By using (1.6), (1.9) and (1.10), from (2.12)
it follows that

(Vn)Y + (%yn)PY = 20(X,)

from which, by (1.11), we obtain (3.1).

COROLLARY 3.13. A quasi-K-Sasakian structure {¥,£,7n,9]

L8 a contact metrnic structurne if and only £if dn(X,v)=dn(Px,?Pv}

for all X,Y € x(M). (?wﬁiﬁﬁ),hﬁuto )TMMrYYﬁ

Now, we shall prove some properties of quasi-Sasakian
structures and their relation with trans-Sasakian struc-

tures. For a quasi-Sasakian structure (fF,g,n,g) we have

(cf. [1])
(3.2) (v,n)¥ . = - (7 m)X.

From (1.13) and (3.2), we have

PROPOSITION 3.14. 14 (?.E,ﬂ.g)'ié a quasi-Sasakdian

strnucture then én = 0.

LEMMA 3.15. Let {X,PX,,E; 4=1,...,n} be a Local

onthononmal basis defined on an open subset of Tthe manifeld

|
|
JT——
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M with an almosi contact metric structune (P,&,n,g). Then,

(3.3) 5@(?X) = -3

He~1s

{dQ(XL’?Xi’x)} + n(X)én -'(VEH)X

£=1

for all X € x(M).

Proof: By (1.14), we have

n ’ .
(3.4) 88(FX) = = } {(V, 8) (X, PX)+(Vgy 0)(PX,TX)}-(V,2) (£,8X).
X, »

£=1 L

By using (1.7) and since n(xi) = g(xi,g) = 0, it follows

that

(3.5) (7, 0)(X;BX) = (7, @) (PXHX) + n(X)(Ty n)X,.
A ’ L

L

By (1.8),‘
On the other hand, from (1.12) we have
(3.7) (vxié)(%xi,X) © (Tpx 2V (XaX) =
3O(X X X) - (Te0) (K K,) = 3d0(X 0 PX %),
since, by (1'6)’,'
(7,0) (X0 $X,) = - g(0,8%,,B) + a(Bryx . Px,)

L (7, P00 (T, X ) -l X (X ) = 0.

. Furthermore, By‘(1.9) we have

C(3.8)  (Te)(eP0 = (7.
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.Therefore, from (3.4),‘(3.5), (3.6), (3.7), (3;8) and (1.13)

we obtain (3.3).

PROPOSITION 3.16. I4 Q’,g,n,gl.ié a quadd-Sasakian

structune then 60(PX)=0 and s0 60(X) = n(X)6d(E) {fon

all X € x(M].

Proof: By definition, a quasi-Sasakian structure is

‘normal; then if we set X=Y=£ in (v} of Theorem 2.1, we ob-

tain.(vg?)g = g, from which Vg

Propoéition 3.14, 8n=0. Furthermore, do=0. Therefore, from

£=0 and hence V€n=0. By
Lemma 3.15 we obtain s¢(PX) = 0.

LEMMA 3.17. 14 (P,&,n,8) 46 a trahs-Sasakian structune

~then

(3.9) Cde = - Len(oan).

Proog: This follows from (1.12) and Theorem'2.15.

THEOREM 3.18. I§ (%,£,n,3) <& a trhans-Sasakian stiuc-

tune satisfying &n = 0 then 4t 4s quasi-Sasakian.

Proof: Since a trans-Sasakian structure is normal,

this is immediate from Lemma 3.17.

In particular, note that both cosymp]éétic and Sasakian
structures are trans-Sasakian satisfying ¢n = 0, since both

structures are semi-cosymplectic and semi-Sasakian, res-

.pectively.
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PROPOSITION 3.19. A quasi-Sasakian structune (P,€,n,gq)

L8 trnans-Sasakian L4 and only L§
(3.10)  (V,@)(¥,2) = - 2=La(x,¥)In(2) - a(X,2)n(¥)}s0(e).

Procof: For a quasi-Sasakian structure, &n = 0 by Propo-
sition 3.14. If it is also trans-Sasakian, byTheeren—iri5;
Jeheve frmj\ Throrew LT t go\a\WS (349

@uxé;4#,;4w5hﬁkﬁ%%Q;L&r%%&@é%%wmwg&%w%%ﬁyéw%}f

Now, —feem—Reoposition. 3. L6 it-follows~FSt0Y). Conversaly,

if a quasi-Sasakian structure satisfies (3.10), Theorem
1 2.15 and PropositionZ 3.14 awe=®—¥6 imply that it is

trans-Sasakian.

For a cosymplectic structure, 8§ = 0 and the expression
(3.10) becomes (vx@)(y,z) = 0. A Sasakian structure is
semi-Sasakian and hence, by Theorem 2.11, 8¢(Z)=2nn{E)=2n;

then, in this case, the expression (3.10) becomes
(V@) (¥,2) = ‘g(X,2)ndy) - g(X,¥)n(2),

which was proved, in another way, in [10].

PROPOSITION 3.20. T4 (P,&,n,8) 458 a quasi-Sasakian

dtructune then
(3.11) (vx¢)(y,z) = dn(X,PY)n(2) - dn(X,PZ)n(Y)

for all X,¥,7¢ x(M].

The proof is a very lengthy computation but simijar

to that of [10] for a Sasakian structure.
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THEOREM 3.21. AquaAL—SaAaﬁLan structune (¥, £,n,49) LA'

trhans-Sasakian Lf and only L§
(3.12) dn(X,Y) = z0(X,¥)s8(€)

for all X,¥ e x(M).

Proof: If (¥,E,n.g) is quasi-Sasakian and trans-Sasakian,
setting Z=£ in (3.10) and (3.11) and equalizing both ex-

"pressions, we obtain

(3.13) dn(X,py) = - ély;{g(X,V) - n{X)n(v)}se(e).

.- Furthermore, since a quasi-Sasakian structure is normal,
Vgn = 0, and hence, by (1.11), dn(X,&) = 0. Then, by (1.2),

{(1.4) and (3.13),

dn(X,¥) = - dn(X,$7Y) + n(V)dn(X,E) = -dn(X,$%)

E%Eg(x},%v)w(s) = —2-1,—1@(&&/)6@(5).

Conversely, if (3.1%) is satisfied for a'quasi—Sasakian
structure, then, from Propositions 3.19 and 3.20 it

follows that it is trans—Sésakian.

Diagram I summarizes the inclusion relations among -
the different classes of almost contact metric structures,

where the arrows (——+) mean inclusions ( < ).

DIAGRAM I
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Now, we suppose that M is a 3-dimensional (n=1) mani-
fold with a (?,E,n,g)-strutture. Then (MxR,J,h) and
(MxIR, T, h°) afe almost Hermitian manifolds of dimension 4.
In [4] it is proved that a 4—d{mensiona1 nearly-Kaehler
manifold is Kaeh]g%ian, and, similarly, it can be proved
that a 4-dimensional semi-Kaehler manifold is quasi-Kaeh-
lerian and that a 4-dimensional quasi Kaehler manifold 1is
almost Kaehlerian. Furthermore, a 4-dimensional Hermitian
manifold is a w4-manif01d [5]. Thus, the 4-dimensional
G}—manifOIds are Hermitian andva11 the 4-dimensional almost

Hermitian manifolds are Gz-manifolds. As a consequence,

the relations among the classes of almost contact metric

structures on a 3-dimensional manifold are those repre-

sented in'Diagram 11, for which we also use the following

THEOREM 3.22. (4£) Aneakly cosymplectic sfnuciure on
a 3-dimensional manifold i& cosymplectic.

(£4) Aneanly Sasakian structure on a 3-dimensional
manifold is Sasakian.

Proof: It follows from Theorem 2.7, Proposition 3.2

and the first equality in (£} -and (ié) of Theorem 3.3.
Finally, from [1] it follows that a quasi-Sasakian

structure on a 3-dimensional manifold is either cosymplec-

tic or Sasakian.

DIAGRAM  II
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