
BASICS OF DIFFERENTIABLE MANIFOLDS

Riemannian geometry – IMPA – Miguel Domı́nguez Vázquez

1. Differentiable manifolds

Definition 1.1. A differentiable manifold or smooth manifold of dimension n is a Hausdorff
topological space M with countable base endowed with a family

{xα : Uα ⊂ Rn → Vα = xα(Uα) ⊂M}α∈Λ

of bijective maps xα from open sets Uα of Rn to open sets Vα of M , such that:

(1) xα is a homeomorphism, for each α ∈ Λ.
(2) M =

⋃
α∈Λ Vα.

(3) If Vα ∩ Vβ 6= ∅, for α, β ∈ Λ, then the map

x−1
β ◦ xα : x−1

α (Vα ∩ Vβ)→ x−1
β (Vα ∩ Vβ)

is a diffeomorphism between open sets of Rn.

In these conditions, (Uα, xα), or simply xα, is called a parametrization or coordinate system.
Each inverse map x−1

α is called a coordinate chart, and Vα is a coordinate open set or
coordinate neighborhood. A family {(Uα, xα)}α∈Λ in the conditions above is a differentiable
structure or coordinate atlas.

Definition 1.2. Let Mm and Nn be smooth manifolds. A map ϕ : M → N is differentiable
at p ∈ M if, given parametrizations x : U ⊂ Rm → V ⊂ M around p and y : U ′ ⊂ Rn →
V ′ ⊂ N around ϕ(p), the map y−1 ◦ϕ ◦ x, which is defined in a neighborhood of x−1(p), is
differentiable at x−1(p) as a map between open sets of Euclidean spaces.

The map ϕ is differentiable or smooth if it is differentiable at every point of M .
The set of all smooth maps from M to R will be denoted by C∞(M).

Definition 1.3. Let ϕ : M → N be smooth. Then:

(1) ϕ is a diffeomorphism if ϕ is bijective and ϕ−1 is smooth.
(2) ϕ is a local diffeomorphism if for each p ∈M there is an open neighborhood U of p in

M such that ϕ(U) is open in N and ϕ|U : U → ϕ(U) is a diffeomorphism.

Definition 1.4. A (smooth) partition of unity of a smooth manifold M is a collection
{fα : M → R}α∈Λ of functions fα ∈ C∞(M) such that:

(1) 0 ≤ fα ≤ 1 for all α ∈ Λ.
(2) {supp fα : α ∈ Λ} is a locally finite collection of subsets of M , that is, each point of M

has a neighborhood that meets only finitely many subsets in the collection.
(3)

∑
α∈Λ fα = 1.

The partition is said to be subordinate to an open covering U of M provided that each set
supp fα is contained in an element of U .
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Theorem 1.5. Let U be an open covering of a smooth manifold M . Then M admits a
smooth partition of unity subordinate to U .

2. Tangent space

Definition 2.1. Let M be a smooth manifold. Let α : (−ε, ε) → M be a differentiable
curve in M with α(0) = p ∈M . The tangent vector to the curve α for t = 0 is the map

α′(0) : C∞(M)→ R, f 7→ α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

.

A tangent vector at p ∈ M is the tangent vector for t = 0 of some differentiable curve
α : (−ε, ε)→M with α(0) = p.

Equivalently, a tangent vector to M at p ∈ M is an R-linear map v : C∞(M) → R
satisfying the Leibniz rule:

v(fg) = v(f)g(p) + f(p)v(g), for all f, g ∈ C∞(M).

Equivalently, a tangent vector to M at p ∈ M is an equivalence class of differentiable
curves α : (−ε, ε)→M with α(0) = p under the equivalence relation:

α ∼= β if
d(x−1 ◦ α)

dt

∣∣∣∣
t=0

=
d(x−1 ◦ β)

dt

∣∣∣∣
t=0

,

for some coordinate system x around p.
The set of all tangent vectors to M at p ∈M is called the tangent space of M at p and

denoted by TpM . It is a vector space of the same dimension as M .

Definition 2.2. Let x : U → V ⊂M be a parametrization of a smooth manifold Mn, de-
note the coordinates in U by (x1, . . . , xn), and let p ∈ V . The coordinate vectors (associated
to x) at the point p are the tangent vectors ∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
∈ TpM such that

∂

∂xi

∣∣∣∣
p

(f) =
∂(f ◦ x)

∂xi

∣∣∣∣
x−1(p)

, for all f ∈ C∞(M), i = 1, . . . n.

Sometimes we also write ∂i|p for ∂
∂xi

∣∣
p
, and we usually forget about the subindex indicating

the point: ∂i,
∂
∂xi

. The coordinate vectors form a basis of TpM .

The real number ∂
∂xi

∣∣
p

(f) is the directional derivative of f at p in the i-th coordinate

direction.

Definition 2.3. The tangent and cotangent bundles of a smooth manifold M are, respec-
tively:

TM =
⋃
p∈M

TpM ≡ {(p, v) : p ∈M, v ∈ TpM},

T ∗M =
⋃
p∈M

T ∗pM ≡ {(p, θ) : p ∈M, θ ∈ T ∗pM},

where T ∗pM is the dual vector space to TpM .
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Both are vector bundles with fibre Rn and base M . In particular, they admit canonical
projection maps, namely TM →M , (p, v) 7→ p, and T ∗M →M , (p, θ)→ p.

3. Differential maps, types of smooth maps, and submanifolds

Definition 3.1. Let ϕ : M → N be a smooth map, and p ∈M . The differential of ϕ at p
is the R-linear map ϕ∗p (also denoted by dϕp or dϕ(p)) given by:

ϕ∗p : TpM → Tϕ(p)N, v 7→ ϕ∗p(v),

where the vector ϕ∗p(v) is defined by

ϕ∗p(v) : C∞(N)→ R, f 7→ v(f ◦ ϕ),

or, equivalently (by the definition of tangent vector that uses curves), by

ϕ∗p(α
′(0)) = (ϕ ◦ α)′(0),

where α : (−ε, ε)→M is a differentiable curve with α(0) = p.
The map ϕ∗ = dϕ : TM → TN , (p, v) 7→ (ϕ(p), ϕ∗p(v)), is the differential of ϕ.

Definition 3.2. Let ϕ : M → N be a smooth map between two smooth manifolds. Then:

(1) ϕ is an immersion at p ∈ M if ϕ∗p : Tp → Tϕ(p)N is injective. If it is immersion at all
points of M , we say that ϕ is an immersion.

(2) ϕ is an submersion at p ∈ M if ϕ∗p : Tp → Tϕ(p)N is onto. If it is submersion at all
points of M , we say that ϕ is a submersion.

(3) ϕ is a (smooth) embedding if ϕ is an immersion and ϕ is a homeomorphism onto ϕ(M),
where ϕ(M) has the topology induced by N .

(4) If M ⊂ N , ϕ is the inclusion map, and ϕ is an immersion, then M is an immersed
submanifold of N .

(5) If M ⊂ N , ϕ is the inclusion map, and ϕ is an embedding, then M is a regular or
embedded submanifold of N .

Theorem 3.3. (Rank theorem.) Let Mm and Nn be smooth manifolds and ϕ : M → N
a smooth map with constant rank k (i.e. dim Imϕ∗p = k, for all p ∈ M). Then for each
p ∈ M there exist a parametrization x on M with coordinates (x1, . . . , xm) centered at p
(i.e. x(0) = p), and a parametrization on N with coordinates (v1, . . . , vn) centered at ϕ(p),
with respect to which ϕ has the following coordinate representation:

ϕ(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0).

Proposition 3.4. Let π : M → N be a submersion. Then π is an open map and, if π is
onto, then π is a quotient map.

Theorem 3.5. (Inverse function theorem.) Let ϕ : M → N be a smooth map between
two smooth manifolds. If ϕ∗p is a linear isomorphism, then there is an open neighborhood
U of p in M such that ϕ(U) is open in N and ϕ|U : U → ϕ(U) is a diffeomorphism.

In particular, ϕ is a local diffeomorphism if and only if ϕ∗p is a linear isomorphism for
all p ∈M .
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Theorem 3.6. Let ϕ : M → N be a smooth map between two smooth manifolds. Then ϕ
is an immersion if and only if for each p ∈M there exists an open neighborhood U around
p in M such that ϕ|U : U → N is an embedding.

Theorem 3.7. A subset M of a smooth manifold Nn is an embedded submanifold of
dimension m if and only if for each p ∈M there exists a coordinate system of N around p
adapted to M , that is, a coordinate system of N centered at p of the form

x : U = [−1, 1]n ⊂ Rn → N,

such that x(0, . . . , 0) = p, and x([−1, 1]m × {(0, n−m· · · , 0)}) = x(U) ∩M .

Theorem 3.8. Let ϕ : M → N be an injective immersion which is proper, that is, the
inverse image of every compact set is compact (this holds if M is compact). Then ϕ is an
embedding and ϕ(M) is an embedded submanifold of M .

Theorem 3.9. Let ϕ : Mm → Nn be a smooth map with constant rank k. Then every level
set ϕ−1(q), with q ∈ N , is a closed embedded submanifold of codimension k in M .

Theorem 3.10. (Regular level set theorem.) Let ϕ : Mm → Nn be a smooth map. Let
q ∈ N be a regular value for ϕ, that is, for every p ∈ ϕ−1(q), the differential ϕ∗p : TpM →
TqN is surjective. Then the regular level set ϕ−1(q) is a closed embedded submanifold of
codimension n in M .

4. Vector fields

Definition 4.1. A vector field X in a smooth manifold M is a correspondence that maps
each p ∈M to a tangent vector Xp = X(p) ∈ TpM .

A vector field on M is differentiable (or smooth) if X : M → TM is a smooth map
or, equivalently, if X(f) : M → R, p 7→ Xp(f), is a smooth map for all f ∈ C∞(M). An
equivalent characterization is that, for every parametrization with coordinates (x1, . . . , xn),
the coefficients ai, i = 1, . . . , n, in the linear combination X = a1∂1 + . . . an∂n, are smooth
functions.

We denote the set of smooth vector fields on a smooth manifold M by X(M). This set
is a C∞(M)-module of rank n, and an R-vector space of infinite dimension.

Definition 4.2. Let X, Y ∈ X(M). The Lie bracket of X and Y is the smooth vector field
[X, Y ] ∈ X(M) such that

[X, Y ](f) = X(Y (f))− Y (X(f)), for all f ∈ C∞(M).

The Lie bracket satisfies the following properties: anticommutativity, R-bilinearity, and
Jacobi identity. In particular, X(M) endowed with the Lie bracket is a Lie algebra of
infinite dimension.

Definition 4.3. Let ϕ : M → N be a smooth map, X ∈ X(M) and Y ∈ X(N). Then X
and Y are ϕ-related if ϕ∗p(Xp) = Yϕ(p) for all p ∈M .

Proposition 4.4. Let ϕ : M → N be a smooth map, X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N).
If X1 is ϕ-related to Y1, and X2 is ϕ-related to Y2, then [X1, X2] is ϕ-related to [Y1, Y2].
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Definition 4.5. Let X ∈ X(M). A differentiable curve α in M is an integral curve of X
if α′(t) = Xα(t), for all t in the domain of α.

Theorem 4.6. Let X ∈ X(M), p ∈ M . Then there exist an open neighborhood U of p in
M , an interval (−δ, δ), δ > 0, and a smooth map

ϕ : (−δ, δ)× U →M

such that the curve t ∈ (−δ, δ) 7→ ϕ(t, q) ∈ M , is the unique integral curve of X that goes
through q ∈ U for t = 0.

It is customary to write ϕt such that ϕt(q) = ϕ(t, q) and call ϕt : U →M the local flow
of X. It is a local 1-parameter group that satisfies ϕ0 = id, ϕ−1

t = ϕ−t, and ϕt ◦ϕs = ϕt+s
when defined.

Definition 4.7. A smooth vector field X ∈ X(M) is complete if its integral curves exist
for all time. In this case, the flow is defined in R×M .

Proposition 4.8. If a smooth manifold M is compact, and X ∈ X(M), then X is complete.

Proposition 4.9. Let M be an embedded submanifold of N . If X ∈ X(N) is tangent to
M (i.e. for all p ∈M , Xp ∈ TpM), then the restriction X|M of X to M is a smooth vector
field. If Y ∈ X(N) is also tangent, then [X, Y ] is tangent and [X, Y ]|M = [X|M , Y |M ].

Definition 4.10. Let Mn be a smooth manifold and let k ∈ {1, . . . , n}. A distribution D
of rank k on M is a choice of a k-dimensional vector subspace Dp of TpM , for each p ∈M .

The distribution D is smooth if for each p ∈M there exists an open neighborhood U of p
and smooth vector fields X1, . . . , Xk ∈ X(U) that generate Dq for every q ∈ U . We denote
by Γ(D) the set of smooth vector fields X ∈ X(M) such that Xp ∈ Dp for all p ∈M .

The smooth distribution D is called involutive if [X, Y ] ∈ Γ(D), for all X, Y ∈ Γ(D).
An immersed submanifold N of M is an integral manifold of the smooth distribution D

if TpN = Dp for all p ∈ N .

Theorem 4.11. (Frobenius theorem.) A smooth distribution D is involutive if and
only if there is an integral manifold of D through each point in M .

The collection of all maximal connected integral manifolds of an involutive distribution
D on M forms a foliation of M .

5. Tensors

Definition 5.1. Let V be a finite-dimensional R-vector space, and V ∗ its dual space. A
tensor of type (r, s) on V , also called s-covariant, r-contravariant tensor, is a multilinear
map

V ∗ × r· · · × V ∗ × V × s· · · × V → R.
We denote by Tr,s(V ) the space of all tensors on V of type (r, s).

Proposition 5.2. Let V be a finite-dimensional vector space. There is a natural (i.e.
basis-independent) isomorphism between Tr+1,s(V ) and the space of multilinear maps

V ∗ × r· · · × V ∗ × V × s· · · × V → V.
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In particular, we have the identification T1,1(V ) = End(V ), and also T1,0(V ) = V ∗∗ = V
and T0,0 = R.

Definition 5.3. A tensor field of type (r, s) on a smooth manifold M is a C∞(M)-
multilinear map of the form

Ω1(M)× r· · · × Ω1(M)× X(M)× s· · · × X(M)→ C∞(M),

where Ω1(M) is the set of all 1-forms on M (i.e. of all smooth maps θ : M → T ∗M with
θp ∈ T ∗pM , p ∈M).

We denote the space of all tensor fields of type (r, s) on M by Tr,s(M).

Proposition 5.4. Let M be a smooth manifold. There is a natural (i.e. basis-independent)
isomorphism between Tr+1,s(M) and the space of C∞(M)-multilinear maps

Ω1(M)× r· · · × Ω1(M)× X(M)× s· · · × X(M)→ X(M).

In particular, we have the identification T1,1(M) = End(TM). Here End(TM) is the
set of all smooth maps F : TM → TM such that F (TpM) ⊂ TpM for all p ∈ M , and
F |TpM : TpM → TpM is R-linear. We also have T1,0(M) = X(M), T0,1 = Ω1(M), and
T0,0 = C∞(M).

Definition 5.5. Let (E1, . . . , En) be a local frame on an open set U of a smooth manifold
Mn, that is, n smooth vector fields defined on some open set U such that (E1|p, . . . , En|p) is
a basis for TpM at each point p ∈ U . Consider the corresponding dual coframe (ϕ1, . . . , ϕn),
that is, those 1-forms satisfying ϕi(Ej) = δij, for i, j = 1, . . . , n.

In terms of such local frame, a tensor field F of type (r, s) on M can be written in the
form

F =
n∑

i1,...,is=1

n∑
j1,...,jr=1

F j1,...,jr
i1,...,is

Ej1 ⊗ · · · ⊗ Ejr ⊗ ϕi1 ⊗ · · · ⊗ ϕis ,

where the C∞(U)-functions

F j1,...,jr
i1,...,is

= F (ϕj1 , . . . , ϕjr , Ei1 , . . . , Eis).

are called the components of the tensor F in the local frame fixed above.
In particular, in terms of a coordinate frame {∂1, . . . , ∂n} and its dual coframe {dx1, . . . , dxn},

F has the coordinate expression

F =
n∑

i1,...,is=1

n∑
j1,...,jr=1

F j1,...,jr
i1,...,is

∂j1 ⊗ · · · ⊗ ∂jr ⊗ dxi1 ⊗ · · · ⊗ dxis .

Definition 5.6. Let F be a tensor field of type (r + 1, s + 1) on a smooth manifold M .
The contraction of F over the k-th covariant index and the l-contravariant index is the
tensor field trF of type (r, s), where (trF )(ω1, . . . , ωr, X1, . . . , Xs) is defined as the trace
of the endomorphism

F (ω1, . . . , ωl−1, · , ωl+1, . . . , ωr, X1, . . . , Xk−1, · , Xk+1, . . . , Xs) ∈ T1,1(M).
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In terms of a local frame, the components of trF are

(trF )j1,...,jri1,...,is
=

n∑
m=1

F
j1,...,jk−1,m,jk+1,...,jr
i1,...,il−1,m,il+1,...,is

.

In particular, the contraction of a tensor field of type (1, 1), that is, of an endomorphism
of TM , is given by its trace.

Definition 5.7. Let ϕ : M → N be a smooth map, and F a covariant tensor field on N
of type (0, s). The pullback of F by ϕ is the covariant tensor field ϕ∗F of type (0, s) on M
given by

(ϕ∗F )(X1, . . . , Xs) = F (ϕ∗X1, . . . , ϕ∗Xs), X1, . . . , Xs ∈ X(M).

6. Lie derivative

Definition 6.1. Let M be a smooth manifold, X a smooth vector field on M , and ϕt its
flow. Let F be a covariant tensor field of type (0, s) on M . The Lie derivative of F with
respect to X is the smooth tensor field LXF of type (0, s) on M defined by

(LXF )p =
d

dt

∣∣∣∣
t=0

(ϕ∗tF )p

In particular, LXf = X(f) for any f ∈ C∞(M). We also define the Lie derivative of
Y ∈ X(M) with respect to X by LXY = [X, Y ].

Proposition 6.2. Let M be a smooth manifold and X ∈ X(M). Let f ∈ C∞(M) and F a
covariant tensor field of type (0, s) on M . Then we have:

(1) LX(fF ) = X(f)F + fLXF .
(2) If Y1, . . . , Ys ∈ X(M), then

LX(F (Y1, . . . , Ys)) = (LXF )(Y1, . . . , Ys) + F (LXY1, . . . , Ys) + · · ·+ F (Y1, . . . ,LXYs).
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