
AN INTRODUCTION TO ISOPARAMETRIC FOLIATIONS

MIGUEL DOMÍNGUEZ-VÁZQUEZ

Abstract. A hypersurface in a Riemannian manifold is called isoparametric if it and its
nearby equidistant hypersurfaces have constant mean curvature. These geometric objects,
as well as their important generalization to isoparametric submanifolds of codimension
greater than one, appear in families called isoparametric foliations.

In these notes we present an introduction to isoparametric foliations, starting from the
problem in Geometric Optics that motivated their study, and then explaining the main
results known so far, with focus on some recent techniques.
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1. Motivation: a problem in Geometric Optics

“According to the Huygens principle, one of the most simple models of what
wave propagation in an isotropic media should be consists in a family of
parallel surfaces that are intersected perpendicularly at every point by a set
of straight lines. The sequence of parallel surfaces, each one of which can be
considered as the envelope of a set of spheres of radius equal to the distance
between the surface and one of the previous ones, constitutes the family of
wavefronts.”

This comment, due to the italian mathematician Carlo Somigliana in 1919 in the pa-
per [83], though elementary from the viewpoint of classical Geometric Optics, represented
the starting point of a remarkable research line in the field of Geometry from the beginning
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of the 20th century until nowadays: the study of the so-called isoparametric hypersurfaces
and their generalizations. As we will see later, renowned mathematicians as Beniamino
Segre, Élie Cartan and Tullio Levi-Civita, among others, studied these geometric objects
at some point of their careers. A bit more recently, Yau even included the classification
problem of isoparametric hypersurfaces in spheres in his influential list of open problems
in Geometry [104].

Let us sketch here the problem of Geometric Optics that Somigliana addressed in [83].
We will present it in the more general setting of Riemannian manifolds, instead of the
particular case of R3 studied by Somigliana.

We start by considering a wave in an ambient Riemannian manifold M̄ , that is, we have
a smooth solution ϕ : M̄ × R→ R, (x, t) 7→ ϕ(x, t), to the wave equation

∆ϕ =
∂2ϕ

∂t2
,

where ∆ is the Laplace-Beltrami operator of M̄ , x ∈ M̄ represents the spatial variables,
and t ∈ R the time variable. Recall that the wavefronts of ϕ are the sets of points in
M̄ that share a common phase (i.e. the same oscillating state) at a fixed instant t0. In
other words, if we fix an instant t0 ∈ R and define a function f : M̄ → R by means of
f(x) = ϕ(x, t0), for each x ∈ M̄ , the wavefronts of ϕ at t0 are the level sets of f . Now, we
will impose two conditions on the wave.

Firstly, we will assume that the wave ϕ is stationary, that is, its wavefronts are time-
independent. This implies that the wavefronts coincide with the level sets of f . Let then
M be a wavefront and x0 ∈ M . We define the function c : R → R, t 7→ c(t) = ϕ(x0, t).
Due to the imposed condition, c does not depend on x0 ∈ M , but only on the wavefront
M . Then, we have

∆f(x) = ∆ϕ(x, t0) =
∂2ϕ

∂t2
(x, t0) = c′′(t0)

for any x ∈ M = f−1(c(t0)). Thus, we get that the Laplacian of f is constant along the
level sets of f .

Now we impose a second condition. We require the wavefronts of ϕ to be equidistant
to each other. Due to the first assumption, this second one is equivalent to the condition
that the level sets of f are equidistant to each other. In each singular level set we have
that ‖∇f‖ = 0. Let then Ma = f−1(a) and Mb = f−1(b) be two regular level sets such
that the interval [a, b] ⊂ R does not have any critical value of f . Note that Ma and
Mb are embedded hypersurfaces in M̄ . The distance between Ma and Mb is measured
along geodesics orthogonal to both hypersurfaces, due to the first variation formula. Let
γ : [0, l] → M be one of these unit-speed geodesics with p = γ(0) ∈ Ma e γ(l) ∈ Mb.
Since ∇f is orthogonal to the level sets of f , we have that the tangent vector to γ is
γ̇ = ∇f/ ‖∇f‖. Hence, the distance between Ma and Mb is

d(Ma,Mb) = l =

∫ l

0

1

‖∇f‖
〈∇f, γ̇〉dt =

∫ l

0

1

‖∇f‖
(f ◦ γ)′dt =

∫ b

a

1

‖∇f‖
ds,(1.1)
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and thus the mean value theorem guarantees that

‖∇f(p)‖ = lim
b→a

b− a
d(Ma,Mb)

.

This value for ‖∇f(p)‖ if independent of the point p ∈Ma chosen as starting point for γ.
We conclude that the norm of the gradient of f is constant along each level set of f .

Thus, we see that a stationary wave with equidistant wavefronts determines a smooth
function f such that ‖∇f‖ and ∇f are constant along the level sets of f . This leads
directly to the notion of isoparametric map, which was probably introduced by Levi-Civita
[59] in 1937.

Definition 1.1. A nonconstant smooth real function f : M̄ → R on a Riemannian manifold
M̄ is called an isoparametric map if there exist real functions Φ and Ψ of one real variable
such that

‖∇f‖ = Φ ◦ f and ∆f = Ψ ◦ f.
An isoparametric family of hypersurfaces is the collection {f−1(c) : c ∈ R} of level sets of
an isoparametric map f .

Sometimes it is convenient to require some regularity conditions on Φ and Ψ, but for
our purposes it will not be necessary. See [99] for more details.

As we have seen, the constancy of the norm of the gradient along the level sets of an
isoparametric map f means, roughly speaking, that the level sets are equidistant to each
other. In Section 2 we will see that the analogous condition for the Laplacian of f also
has a geometric interpretation: the regular level sets of f have constant mean curvature.
Indeed, Cartan characterized the hypersurfaces that are regular level sets of isoparametric
maps by the condition of defining locally a foliation of equidistant constant mean curvature
hypersurfaces. We will prove this in Theorem 2.1 below. We use this result to provide the
definition of isoparametric hypersurface.

Definition 1.2. An immersed hypersurface M of a Riemannian manifold M̄ is called an
isoparametric hypersurface if, for each p ∈ M , there exists an open neighbourhood U of
p in M such that U and the nearby equidistant hypersurfaces to U have constant mean
curvature.

Note that, given an immersed hypersurface M and a point p ∈ M , there always exists
an open neighbourhood U of p in M such that U is an embedded hypersurface with unit
normal vector field ξ, and the equidistant hypersurfaces U r = {expq(rξq) : q ∈ U}, for r
small enough, are embedded.

The study of isoparametric hypersurfaces and their generalizations enjoys nowadays a
long history that evidenced many bridges with different areas of Mathematics. Apart
from Riemannian Geometry, the theory of isoparametric hypersurfaces interacts with the
theory of Lie groups, isometric actions, symmetric spaces, Algebraic Topology, Algebraic
Geometry, Differential Equations, and submanifold theory in Hilbert spaces. We refer
to the excellent survey [93] for references on this interplay. Moreover, although here we
will focus on the more geometric aspects, isoparametric hypersurfaces have shown to be
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important in modelling some physical phenomena. We refer, for example, to [78] and [81]
for certain applications to problems in Fluid Mechanics, and to [65] for an application to
the study of isothermic surfaces.

These introductory notes have been written as a support tool for a minicourse on isopara-
metric foliations at Universidade de São Paulo. They are based on my PhD thesis [34], the
resulting articles [29], [30], [36], as well as in the book [6] by Berndt, Console and Olmos
and the notes [41] by Ferus.

These notes are organized as follows. In Section 2 we present the basic properties of
isoparametric hypersurfaces and homogeneous hypersurfaces, with focus on the spaces of
constant curvature. In Section 3 we state the classification of isoparametric hypersurfaces
in Euclidean and real hyperbolic spaces. The main points of the outstanding classification
problem of isoparametric hypersurfaces in spheres are presented in Section 4. Then we
move on to spaces of nonconstant curvature. In Section 5 we review what is known about
isoparametric hypersurfaces in manifolds of nonconstant curvature and, in Section 6, we
give an introduction to the algebraic structure of a symmetric space of noncompact type,
and apply it to construct examples of isoparametric hypersurfaces. In Section 7 we in-
troduce the notion of isoparametric submanifold of arbitrary codimension, and review the
main known results about this generalization. Finally, in Section 8, we explain the main
steps of the recent classification of isoparametric submanifolds in complex projective spaces.

We also include three appendices in these notes, where we review the basics of Jacobi
field theory applied to the study of equidistant and focal submanifolds (Appendix A), of
isometric actions (Appendix B), and of symmetric spaces (Appendix C).

2. Basic properties of isoparametric hypersurfaces

In this section we prove some basic results about isoparametric hypersurfaces, first for
general Riemannian manifolds, and later focusing on the case of spaces of constant curva-
ture. We also introduce the important subclass of homogeneous isoparametric hypersur-
faces.

2.1. Isoparametric maps versus isoparametric hypersurfaces. We start by prov-
ing the relation between isoparametric maps and isoparametric hypersurfaces announced
above.

Theorem 2.1. Let M̄ be a Riemannian manifold. Let f : M̄ → R be an isoparametric
map, c ∈ R a regular value for f , and M = f−1(c) the corresponding level hypersurface.
Then M is an isoparametric hypersurface.

Conversely, if M is an isoparametric hypersurface in M̄ , then for each p ∈ M there is
an open neighbourhood U of p in M such that U is a regular level set of an isoparametric
map f : V → R, for some open subset V of M̄ .

Proof. Let ξ = ∇f/ ‖∇f‖ be a unit normal vector field to the hypersurface M = f−1(c).
Then the shape operator S of M with respect to ξ is given by

〈SX, Y 〉 = −〈∇̄Xξ, Y 〉 = − 1

‖∇f‖
〈∇̄X∇f, Y 〉 = − 1

‖∇f‖
Hessf (X, Y ).
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Hence, if {E1, . . . , En−1} is an orthonormal frame on M , the mean curvature H of M is

H = trS =
n−1∑
i=1

〈SEi, Ei〉 = − 1

‖∇f‖

n−1∑
i=1

Hessf (Ei, Ei) = − 1

‖∇f‖
(∆f − Hessf (ξ, ξ))(2.1)

= − 1

‖∇f‖
(∆f − 1

‖∇f‖2 〈∇̄∇f∇f,∇f〉) = − 1

‖∇f‖
(∆f − 1

2 ‖∇f‖2∇f(‖∇f‖2)),

which is constant along M = f−1(c), since f is isoparametric and, thus, ‖∇f‖ and ∆f are
constant along the level sets of f .

Since c is an arbitrary regular value, the first part of the theorem will be proved when
we show that nearby regular level sets of f are equidistant. To show this, it is enough to
prove that the integral curves of the unit vector field ξ defined on the regular stratum of
f are geodesics. Indeed, if we know that, a calculation similar to (1.1) allows to conclude
that nearby regular level sets are equidistant. Thus, let us show that ∇̄ξξ = 0. First, since
ξ has unit length, we have 〈∇̄ξξ, ξ〉 = 0. Second, let X be an arbitrary smooth vector field
on (an open set) of M̄ being tangent to the regular level sets of f . We know that ξ(f) is
constant along the regular level sets of f , so X(ξ(f)) = 0. Moreover, X(f) = 0 and thus
ξ(X(f)) = 0. Then

0 =
1

‖∇f‖
[X, ξ](f) = 〈ξ, [X, ξ]〉 = 〈∇̄Xξ, ξ〉+ 〈∇̄ξX, ξ〉 = 〈∇̄ξX, ξ〉 = −〈∇̄ξξ,X〉.

Altogether, we have that ξ is a geodesic vector field.
For the converse, let M be an isoparametric hypersurface in M̄ . Fix a point p ∈M and

an open neighbourhood U of p in M such that U is embedded with unit normal vector field
ξ. Then there is an ε > 0 such that the equidistant hypersurfaces U r = {expq(rξq) : q ∈ U},
for r ∈ (−ε, ε), are embedded and have constant mean curvature. Consider the open set
V = ∪r∈(−ε,ε)U

r of M̄ and define the map f : V → (−ε, ε) sending a point q ∈ U r to r.
It is easy to show that ‖∇f‖ = 1. Using (2.1) and the fact that each U r = f−1(r) has
constant mean curvature, we also get that ∆f is constant along each level set f−1(r). This
shows that f is an isoparametric map and concludes the proof. �

Let us conclude this subsection by stating a general result about isoparametric families
of hypersurfaces due to Wang [99]; see also [98], [42], [44] and [67].

Theorem 2.2. Let f : M̄ → R be an isoparametric map in a complete connected Riemann-
ian manifold M̄ . We assume that the functions Φ and Ψ in Definition 1.1 are smooth, and
continuous, respectively. Let J = f(M̄) and consider the level sets M+ = f(max J) and
M− = f(min J), if they exist. Then:

(a) M− and M+, if they exist, are smooth submanifolds of M̄ .
(b) The interior of J only has regular values.
(c) Each regular level set of f is a tube around M+ and M−, if exist.
(d) M− and M+ are minimal submanifolds.
(e) If M̄ is closed, there exists at least one regular level set of f which is a minimal

hypersurface.
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The submanifolds M− and M+ are often called focal varieties or focal submanifolds of
f . In principle, they can be disconnected, or of codimension one. To avoid this undesired
behaviour, Ge and Tang introduced the notion of proper isoparametric map; see [42] for
more details.

2.2. Ambient spaces of constant curvature: isoparametric hypersurfaces versus
hypersurfaces with constant principal curvatures. When the ambient space has
constant curvature, the isoparametricity of a hypersurface turns out to be equivalent to
the constancy of the principal curvatures of the hypersurface. This is a crucial result due
to Cartan [13].

We will denote by M̄(κ) a real space form of curvature κ, that is, a complete Riemannian
manifold with constant sectional curvature κ. We start by making precise the definition of
hypersurface with constant principal curvatures, and by stating a very useful result that
allows to calculate the extrinsic geometry of equidistant hypersurfaces.

Definition 2.3. A hypersurface M has constant principal curvatures if for any open set
U of M with unit normal vector field ξ on U , the eigenvalues of the shape operator of U
with respect to ξ are constant on U .

Lemma 2.4. Let M be an embedded hypersurface with global unit normal vector field ξ on
a space form M̄(κ) defining embedded equidistant hypersurfaces M r = {expp(rξp) : p ∈M},
for r ∈ (−ε, ε). Denote by S the shape operator of M with respect to ξ, and by Sr the
shape operator of M r with respect to ηr, where ηrexpp(rξp) = (expp)∗rξp(rξp), p ∈ M . Then,

with respect to a basis of parallel translated vectors along the geodesics γp(t) = expp(tξp),
t ∈ (−ε, ε), p ∈M , we have that

Sr = −D′(r)D(r)−1,

where D(r) = cκ(r)I − sκ(r)S, I is de identity transformation, and

cκ(t) =


1 if κ = 0

cos(t
√
κ) if κ > 0

cosh(t
√
−κ) if κ < 0

sκ(t) =


t if κ = 0

sin(t
√
κ) if κ > 0

sinh(t
√
−κ) if κ < 0.

In particular, if λ is a principal curvature of M at p, then

λ(r) = κ̂
sign(κ) tanκ(r) + λ

1− λ tanκ(r)

is a principal curvature of M r at expp(rξp), where κ̂ = 1,
√
κ or

√
−κ according to κ = 0,

> 0 or < 0, and where tanκ = sκ/cκ.

Proof. Use standard Jacobi field theory; see Appendix A. �

Theorem 2.5. Let M be a hypersurface in a space form M̄(κ). Then M is isoparametric
if and only if M has constant principal curvatures.
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Proof. First note that it is enough to work locally, and thus we can assume that M defines
nearby equidistant embedded hypersurfaces.

Let us start with the sufficiency. Assume that M has g distinct constant principal
curvatures λ1, . . . , λg. Then Lemma 2.4 implies that the principal curvatures of a nearby
equidistant hypersurface M r at distance r are

λi(r) = κ̂
sign(κ) tanκ(r) + λi

1− λi tanκ(r)
, i = 1, . . . , g,

which are constant functions on M r. Hence, for r small enough, M r has constant principal
curvatures, and, thus, constant mean curvature. Hence each of these M r, including M , are
isoparametric hypersurfaces.

In order to prove the necessity, let M be an isoparametric hypersurface of dimension
n − 1 and let λ1, . . . , λn−1 be the principal curvature functions of M . We have to show
that these functions are constant. For simplicity, we will only do the proof for the flat

case κ = 0. Then, the principal curvatures of M r at expp(rξp), with p ∈ M , are λi(p)
1−rλi(p) ,

i = 1, . . . , n− 1. By assumption, the mean curvature of M r at any point expp(rξp) ∈ M r

is

H(r) =
n−1∑
i=1

λi(p)

1− rλi(p)
.

For a fixed p ∈ M , this defines an analytic function H on an open subset of R. Since we
have

H(0) =
n−1∑
i=1

λi(p), H ′(0) =
n−1∑
i=1

λ2
i (p), . . . , H(n−2)(0) =

n−1∑
i=1

λn−1
i (p),

we deduce that the λi do not depend on p ∈ M , and thus, M has constant principal
curvatures. For κ 6= 0, one can see that the λi(p) are determined by the poles of some
function that does not depend on p, and thus conclude similarly. �

It is worthwhile to mention at this point that isoparametricity and constancy of the
principal curvatures are not equivalent in general if the ambient space has nonconstant
curvature. The first counterexamples were constructed by Wang [97] in complex projective
spaces CP n. Many more examples have been found recently; see for example [29] and [30].

Proposition 2.6. Let M be a hypersurface with constant principal curvatures in a space
form M̄(κ). If λ is a principal curvature of M , then the corresponding principal curvature
distribution Tλ is autoparallel, that is, ∇TλTλ ⊂ Tλ.

In particular, each principal curvature distribution is integrable, and any leaf of such a
distribution is totally geodesic in M and totally umbilical in M̄ .
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Proof. Let µ 6= λ be another principal curvature of M . Then the Codazzi equation applied
to vector fields X, Y ∈ Γ(Tλ) and Z ∈ Γ(Tµ) reads

0 = 〈(∇XS)Z, Y 〉 − 〈(∇ZS)X, Y 〉
= 〈∇XSZ, Y 〉 − 〈∇XZ,SY 〉 − 〈∇ZSX, Y 〉+ 〈∇ZX,SY 〉
= µ〈∇XZ, Y 〉 − λ〈∇XZ, Y 〉 − λ〈∇ZX, Y 〉+ λ〈∇ZX, Y 〉
= (µ− λ)〈∇XZ, Y 〉 = (λ− µ)〈Z,∇XY 〉.

Thus, we deduce that 〈∇TλTλ, Tµ〉 = 0. Since µ 6= λ is arbitrary, the result follows. �

We are now ready to prove a key formula, due to Cartan, for the study of isoparametric
hypersurfaces in space forms. The proof below has been extracted from [6].

Theorem 2.7 (Cartan’s fundamental formula). Let M be an isoparametric hypersur-
face in a space form M̄(κ). Let λ1, . . . , λg be the distinct constant principal curvatures of
M , with respective multiplicities m1, . . . ,mg. Then, for all i ∈ {1, . . . , g}, we have

g∑
j=1, j 6=i

mj
κ+ λiλj
λi − λj

= 0

Proof. We change the notation slightly and consider λ1, . . . , λn−1 the constant principal
curvatures of M , where n − 1 is the dimension of M . Let {E1, . . . , En−1} be a local
orthonormal frame tangent to M such that SEi = λiEi, i = 1, . . . , n − 1. The Gauss
equation applied to fields Ei and Ej with λi 6= λj, using the fact that Tλi and Tλj are
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integrable by Proposition 2.6, yields

κ+ λiλj = R(Ei, Ej, Ej, Ei) = 〈∇Ei∇EjEj, Ei〉 − 〈∇Ej∇EiEj, Ei〉 − 〈∇[Ei,Ej ]Ej, Ei〉
= Ei〈∇EjEj, Ei〉 − 〈∇EjEj,∇EiEi〉 − Ej〈∇EiEj, Ei〉

+ 〈∇EiEj,∇EjEi〉 − 〈∇[Ei,Ej ]Ej, Ei〉
= 〈∇EiEj,∇EjEi〉 − 〈∇[Ei,Ej ]Ej, Ei〉

= 〈∇EiEj,∇EjEi〉 −
1

λj − λi
〈(∇[Ei,Ej ]S)Ej, Ei〉

= 〈∇EiEj,∇EjEi〉 −
1

λj − λi
〈(∇EiS)Ej, [Ei, Ej]〉

= 〈∇EiEj,∇EjEi〉 −
1

λj − λi
(〈(∇EiS)Ej,∇EiEj〉 − 〈(∇EiS)Ej,∇EjEi〉

= 〈∇EiEj,∇EjEi〉 −
λi − λj
λj − λi

〈∇EiEj,∇EjEi〉

= 2〈∇EiEj,∇EjEi〉 = 2
n−1∑
k=1

〈∇EiEj, Ek〉〈Ek,∇EjEi〉

= 2
n−1∑
k=1

λk 6=λi,λj

〈(∇EkS)Ei, Ej〉2

(λj − λk)(λi − λk)
,

where in the last equality we have used Codazzi equation and the fact that ∇EkS is self-
adjoint. Dividing by λi − λj and adding on j we have

n−1∑
j=1

λj 6=λi

κ+ λiλj
λi − λj

= 2
n−1∑
j,k=1

λj 6=λi 6=λk 6=λj

〈(∇EkS)Ei, Ej〉2

(λi − λj)(λj − λk)(λi − λk)
= −

n−1∑
k=1
λk 6=λi

κ+ λiλk
λi − λk

,

which proves the result. �

2.3. Homogeneous hypersurfaces. An important family of examples of isoparamet-
ric hypersurfaces and hypersurfaces with constant principal curvatures is given by the
codimension-one orbits of isometric actions on a given ambient Riemannian manifold.
These are the so-called homogeneous hypersurfaces.

Definition 2.8. An (extrinsically) homogeneous hypersurface of a Riemannian manifold
M̄ is a codimension-one orbit of the action of a Lie subgroup H of the isometry group
Isom(M̄) of M̄ .

Those isometric actions H × M̄ → M̄ that admit a hypersurface as an orbit are called
cohomogeneity one actions. Thus, homogeneous hypersurfaces are precisely the orbits of
maximum dimension of cohomogeneity one actions.

Example 2.9. Easy examples of cohomogeneity one actions are the action of SO(n) on
Rn producing concentric spheres, the action of SO(n− 1) on Sn or RP n yielding geodesic
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spheres (and a cut locus RP n−1 in the projective case), the action of Rn−1 on Rn via
translations producing parallel hyperplanes, or the action of the Heisenberg group on the
hyperbolic 3-space RHn that gives rise to the horosphere foliation. We will see more
examples throughout these notes.

It is easy to show that homogeneous hypersurfaces are isoparametric and with constant
principal curvatures. Determining when the converse is true is, probably, the most impor-
tant question in the area.

Proposition 2.10. A homogeneous hypersurface is isoparametric and has constant prin-
cipal curvatures.

Proof. Let M = H · p be a codimension-one orbit of an isometric action H × M̄ → M̄
through a point p ∈ M̄ . For any two points q, x ∈ M there exists h ∈ H such that
h(M) = M and h(q) = x. Then the shape operators of M at q and x are related by
Sx = h∗Sqh−1

∗ . Thus, they have the same eigenvalues. This shows that homogeneous
hypersurfaces have constant principal curvatures and, thus, constant mean curvature.

Let γ be a geodesic normal to M at some point p ∈ M . The tangent space to any
orbit of H is generated by Killing vector fields induced by H. If X is a Killing vector field
induced by the action of H, then ∇̄X is skew-symmetric, and thus 〈∇̄γ̇X, γ̇〉 = 0, which
proves that 〈X, γ̇〉 is constant along γ. Since 〈X, γ̇〉 vanishes at p and X is arbitrary, we
have that γ is perpendicular to the other orbits it intersects. This shows that nearby orbits
to M are equidistant to it, and hence, they all are isoparametric. �

3. The classification in Euclidean and hyperbolic spaces

The relevance of Cartan’s fundamental formula stems from the fact that it can be applied
to obtain the complete classification of isoparametric hypersurfaces in Euclidean and real
hyperbolic spaces. Historically, the first one to obtain the complete classification in the
Euclidean case was Segre [80], after Somigliana’s [83] and Levi-Civita’s [59] classifications
for R3. The hyperbolic case was solved by Cartan [13].

Below we apply Cartan’s formula to obtain the classification in Euclidean spaces.

Theorem 3.1 (Classification of isoparametric hypersurfaces in Rn). An isopara-
metric hypersurface in a Euclidean space Rn has g ∈ {1, 2} principal curvatures and is an
open part of one of the following hypersurfaces:

(a) an affine hyperplane Rn−1 of Rn,
(b) a sphere Sn−1 in Rn,
(c) a generalized cylinder Sk × Rn−k−1, k ∈ {1, . . . , n− 2}.

Proof. Putting κ = 0 in Cartan’s formula, we get
∑g

j=1, j 6=imj
λiλj
λi−λj = 0, for any principal

curvature λi of an isoparametric hypersurface M in Rn. Suppose that g ≥ 2. By reversing
the orientation of the normal vector if needed, we can take λi as the lowest positive principal
curvature. Then all terms mj

λiλj
λi−λj are negative, except if λj = 0. Then, Cartan’s formula

implies that at most λi and λj = 0 are principal curvatures. Thus we have shown that
either g = 1 or g = 2 and, in the second case, one of the principal curvatures is zero.



ISOPARAMETRIC FOLIATIONS 11

If g = 1 and λ1 = 0, we have an open part of a totally geodesic hyperplane, thus we have
case (a). If g = 1 and λ1 6= 0, we have a totally umbilical non-totally geodesic hypersurface,
so we are in case (b). Finally, if g = 2 standard Jacobi field theory implies that we have
an open part of a distance tube around a totally geodesic subspace of codimension at least
2, that is, we are in case (c). �

Similar ideas as in the Euclidean case can be applied to obtain the following classification
for real hyperbolic spaces.

Theorem 3.2 (Classification of isoparametric hypersurfaces in RHn). An isopara-
metric hypersurface in a real hyperbolic space RHn has g ∈ {1, 2} principal curvatures and
is an open part of one of the following hypersurfaces:

(a) a totally geodesic real hyperbolic hyperspace RHn−1 in RHn or one of its equidistant
hypersurfaces,

(b) a distance tube around a totally geodesic real hyperbolic subspace RHk in RHn, k ∈
{1, . . . , n− 2},

(c) a geodesic sphere in RHn,
(d) a horosphere in RHn.

An important consequence of these classifications is the fact that all isoparametric hyper-
surfaces in Euclidean and hyperbolic spaces are open parts of homogeneous hypersurfaces.
In view of Proposition 2.10, this yields the classifications of homogeneous hypersurfaces in
these spaces.

Another relevant observation is that every isoparametric hypersurface in Rn or RHn is
an open part of a complete isoparametric hypersurface which defines, via normal displace-
ments, a decomposition F of the ambient space into equidistant submanifolds, which we
can call leaves. These decomposition F is easily seen to be an isoparametric family of
hypersurfaces, that is, its leaves are the level sets of an isoparametric map on the ambient
manifold. Since, as mentioned above, all examples in these two settings are homogeneous,
such an isoparametric family coincides with the set of orbits of an isometric action of coho-
mogeneity one. With the terminology that we will introduce in Section 7, the isoparametric
family F above is also called an isoparametric singular Riemannian foliation of codimen-
sion one or, simply, and isoparametric foliation of codimension one. Thus, we can restate
the observation by saying that every isoparametric hypersurface in Rn or RHn is an open
part of a regular leaf of an isoparametric foliation that filles the whole ambient space.

4. The classification problem in spheres

In this section we give a quick review of the outstanding problem of the classification of
isoparametric hypersurfaces in spheres, which is still open nowadays.

4.1. Cartan’s results and the homogeneous examples. Cartan also investigated
isoparametric hypersurfaces in spheres in the articles [14], [15], [16]. In this setting, since
κ > 0, the fundamental formula does not provide as much information as for κ ≤ 0. In
fact, the problem in spheres is much more involved and rich. Cartan was able to classify
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isoparametric hypersurfaces in spheres Sn with g ∈ {1, 2, 3} principal curvatures. The
examples with g = 1 are just geodesic spheres, while those with g = 2 are tubes around
totally geodesic submanifolds Sk of Sn with 1 ≤ k ≤ n−2. For g = 3, Cartan showed that
all three multiplicities mi are equal, and one has m = m1 = m2 = m3 ∈ {1, 2, 4, 8}. He
also proved that the corresponding isoparametric hypersurfaces are tubes around certain
embedding of the projective plane FP 2 in S3m+1, where F is the division algebra R, C, H or
O, for m = 1, 2, 4, 8, respectively. Moreover, Cartan found two examples of isoparametric
hypersurfaces with four principal curvatures in S5 and in S9, but he could get neither a
classification for g ≥ 4, nor an upper bound on g (as for Rn and RHn).

Example 4.1. Let us describe briefly the isoparametric family of hypersurfaces with g = 3
principal curvatures in S4 discovered by Cartan. We start by considering an orthogonal
decomposition of the Lie algebra su(3) = k⊕ p into the sum of the compact Lie subalgebra
k = so(3) and its 5-dimensional orthogonal complement p with respect to the inner product
given by 〈X, Y 〉 = − tr(XY ). The action

SO(3)× p → p

(k,X) 7→ kXk−1

is then isometric with respect to the inner product on p defined above. Thus, we have
an orthogonal representation of the compact Lie group SO(3) on the 5-dimensional vector
space p. The restriction of this action to the unit sphere of p is then an isometric action.
Fix the following points in this unit sphere

p =
1√
2

i 0 0

0 −i 0

0 0 0

 , q =
1√
6

i 0 0

0 i 0

0 0 −2i

 .

Then, the Lie algebra of the isotropy group of p for the action of K = SO(3) is trivial,
since one can calculate that [X, p] = 0 implies that X = 0, for any X ∈ k. Hence, the
dimension of the orbit of the above action through p equals the dimension of SO(3), which
is 3. Thus, the action above is a cohomogeneity one action on the sphere, and the orbit
through p is a homogeneous isoparametric hypersurface in S4. On the other hand, an
elementary calculation shows that the isotropy group of q is isomorphic to S(O(2)×O(1)).
This implies that the orbit of K = SO(3) through q is isometric to a real projective plane
RP 2 = SO(3)/S(O(2) × O(1)). This is the so-called Veronese embedding of RP 2 in S4.
By direct calculation or by the general theory of isoparametric hypersurfaces in spheres
(see below), this immersion is minimal.

This example admits an extremely important generalization to the so-called isotropy
representation of a symmetric space.

Example 4.2. Let N = G/K be a symmetric space with no Euclidean factor, where G
is the connected component of the identity in the isometry group Isom(N), and K is the
isotropy group, that is, those elements in G that fix a base point o ∈ N . Then, K acts
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infinitesimally on the tangent space ToN by

K × ToN → ToN

(k, v) 7→ k∗v.

This action is the isotropy representation of the symmetric space G/K. It is an isometric
action with respect to the inner product of the symmetric space, and thus induces an
isometric action on the unit sphere of ToN .

Now let g = k⊕ p be the Cartan decomposition associated with the pair (G,K); that is,
p is the orthogonal complement of the Lie algebra k of K in the Lie algebra g of G with
respect to the Killing form of G. Consider the map φ : G → N , g 7→ φ(g) = g(o). Its
differential φ∗e at the identity e ∈ G maps k to 0, and p isomorphically onto ToN . Thus, it
turns out that the isotropy representation above can be rewritten as the adjoint action

K × p → p

(k,X) 7→ Ad(k)X.

If the symmetric space N = G/K has rank two, then the restriction of the isotropy
representation to the unit sphere of ToN (or of p) has cohomogeneity one. Note that we
have an explicit list of symmetric spaces of rank two; see Table 1 below. Observe also that
Example 4.1 above corresponds precisely to the isotropy representation of the rank-two
symmetric space SU(3)/SO(3).

Coming back to the development of the study of isoparametric hypersurfaces, Cartan
also noticed that all examples known to him (those in spheres, but also those in Rn and
RHn) were homogeneous. This observation led him to ask the following question: is every
isoparametric hypersurface extrinsically homogeneous? A surprising negative answer would
only come several decades later.

The study of isoparametric hypersurfaces was taken up again in the early seventies.
Nomizu [73] shows that the focal manifolds of an isoparametric family of hypersurfaces in
a sphere are minimal; the focal manifolds of an isoparametric family are those elements of
the family with codimension greater than one. About that time Hsiang and Lawson [51]
derived the classification of cohomogeneity one actions on spheres:

Theorem 4.3. [51] Each cohomogeneity one action on a sphere Sn is orbit equivalent to
the isotropy representation of a Riemannian symmetric space of rank 2. Every such action
has exactly two singular orbits, while the other orbits are principal and tubes around each
one of the singular ones.

Based on the work of Hsiang and Lawson, Takagi and Takahashi [87] determined the
principal curvatures of homogeneous (isoparametric) hypersurfaces in spheres. According
to these results, every homogeneous hypersurface in a sphere is a principal orbit of the
isotropy representation of a Riemannian symmetric space of rank two. In Table 1 all sym-
metric spaces of rank 2 are shown, together with their dimensions, the number g of principal
curvatures and the multiplicities of the corresponding homogeneous hypersurfaces.
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g Multiplicities Symmetric space G/K dimG/K

1 l − 2 S1 × Sl−1 l

2 (k, l − k − 2) Sk+1 × Sl−k−1 l

3 1 SU(3)/SO(3) 5

3 2 SU(3) 8

3 4 SU(6)/Sp(3) 14

3 8 E6/F4 26

4 (2, 2) Sp(2) 10

4 (4, 5) SO(10)/U(5) 20

4 (1, k − 2) SO(k + 2)/SO(2)× SO(k) 2k

4 (2, 2k − 3) SU(k + 2)/S(U(2)× U(k)) 4k

4 (4, 4k − 5) Sp(k + 2)/Sp(2)× Sp(k) 8k

4 (9, 6) E6/Spin(10) · U(1) 32

6 (1, 1) G2/SO(4) 8

6 (2, 2) G2 14

Table 1. Compact symmetric spaces of rank 2 corresponding to the homo-
geneous isoparametric families in spheres

4.2. Münzner’s structural results. A consequence of Takagi and Takahashi’s work is
that the number of principal curvatures g of a homogeneous hypersurface in a sphere sat-
isfies g ∈ {1, 2, 3, 4, 6}. In two remarkable articles [70], [71], Münzner was able to prove
that the same restriction on g holds for every (not necessarily homogeneous) isoparamet-
ric hypersurface in a sphere. Münzner’s papers contain a deep analysis of the structure
of isoparametric families of hypersurfaces in spheres, using both geometric and topolog-
ical methods. Apart from the restriction on g, we emphasize other two consequences of
Münzner’s work.

The first one is that, if λ1 < · · · < λg are the principal curvatures of an isoparametric
hypersurface in a sphere, they can be written as λi = cot θi, for 0 < θ1 < · · · < θg < π,
with

θi = θ1 +
i− 1

g
π, i = 1, . . . , g.

Moreover, if the corresponding multiplicities are m1, . . . ,mg, they satisfy mi = mi+2 (in-
dices modulo g); in particular, if g is odd, all the multiplicities coincide, and if g is even,
there are at most two different multiplicities.

The second result is the algebraic character of isoparametric hypersurfaces in spheres.
More precisely, a hypersurface M in Sn is isoparametric if and only if M ⊂ F−1(c) ∩
Sn, where F is a homogeneous polynomial of degree g on Rn+1 satisfying the differential
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equations

‖∇F (x)‖2 = g2‖x‖2g−2,

∆F (x) =
1

2
(m2 −m1)g2‖x‖g−2, x ∈ Rn+1.

The intersection of Sn with the level sets of such an F form an isoparametric family of
hypersurfaces in Sn. From this result, it also follows that every isoparametric hypersurface
in Sn is an open part of a complete isoparametric hypersurface in Sn, which is in turn
a leaf of an isoparametric family of hypersurfaces that fills the whole Sn (this happened
also for Rn and RHn). A polynomial F like the one above is called a Cartan-Münzner
polynomial. Notice that, according to this result, the classification problem of isoparametric
hypersurfaces in spheres is reduced to a problem of Algebraic Geometry, but a very difficult
one.

Each isoparametric family in Sn determined by a Cartan-Münzner polynomial F has
exactly two focal submanifolds of codimensions m1 + 1 and m2 + 1, which correspond to
the level sets M+ = F |−1

Sn(1) and M− = F |−1
Sn(−1), regardless of the number of principal

curvatures. Each principal curvature λi = cot θi, i = 1, . . . , g, of a hypersurface M in the
family gives rise to two antipodal focal points that correspond to the instants t = θi and
t = θi + π in any unit speed geodesic γ in Sn normal to the hypersurface M and with
γ(0) ∈ M . The 2g focal points are equally spaced at intervals of length π/g along the
normal geodesic γ, and they lie alternately on the two focal submanifolds M+ and M−.

4.3. The inhomogeneous examples. Since the restriction on g obtained by Münzner
coincides with the one for homogeneous hypersurfaces, Cartan’s question on the homogene-
ity of isoparametric hypersurfaces became even more attractive. However, in 1975 Ozeki
and Takeuchi gave a negative answer to this question [75]. They constructed some Cartan-
Münzner polynomials that give rise to isoparametric hypersurfaces with g = 4 that are not
homogeneous, because their multiplicities do not coincide with the possible multiplicities
of the homogeneous examples.

Some years later, Ferus, Karcher and Münzner [40] found a much larger family of in-
homogeneous examples that included the ones given by Ozeki and Takeuchi. For each
representation of a Clifford algebra they constructed a Cartan-Münzner polynomial that
yields an isoparametric family of hypersurfaces with g = 4. We call these examples hyper-
surfaces of FKM-type or of Clifford type, and the corresponding isoparametric families are
called FKM-foliations. We have preferred to postpone the construction of these examples
to §4.5 below.

Most of the isoparametric hypersurfaces of FKM-type are inhomogeneous, and this in-
homogeneity was proved in [40] in a direct way, without using the classification of homo-
geneous hypersurfaces. As a consequence of this result, one gets the existence of an infi-
nite countable collection of noncongruent inhomogeneous isoparametric families in spheres.
This made the study of isoparametric hypersurfaces in spheres a much more appealing and
interesting topic of research.
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4.4. Towards the final classification. Even today, all known isoparametric hypersur-
faces in spheres are either homogeneous or of FKM-type; and all those hypersurfaces with
g = 4 are of FKM-type, with the exception of two homogeneous families of hypersurfaces
with multiplicities (2, 2) and (4, 5). A first step towards a classification would be to deter-
mine the possible triples (g,m1,m2) that an isoparametric hypersurface with g = 4 or g = 6
can take. Several authors have contributed to this question (we just mention some of them,
and refer to the surveys [93] and [18] for further references). In [70] and [71], Münzner al-
ready found some restrictions, which were improved by Abresch [1]. In particular, Abresch
showed that the only possible triples with g = 6 are (6, 1, 1) and (6, 2, 2); moreover, there
exist homogeneous examples in both cases. The determination of all possible triples with
g = 4 was established by Stolz in 1999 [84]. He proved that every isoparametric hypersur-
face with g = 4 constant principal curvatures in a sphere has the multiplicities of one of
the known homogeneous or inhomogeneous examples; in other words, the possible triples
(4,m1,m2) are (4, 2, 2), (4, 4, 5) and the ones of FKM-type hypersurfaces (see Table 2
in §4.5).

As we mentioned before, isoparametric hypersurfaces in spheres with g ∈ {1, 2, 3} had
been classified by Cartan. In 1976, Takagi [86] showed that if g = 4 and one of the
multiplicities is one, then the hypersurface is homogeneous and of FKM-type. Ozeki and
Takeuchi [76] proved that those isoparametric hypersurfaces with g = 4 and one multi-
plicity equal to 2 are homogeneous and, except for the case of multiplicities (2, 2) (which
corresponds to the homogeneous example in S9 obtained by Cartan), also of FKM-type.
In 1985, Dorfmeister and Neher [37] proved the uniqueness of the hypersurface with triple
(6, 1, 1), which is hence homogeneous. Quite recently, in 2007-2008, Cecil, Chi and Jensen
[19], and independently Immervoll [52], proved that, with a few possible exceptions, every
isoparametric hypersurface with g = 4 is one of the known examples. More precisely, if
the multiplicities (m1,m2) of an isoparametric hypersurface with g = 4 in a sphere satisfy
m2 ≥ 2m1 − 1, then such hypersurface must be of FKM-type. Together with other known
results, this one gives a classification of the case g = 4 with the exception of the pairs of
multiplicities (3, 4), (4, 5), (6, 9) and (7, 8). The methods used in both articles are different:
while Cecil, Chi and Jensen make use of the theory of moving frames and commutative
algebra, Immervoll uses the tool of isoparametric triple systems developed by Dorfmeister
and Neher [37]. In the last years, on the one hand, Chi went on studying the exceptional
cases with g = 4 in [20] and [21], leaving only open the case of multiplicities (7, 8). On
the other hand, Miyaoka has investigated the case (g,m1,m2) = (6, 2, 2) in the article [66],
where the uniqueness and homogeneity of such isoparametric family is claimed. However,
in view of the recent errata [68] and the work in progress [82] by Siffert, it seems that this
result has not been confirmed yet.

4.5. The FKM examples. In this subsection we present the construction and some of
the main properties of the isoparametric families in spheres constructed by Ferus, Karcher
and Münzner. The exposition here is taken from the paper [36]. For details missing here
we refer to the original paper [40].
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Let V = R2n+2 be a Euclidean space and (P0, . . . , Pm) an (m + 1)-tuple of symmetric
real matrices of order 2n + 2. Thus, we regard each Pi as a selfadjoint endomorphism of
V . This (m+ 1)-tuple (P0, . . . , Pm) is called a (symmetric) Clifford system if the matrices
satisfy PiPj + PjPi = 2δij Id for all i, j ∈ {0, . . . ,m}, where δij is the Kronecker delta.
We also define P = span{P0, . . . , Pm} and endow this vector space with the inner product
given by 〈P, P ′〉 = (1/ dimV ) tr(PP ′), for P, P ′ ∈ P .

Assume that m2 = n−m > 0. Then the FKM-foliation FP associated with the Clifford
system (P0, . . . , Pm) is defined by the level sets of F |S(V ), where S(V ) is the unit sphere of
V and F : V → R is the Cartan-Münzner polynomial:

F (x) = 〈x, x〉2 − 2
m∑
i=0

〈Pix, x〉2.

The corresponding isoparametric hypersurfaces have g = 4 principal curvatures with mul-
tiplicities (m1,m2) = (m,n − m). This construction does not depend on the particular
matrices P0, . . . , Pm, but only on the unit sphere S(P) of P . S(P) is called the Clifford
sphere of the foliation. Moreover, two FKM-foliations are congruent if and only if their
Clifford spheres are conjugate under an orthogonal transformation of V .

For each integer m ≥ 1, we define δ(m) as the smallest natural number such that there
exists a Clifford system (P0, . . . , Pm) on V = R2δ(m). Equivalently, 2δ(m) is the dimension of
any irreducible Clifford Cl∗m+1-module; see [58, Chapter I] for more information on Clifford
algebras and modules. In addition, if (P0, . . . , Pm) is a Clifford system on V = R2n+2, then
there is a natural number k such that n + 1 = kδ(m). Conversely, for a fixed m ≥ 1, if k
is a natural number such that m2 = n −m ≥ 1, with n = kδ(m) − 1, then there exists a
Clifford system (P0, . . . , Pm) on V = R2n+2 = R2kδ(m) that gives rise to an FKM-foliation
on S2n+1.

The classification result of FKM-foliations given in [40] ensures that for m 6≡ 0 (mod 4),
there exists only one isoparametric FKM-foliation for each natural k ≥ (m+ 2)/δ(m), up
to congruence. However, if m ≡ 0 (mod 4), for each natural k ≥ (m + 2)/δ(m) there are
exactly [k/2] + 1 FKM-foliations up to congruence. Here [·] denotes the integer part of a
real number. This different behaviour, depending on whether m is multiple of 4 or not, is
due to the fact that, if m ≡ 0 (mod 4), there exist exactly two irreducible representations
d+, d− of the Clifford algebra Cl∗m+1 up to equivalence, whereas there is only one, say d, if
m 6≡ 0 (mod 4). Thus, every representation of Cl∗m+1 on V = R2n+2 has the form ⊕ki=1d if

m ≡ 0 (mod 4), or the form (⊕k+i=1d+)⊕ (⊕k−i=1d−) if m 6≡ 0 (mod 4), for certain integers k+,
k− such that k = k+ + k−.

In Table 2 we show the pairs of multiplicities (m1,m2) = (m,n − m) of the principal
curvatures of the hypersurfaces of FKM type, for low values of m and k. When a pair
(m1,m2) is not underlined, we will understand that there is only one FKM-foliation with
those multiplicities, up to congruence; the underlinings (m1,m2), (m1,m2)... point to the

existence of two, three... FKM-foliations with multiplicities (m1,m2), respectively.
For a fixed m, the examples in the corresponding column of Table 2 are mutually non-

congruent. Nevertheless, it can happen that examples in two different columns (i.e. with
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m 1 2 3 4 5 6 7 8 9 10 . . .

δ(m) 1 2 4 4 8 8 8 8 16 32 . . .

k = 1 − − − − (5, 2) (6, 1) − − (9, 6) (10, 21) . . .

k = 2 − (2, 1) (3, 4) (4, 3) (5, 10) (6, 9) (7, 8) (8, 7) (9, 22) (10, 53) . . .

k = 3 (1, 1) (2, 3) (3, 8) (4, 7) (5, 18) (6, 17) (7, 16) (8, 15) (9, 38) (10, 85) . . .

k = 4 (1, 2) (2, 5) (3, 12) (4, 11) (5, 26) (6, 25) (7, 24) (8, 23) (9, 54) (10, 117) . . .

k = 5 (1, 3) (2, 7) (3, 16) (4, 15) (5, 34) (6, 33) (7, 32) (8, 31) (9, 70) (10, 149) . . .

...
...

...
...

...
...

...
...

...
...

...
. . .

Table 2. Small multiplicities (m1,m2) of the FKM-hypersurfaces

different m) are congruent to each other. In fact, this is the case for several pairs of exam-
ples: the families with pairs of multiplicities (2, 1), (6, 1), (5, 2) and one of the two families
with pair (4, 3) are congruent, respectively, to those families with pairs (1, 2), (1, 6), (2, 5) e
(3, 4). These exhaust all coincidences up to congruence. Moreover, the only FKM-foliations
that are homogeneous correspond to those families with multiplicities (1, k − 2) for k ≥ 3,
(2, 2k− 3) for k ≥ 2, one of the examples with multiplicities (4, 4k− 5) for each k ≥ 2, and
the foliations with multiplicities (5, 2), (6, 1) and (9, 6).

5. Isoparametric hypersurfaces in spaces of nonconstant curvature

As shown by Cartan, in a space of constant curvature, an isoparametric hypersurface
is the same as a hypersurface with constant principal curvatures. However, this equiva-
lence does not hold in general for ambient manifolds of nonconstant curvature, as will be
comented below. Thus, two different properties of hypersurfaces in ambient manifolds of
nonconstant curvature generalize in a natural way the property of being an isoparametric
hypersurface in a real space form: the original notion of isoparametric hypersurface, but
also the notion of hypersurface with constant principal curvatures. The study of hyper-
surfaces with constant principal curvatures, particularly in complex space forms, has been
a fruitful area of research in the last decades. We refer the reader to the [28] and [33] for
further information on this topic. However, in these notes we focus on the original notion
of isoparametric hypersurface.

The most efficient method to construct isoparametric hypersurfaces in a space of noncon-
stant curvature is by means of cohomogeneity one actions: their principal orbits are then
homogeneous isoparametric hypersurfaces. Cohomogeneity one actions have been studied
in different settings. For example, they have shown to be useful in the construction of
manifolds with nonnegative or positive sectional curvature [46], [100], [45], of Einstein,
Einstein-Kähler and Einstein-Weyl structures [4], [12], in order to investigate Yang-Mills
equations [96], and to construct hyper-Kähler Calabi metrics [23], special Lagrangian sub-
manifolds [53] or Ricci solitons [26]. Moreover, the classification of cohomogeneity one
actions has been studied for certain spaces, with especial attention to symmetric spaces;
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see the paper [55] by Kollross for the compact case, and the paper [10] by Berndt and
Tamaru for the noncompact case.

Apart from cohomogeneity one actions, another method of construction of isoparametric
hypersurfaces is by means of warped products. It is known that the fibers {b} × F of a
warped product B×f F are totally umbilical submanifolds; see [74]. If we take the basis B
to be of dimension one, F any Riemannian manifold, and f : B → R any smooth positive
function, the warped product B ×f F carries an isoparametric family of totally umbilical
hypersurfaces given by the fibers {b}×F , where b ∈ B. This allows to obtain a large family
of examples of isoparametric families of hypersurfaces with exactly one constant principal
curvature. If we take F to be an intrinsically inhomogeneous Riemannian manifold, then
the corresponding isoparametric hypersurfaces cannot be extrinsically homogeneous.

However, these two families of examples are rather particular. We are interested in
obtaining methods of construction of isoparametric hypersurfaces which, in principle, can
be inhomogeneous and have extrinsic geometry more complicated than the fibers of a
warped product, which are totally umbilical. The natural setting to address this purpose
is to take ambient spaces with lots of symmetries. Symmetric spaces are then natural
candidates.

The first examples of isoparametric hypersurfaces with nonconstant principal curvatures
were found by Wang [97] in the complex projective space CP n, by projecting some of
the inhomogeneous isoparametric hypersurfaces of FKM-type in odd-dimensional spheres
S2n+1 to CP n via the Hopf map. Other inhomogeneous isoparametric hypersurfaces with
nonconstant principal curvatures in complex projective spaces were constructed by Xiao
[102] and by Ge, Tang and Yan [43]. These examples are again related to the isopara-
metric hypersurfaces in spheres. The idea of using the Hopf map to project isoparametric
hypersurfaces in a sphere to a complex projective space has been systematically explored
in [36]. Explaining this method is the aim of Section 8.

Another large set of examples is given by small geodesic spheres in the non-symmetric
Damek-Ricci spaces. These are certain solvable Lie groups endowed with a left-invariant
metric which are harmonic as Riemannian manifolds; they were constructed by Damek and
Ricci [25]. One characterization of harmonicity is that sufficiently small geodesic spheres
have constant mean curvature, and hence, are isoparametric. The family of Damek-Ricci
spaces includes the Riemannian symmetric spaces of noncompact type and rank one as
particular cases (these are precisely real, complex and quaternionic hyperbolic spaces RHn,
CHn and HHn, and the Cayley hyperbolic plane OH2). However, for those non-symmetric
Damek-Ricci spaces, the small geodesic spheres have nonconstant principal curvatures, in
spite of being isoparametric. In §6.2 we will talk about Damek-Ricci spaces.

Recently, Dı́az-Ramos and Domı́nguez-Vázquez have constructed many inhomogeneous
isoparametric hypersurfaces with nonconstant principal curvatures in the complex hyper-
bolic space [29] and, more generally, in Damek-Ricci spaces [30]. The aim of Section 6,
and in particular of §6.3, is to explain the construction of these hypersurfaces.
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6. Isoparametric hypersurfaces in Damek-Ricci spaces

In this section our purpose is to explain a method for the construction of isoparametric
hypersurfaces, which are generically inhomogeneous, in the symmetric spaces of noncom-
pact type, nonconstant curvature and rank one. This method can indeed be applied to the
more general setting of Damek-Ricci spaces, which are certain noncompact Lie groups with
left-invariant metric. We provide several powerful tools that are used in the construction of
the examples and that can be used for many other purposes (see for example [8], [31], [88]).
Thus, in §6.1 we explain how a symmetric space of noncompact type can be regarded as
a Lie group endowed with a left-invariant metric: the so-called solvable model. In §6.2 we
present the definition of Damek-Ricci spaces, which is motivated by the solvable model of a
rank one noncompact symmetric space. Finally, the construction method of isoparametric
hypersurfaces in Damek-Ricci spaces is presented in §6.3.

6.1. The solvable model of a noncompact symmetric space. Our aim in this section
is to provide a model of any symmetric space M = G/K of noncompact type as a solvable
Lie group AN equipped with a left-invariant metric. The proof of this general fact is
based on the Iwasawa decomposition of the noncompact symmetric space. We will content
ourselves with presenting the construction without giving the proofs. The reader is referred
to [32, Chapter 2] for a more detailed description and to [54, §6.4] for general information
on the Iwasawa decomposition of semisimple Lie groups; see also [9].

Let M be a symmetric space of noncompact type (see Appendix C for a quick intro-
duction to symmetric spaces). Then M admits the representation as a coset space G/K,
where G is the identity connected component of the isometry group of M , and K is the
isotropy group at some point o ∈ M . Denote by g and k the Lie algebras of G and K,
respectively. It is known that g is a semisimple Lie algebra, and k is a maximal compact
subalgebra of g.

Let ad and Ad be the adjoint maps of g and G, respectively. Let B be the Killing
form of g, that is, B : (X, Y ) ∈ g × g 7→ B(X, Y ) = tr(ad(X) ad(Y )) ∈ R, which is a
nondegenerate bilinear form by virtue of Cartan’s criterion for semisimple Lie algebras.
Then g = k ⊕ p is the Cartan decomposition of g with respect to o ∈ M , where p is the
orthogonal complement of k in g with respect to B. This means that we have the bracket
relations [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k, and B is negative definite on k and positive
definite on p.

The Cartan involution θ corresponding to the Cartan decomposition above is the auto-
morphism of the Lie algebra g defined by θ(X) = X for all X ∈ k and θ(X) = −X for
all X ∈ p. Moreover, it turns out that Bθ(X, Y ) = −B(θX, Y ) defines a positive definite
inner product on g satisfying the relation Bθ(ad(X)Y, Z) = −Bθ(Y, ad(θX)Y ) for all X,
Y , Z ∈ g.

We take now a maximal abelian subspace a of p. It happens that the dimension of a
is precisely the rank of the symmetric space M . The set {ad(H) : H ∈ a} is a family of
commuting self-adjoint (with respect to Bθ) endomorphisms of g, and hence simultaneously
diagonalizable. By definition, their common eigenspaces are the (restricted) root spaces of
the simple Lie algebra g, and their nonzero eigenvalues (which do depend on H ∈ a) are
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the (restricted) roots of g. Denoting by a∗ the dual vector space of a, if we define for each
λ ∈ a∗

gλ = {X ∈ g : [H,X] = λ(H)X, for all H ∈ a},
then the (restricted) root space decomposition of g with respect to a has the form

g = g = g0 ⊕

(⊕
λ∈Σ

gλ

)
,

where Σ is the set of all restricted roots. These mutually Bθ-orthogonal subspaces gλ
are precisely the root spaces. Moreover, a ⊂ g0, and for every λ, µ ∈ a∗, we have that
[gλ, gµ] ⊂ gλ+µ. Furthermore, g0 = k0 ⊕ a, where k0 = g0 ∩ k ∼= u(n − 1) is the normalizer
of a in k. Note that each root space gλ is normalized by g0.

Now we fix a criterion of positivity in the set of roots: we take any hyperplane in a∗ not
containing any root, and we declare the roots on one side of the hyperplane as positive,
and the roots on the other side as negative. We denote by Σ+ the subset of positive roots.
Define n =

⊕
λ∈Σ+ gλ as the sum of the root spaces corresponding to all positive roots.

Due to the properties of the root space decomposition, n is a nilpotent Lie subalgebra of
g. Then a⊕ n is a solvable Lie subalgebra of g, since [a⊕ n, a⊕ n] = n is nilpotent.

Example 6.1. It is convenient to have in mind a specific example. The simplest one
is when M is the real hyperbolic plane RH2. We refer to [9] for a description of the
elements mentioned in this subsection for the case M = RH2. However, with view on the
construction of new isoparametric hypersurfaces, the first interesting space is M = CHn:
the complex hyperbolic space. In this case we have G = SU(1, n) and K = S(U(1)U(n)).
Note that G is simple, and K compact with one-dimensional center, which means that CHn

is a Hermitian symmetric space. Indeed, CHn is a complete simply connected homogeneous
Kähler manifold of constant holomorphic negative sectional curvature. Since CHn has rank
one, then dim a = 1 in this case. Moreover, one can show that the restricted root space
decomposition of g with respect to a in this case adopts the form

g = g−2α ⊕ gα ⊕ g0 ⊕ gα ⊕ g2α

for a certain covector α ∈ a∗. We have that the set of roots is Σ = {−2α,−α, α, 2α}. It is
possible to calculate all this explicitely in terms of matrices; we refer to [32] for a detailed
exposition. It turns out that dim g2α = dim g−2α = dim a = 1 and dim gα = dim g−α =
2n − 2. Now, fixing a criterion of positivity is equivalent to declare α or −α as positive
root. If we choose the first possibility, then we have n = gα ⊕ g2α, which is a nilpotent
Lie subalgebra of g with center g2α. In fact n is isomorphic to the (2n − 1)-dimensional
generalized Heisenberg algebra, and then a⊕ n is the Lie algebra of a Damek-Ricci space.
See §6.2 for a description of generalized Heisenberg algebras and Damek-Ricci spaces.

We come back to our general description. The direct sum decomposition g = k⊕ a⊕ n
is called the Iwasawa decomposition of the semisimple Lie algebra g. It is important to
mention that, even though k, a and n are Lie subalgebras of g, the previous decomposition
of g is just a decomposition in a direct sum of vector subspaces, but neither an orthogonal
decomposition, nor a direct sum of Lie algebras.
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Let A, N and AN be the connected subgroups of G with Lie algebras a, n and a ⊕ n,
respectively. The Iwasawa decomposition theorem at the Lie group level ensures that the
product map (k, a, n) ∈ K ×A×N 7→ kan ∈ G is a diffeomorphism. Again, we just mean
that G and K × A × N are diffeomorphic as manifolds, but not that G is isomorphic to
the direct product of the groups K, A and N . It follows from the Iwasawa decomposition
that the solvable group AN acts simply transitively on M ; in other words, we can identify
M with AN as we will show soon.

Consider now the differentiable map

φ : h ∈ G 7→ h(o) ∈M.

Since AN acts simply transitively on M , the map φ|AN : AN →M is a diffeomorphism, and
one can identify a⊕ n with the tangent space ToM . The metric g of the symmetric space
M as a Riemannian manifold induces a metric φ∗g on AN . The Riemannian manifolds
(AN, φ∗g) and (M, g) are then trivially isometric. Let us denote by Lh the left translation
in G by the element h ∈ G. As the metric g on M is invariant under isometries (and then
under elements of G), it follows that

L∗h(φ
∗g) = L∗hφ

∗(h−1)∗g = (h−1 ◦ φ ◦ Lh)∗g = φ∗g, for all h ∈ G,
because (h−1 ◦ φ ◦ Lh)(h′) = h−1(hh′(o)) = h′(o) = φ(h′) for all h′ ∈ G. Therefore the
metric φ∗g on AN is left-invariant. From now on, we will denote this metric by 〈·, ·〉AN .
Thus, we have obtained that M can be seen as a solvable Lie group AN endowed with a
left-invariant metric.

Example 6.2. Particularizing this theory for the case of the complex hyperbolic space,
what we see is that we can regard CHn as solvable Lie group AN endowed with a left-
invariant metric, and where its Lie algebra a ⊕ n = a ⊕ gα ⊕ g2α can be identified with
the tangent space ToCHn, with dim a = dim g2α = 1 and dim gα = 2n − 2. By means of
φ|AN we can also equip AN with the Kähler structure induced by the one in CHn, and we
obtain the corresponding complex structure J on AN , and also on a⊕n. Some calculations
with matrices would show that the complex structure J on a ⊕ n leaves gα invariant and
Ja = g2α. Thus we can see gα as a complex vector space Cn−1.

Let B ∈ a be a vector such that 〈B,B〉AN = 1 and define Z = JB ∈ g2α. Then
〈Z,Z〉AN = 1. Let now a, b, x, y be real numbers and U , V ∈ gα. One can show that the
Lie bracket of a⊕ n is given by

1√
−c

[aB + U + xZ, bB + V + yZ] = − b
2
U +

a

2
V + (−bx+ ay + 〈JU, V 〉AN)Z,

where c is the constant holomorphic sectional curvature of CHn. Furthermore, the Levi-
Civita connection ∇̄ of (AN, 〈·, ·〉AN) can be calculated by the expression (cf. [7, §2]):

1√
−c
∇̄aB+U+xZ(bB + V + yZ) =

(
xy +

1

2
〈U, V 〉AN

)
B − 1

2
(bU + yJU + xJV )

+

(
−bx+

1

2
〈JU, V 〉AN

)
Z.
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These formulas agree with the corresponding formulas for CHn seen as a Damek-Ricci
space (cf. §6.2). Indeed, the construction described so far for CHn can be carried out also
for the other rank one symmetric spaces of noncompact type: the hyperbolic spaces over
the reals RHn, over the quaternions HHn, and the hyperbolic plane over the octonions
OH2 (the so-called Cayley hyperbolic plane). For these spaces, dim a = 1, since all have
rank one, and the corresponding root space decomposition of g adopts the same form as for
CHn, but now the dimensions vary: we have dim gα = 0, 1, 3, 7 according to real, complex,
quaternionic or octonionic cases, respectively. An orthonormal basis of gα can be regarded
as the set of natural complex structures that we have in each case. The spaces RHn, CHn,
HHn and OH2 are precisely the only Damek-Ricci spaces that are symmetric spaces. Thus,
for rank one noncompact symmetric spaces we can use both the theory of symmetric spaces
and the theory of Damek-Ricci spaces.

6.2. Damek-Ricci spaces. We have mentioned that rank one symmetric spaces of non-
compact type are Damek-Ricci spaces. These manifolds were constructed by Damek and
Ricci [25] to provide counterexamples to the Lichnerowicz conjecture, stating that every
harmonic manifold is locally isometric to a two-point homogeneous space (that is, a rank
one symmetric space, or Euclidean space). In fact, the only Damek-Ricci spaces that are
not counterexamples to this conjecture are precisely the noncompact symmetric spaces
of rank one: the hyperbolic spaces RHn, CHn, HHn and OH2. Our purpose here is to
present a succint description of these manifolds, with the only aim of using this description
for the construction that we will present below in §6.3.

Definition 6.3. Let v and z be real vector spaces. Define the direct sum n = v ⊕ z and
endow it with an inner product 〈·, ·〉n such that v and z are perpendicular. Define a linear
map J : Z ∈ z 7→ JZ ∈ End(v) such that 〈JZU, V 〉n = −〈U, JZV 〉n for all U, V ∈ v, Z ∈ z.
Consider the Lie algebra structure on n given by

〈[U, V ], X〉n = 〈JXU, V 〉n, [X, V ] = [U, Y ] = [X, Y ] = 0, for all U, V ∈ v, X, Y ∈ z.

Then n is a two-step nilpotent Lie algebra with center z, and, if J2
Z = −〈Z,Z〉n Idv for

all Z ∈ z, n is said to be a generalized Heisenberg algebra or an H-type algebra. The
associated simply connected nilpotent Lie groupN , endowed with the induced left-invariant
Riemannian metric, is called a generalized Heisenberg group or an H-type group.

For U , V ∈ v and X, Y ∈ z, we have the following properties of generalized Heisenberg
algebras:

JXJY + JY JX = −2〈X, Y 〉n idv, [JXU, V ]− [U, JXV ] = −2〈U, V 〉nX,
〈JXU, JXV 〉n = 〈X,X〉n〈U, V 〉n, 〈JXU, JYU〉n = 〈X, Y 〉n〈U,U〉n.

In particular, for any unit Z ∈ z, JZ is an almost Hermitian structure on v.
The classification of generalized Heisenberg algebras is known. In fact, it follows from

the classification of representations of Clifford algebras of vector spaces with negative
definite quadratic forms. The ultimate reason for this is that the map J : z → End(v)
can be extended to the Clifford algebra Cl(z, q), where q is the quadratic form given by
q(Z) = −〈Z,Z〉, in such a way that v becomes now a Clifford module over Cl(z, q) (see [11,
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Chapter 3]). In particular, for each m ∈ N there exist an infinite number of non-isomorphic
generalized Heisenberg algebras with dim z = m.

Now we can give the construction of Damek-Ricci spaces.

Definition 6.4. Let a be a one-dimensional real vector space, B a non-zero vector in a
and n = v⊕ z a generalized Heisenberg algebra, where z is the center of n. We consider a
new vector space a⊕ n as the vector space direct sum of a and n.

On a⊕ n we define 〈·, ·〉 as the extension of the inner product of n that makes a⊕ n be
orthogonal decomposition and the vector B be of unit length. We consider the Lie bracket
[·, ·] on a⊕ n that extends the Lie bracket of n and satisfies

[B,U + Z] = Z +
1

2
U.

Thus, a ⊕ n becomes a solvable Lie algebra with an inner product. The corresponding
simply connected Lie group AN , equipped with the induced left-invariant Riemannian
metric, is called a Damek-Ricci space.

The Levi-Civita connection ∇̄ of a Damek-Ricci space is given by

∇̄sB+V+Y (rB+U +X) = −1

2
JXV −

1

2
JYU −

1

2
rV − 1

2
[U, V ]− rY +

1

2
〈U, V 〉B+ 〈X, Y 〉B,

where s, r ∈ R, U , V ∈ v and X, Y ∈ z.
A Damek-Ricci space AN is a symmetric space if and only if AN is isometric to a rank

one symmetric space. In this case, using the notation of §6.1, we have that v = gα and
z = g2α. Indeed, the motivation for the general construction of Damek-Ricci spaces comes
from the solvable model AN of a noncompact symmetric space (of rank one) induced
by the corresponding Iwasawa decomposition. In this case, AN is either isometric to a
complex hyperbolic space CHn with constant holomorphic sectional curvature −1 (in this
case, dim z = 1), or to a quaternionic hyperbolic space HHn with constant quaternionic
sectional curvature −1 (here dim z = 3), or to the Cayley hyperbolic plane OH2 with
minimal sectional curvature −1 (dim z = 7). As a limit case, one would obtain the real
hyperbolic space RHn if one puts z = 0. Note, for example, that the expression given in
Example 6.2 for the Levi-Civita connection of the solvable model of CHn coincides (up
to rescaling of the curvature) with the general formula for the Levi-Civita connection of a
Damek-Ricci space.

6.3. Isoparametric hypersurfaces in Damek-Ricci spaces. Now we are in conditions
to present the announced construction of the isoparametric families of hypersurfaces in
Damek-Ricci spaces. Although the general construction method was developed in [30],
some of the ideas behind it trace back to the papers [5] and [29].

Let AN be a Damek-Ricci space with Lie algebra a ⊕ n = a ⊕ v ⊕ z. Now let w be
any proper linear subspace of v, and define s = a ⊕ w ⊕ z. Using the expression for the
Lie bracket of a Damek-Ricci space, one can easily check that s is a Lie subalgebra of
a⊕n. Consider the Lie subgroup S of AN with Lie algebra s. Using the expression for the
Levi-Civita connection of a Damek-Ricci space, it is easy to calculate the shape operator
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of S, regarded as a submanifold of AN . It turns out that S is a minimal submanifold of
AN , which is homogeneous by construction. Indeed, S is austere: its nonzero principal
curvatures occur in pairs with opossite signs. The main theorem in [30] is the following.

Theorem 6.5. The tubes around S are isoparametric hypersurfaces. Moreover, each of
these tubes have constant principal curvatures if and only if the orthogonal complement of
w in v, w⊥ = v	w, has constant generalized Kähler angle.

We soon explain what generalized Kähler angle means. But first note that the these
result guarantees that the family of submanifolds of the Damek-Ricci space AN formed by
S and all distance tubes around it constitutes an isoparametric family of hypersurfaces.
Observe also that this construction admits a lot of freedom, in the sense that w can be
any vector subspace of v different from v.

The notion of generalized Kähler angle has been introduced in [30] as a generalization of
the notion of Kähler angle and quaternionic Kähler angle (see [5]). This concept is crucial,
not only to state the characterization above of the examples having constant principal
curvatures, but also for the proof of the fact that the tubes are isoparametric. Here we
will not explain the details of the proof. But the idea is simple: one has to determine the
extrinsic geometry of tubes around a submanifold with known extrinsic geometry. This
can be done using Jacobi field theory. The difficult point is to write down and solve the
Jacobi equation for a Damek-Ricci space. To sort out this problem, one uses on the one
hand a slight modification of the standard Jacobi field theory, which makes use of left-
invariant vector fields instead of parallel vector fields. On the other hand, one uses the
notion of generalized Kähler angle to simplify the calculations which, otherwise, would be
completely unmanageable.

In order to define the generalized Kähler angle of a subspace w⊥ of v with respect to
some nonzero vector ξ ∈ w⊥, consider the following quadratic form:

Qξ : z → R
Z 7→ 〈(JZξ)⊥, (JZξ)⊥〉,

where (·)⊥ denotes orthogonal projection onto w⊥. It is clear that the eigenvalues of the
quadratic form Qξ, for any unit ξ ∈ w⊥, are real numbers in the interval [0, 1], and thus
can be written in the form cos2(ϕi), for some angles ϕi ∈ [0, π/2], i = 1, . . . ,m = dim z.
With this notation we define the generalized Kähler angle of w⊥ with respect to ξ as the
m-tuple (ϕ1, . . . , ϕm). The subspace w⊥ of v is said to have constant generalized Kähler
angle if the generalized Kähler angle of w⊥ with respect to any unit ξ ∈ w⊥ is independent
of ξ. This is precisely the condition that allows to characterize the examples with constant
principal curvatures in Theorem 6.5.

Example 6.6. Consider the complex hyperbolic space CHn seen as a Damek-Ricci space.
In this case, m = dim z = 1 and we regard v as a complex Euclidean space Cn−1 with
complex structure J = JZ , for some unit Z ∈ z. Then, given ξ ∈ w⊥ we simply speak
about the Kähler angle of w⊥ with respect to ξ, which is the angle ϕ ∈ [0, π/2] between Jξ
and w⊥. Note that totally real subspaces w⊥ of v (i.e. those for which 〈Jw⊥,w⊥〉 = 0) are
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precisely the subspaces with constant Kähler angle π/2, whereas complex subspaces (i.e.
Jw⊥ = w⊥) are the subspaces with constant Kähler angle 0. If n = 2 and hence dim v = 2,
then any subspace of v has constant Kähler angle 0 or π/2. However, if n ≥ 2, there always
exist subspaces with any constant Kähler angle ϕ ∈ [0, π/2]; see [5] for the classification of
subspaces with constant Kähler angle of a complex Euclidean space. If w⊥ is taken with
constant Kähler angle, then the corresponding isoparametric families are homogeneous, as
shown in [5]. Moreover, if n ≥ 2, there always exist subspaces with nonconstant Kähler
angle (indeed, infinitely many of them modulo unitary transformation, whenever n ≥ 3);
see [34, §5.4.1]. A simple example is given by taking w a one dimensional subspace of
v and, thus, w⊥ is a (2n − 3)-dimensional subspace of v. Thus, Theorem 6.5 guarantees
the existence of infinitely many noncongruent isoparametric families of hypersurfaces in
complex hyperbolic spaces whose principal curvatures are nonconstant and, hence, are not
homogeneous.

Example 6.7. The case of the Cayley hyperbolic plane OH2 is quite interesting. In this
setting, dim z = 7 and v can be identified with the division algebra O of the octonions, which
is an 8-dimensional real vector space. As shown in [5], if we take any subspace w⊥ of v with
dimension 1, 2, 3, 4, 6, 7 or 8, the tubes around the corresponding minimal submanifold
S are always homogeneous hypersurfaces. However, if dimw⊥ = 5, none of these tubes is
homogeneous. But, in this case, it is easy to see that w⊥ has constant generalized Kähler
angle (see [30]), which means that the tubes around S have constant principal curvatures
by virtue of Theorem 6.5. Thus, we obtain an inhomogeneous isoparametric family of
hypersurfaces with constant principal curvatures in OH2. This is the only known example
with these properties apart from the FKM-families in spheres.

7. Isoparametric submanifolds and isoparametric foliations

So far, we have dealt with the notion of isoparametricity applied to hypersurfaces, that
is, to submanifolds with codimension one, in different ambient spaces. However, one can
generalize this notion to submanifolds of arbitrary codimension, and the corresponding
theory is really rich and appealing. The purpose of this section is to provide an introduc-
tion to this generalization, and present the main results known so far, with focus on the
classification in complex projective spaces. There are several excellent references to deepen
into this and other related topics. Let us mention the articles [93], [94], [95], [49] and [3],
as well as the books [77] and [6].

We will start by talking about singular Riemannian foliations in §7.1, since these objects
provide the natural framework for the study of isoparametric foliations. Then we will speak
about isoparametric submanifolds in spaces of constant curvature in §7.2, where, under
some irreducibility assumptions, the classification is known for codimension higher than
one. Finally, in §7.3 we present the general definition of isoparametric submanifold in any
ambient space, and comment on some known results in spaces of nonconstant curvature.

7.1. Singular Riemannian foliations. As we have seen in the codimension one case, and
will be commented in the next subsection for the arbitrary case, isoparametric submanifolds
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define locally a foliation by equidistant submanifolds. Sometimes, this foliation can be
extended to fill the whole ambient space, but allowing leaves with different codimensions.
An example of this is given by the family of orbits of a cohomogeneity one action. It
is important to have a precise notion for this kind of decompositions of a Riemannian
manifold into equidistant leaves of different dimensions. The appropriate notion is that
of singular Riemannian foliation. These objects were introduced by Molino [69] in his
study of Riemannian foliations and constitute nowadays an active field of research. See
the articles [3], [62] and [95] for more information. Here we will simply give the definition
and some important classes of singular Riemannian foliations.

Definition 7.1. Let F be a decomposition of a Riemannian manifold M̄ into connected
injectively immersed submanifolds, called leaves, which may have different dimensions. We
say that F is a singular Riemannian foliation if the following conditions are satisfied:

(i) F is a transnormal system, that is, every geodesic orthogonal to one leaf remains
orthogonal to all the leaves that it intersects, and

(ii) F is a singular foliation, that is, TpL = {Xp : X ∈ XF} for every leaf L in F and
every p ∈ L, where XF is the module of smooth vector fields on the ambient manifold
that are everywhere tangent to the leaves of F .

The leaves of maximal dimension are called regular and the other ones are singular. The
points of M̄ are said to be regular or singular according to the leaves through them. A
singular Riemannian foliation is called regular if all leaves are regular, that is, if it is a
Riemannian foliation. The dimension of F is the maximal dimension of the leaves and its
codimension is dim M̄ − dimF .

In these notes, for the sake of brevity, we will usually refer to singular Riemannian
foliations simply as foliations and we will use the term regular foliation to mean (regular)
Riemannian foliation.

The first set of examples is given by isometric actions on Riemannian manifolds (see
Appendix B for the main concepts concerning isometric actions). Let G be a Lie group
that acts on a Riemannian manifold M̄ by isometries. Then, the set F of orbits is called
the orbit foliation of the action; F is then a homogeneous foliation and its orbits are called
(extrinsically) homogeneous submanifolds. It is clear that F is a singular foliation since
the set of values of the Killing fields induced by the action at a point p ∈ M̄ coincides with
the tangent space Tp(G · p) at p of the orbit G · p. The transnormality of F follows from
the fact that ∇̄X is a skew-symmetric tensor field on M̄ for every Killing field X. Hence
F is a singular Riemannian foliation.

Another important example is that of polar foliations, also called singular Riemannian
foliations with sections in the terminology of Alexandrino [2]. Let F be a foliation on M̄ .
Then F is said to be polar if, for each point p ∈ M̄ , there is an immersed submanifold
Σp, called section, that passes through p and that meets all the leaves and always perpen-
dicularly. It follows that Σp is totally geodesic and that the dimension of Σp is equal to
the codimension of F . When the sections of a polar foliation are flat submanifolds, the
foliation is called hyperpolar.
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If the ambient manifold M̄ is complete, the condition of polarity turns out to be equiv-
alent to saying that the distribution made up of the normal spaces to the regular leaves is
integrable. In this case, the sections are complete. Moreover, the leaves of a polar folia-
tion on a complete, simply connected Riemannian manifold are always closed submanifolds
with globally flat normal bundle (see [63, Theorem 1.2]). Note that, in a complete ambient
manifold, codimension one foliations are always polar.

One important question in the study of polar foliations is to decide when polar foliations
are orbit foliations of isometric actions. In this case, such homogeneous polar foliations
are precisely the orbit foliations of the so-called polar actions (see Appendix B for the
definition).

7.2. Isoparametric submanifolds in real space forms. Isoparametric submanifolds
of arbitrary codimension on real space forms were first studied by Harle [47], Carter and
West [17] and, more crucially, by Terng [89]. We give here Terng’s definition. It is important
to emphasize that this definition is reasonable only for spaces of constant curvature (think
of the codimension one case):

Definition 7.2. A submanifold of a space form is called isoparametric if its normal bundle
is flat and if it has constant principal curvatures in the direction of any parallel normal
field.

Recall that we say that a submanifold has flat normal bundle if any normal vector can
be extended locally to a parallel (with respect to the normal connection) normal vector
field; equivalently, the normal curvature R⊥ vanishes identically. The second condition in
the definition means that the eigenvalues of the shape operator Sξ are independent of the
point, for any parallel normal vector field ξ.

There is also a notion of isoparametric map that can be used to characterize isoparametric
submanifolds in real space forms; see [89]. Here we will content ourselves with stating the
main structure results known for simply connected space forms. Thus, as follows from
works of Terng [89], [90], and Wu [101], we have:

Theorem 7.3. [89], [90], [101] Any isoparametric submanifold in Rn, Sn or RHn is an
open part of a complete isoparametric submanifold.

Theorem 7.4. [89] Any complete isoparametric submanifold in the Euclidean space Rn is
the product of an isoparametric submanifold in a sphere times an affine subspace of Rn.

Theorem 7.5. [101] Any complete isoparametric submanifold in a real hyperbolic space
RHn is either an isoparametric submanifold of a totally umbilical hypersurface of RHn or
the standard product of a hyperbolic totally umbilical submanifold of RHn and an isopara-
metric submanifold of a spherical totally umbilical submanifold of RHn.

Thus, the classification problem of isoparametric submanifolds in Rn and in RHn is
reduced to the problem in spheres. In all three cases, an important property is the following:

Theorem 7.6. Each complete isoparametric submanifold in a simply connected real space
form is a regular leaf of a singular Riemannian foliation that fills the whole ambient space.
The other regular leaves of this foliation are also isoparametric submanifolds.
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This result follows from the general theory developed by Terng. Indeed, these foliations,
which are then called isoparametric foliations, can be seen as the level sets of the above
mentioned isoparametric maps (see [89]).

It turns out that a foliation on a simply connected space form of nonnegative curvature
is isoparametric if and only if it is polar. The fact that isoparametric foliations on space
forms are polar follows from the general theory of isoparametric submanifolds developed
by Terng, whereas the converse is a consequence of the constant curvature of the ambient
space (see [91, p. 669] and [2, Theorem 2.7]). However, polar foliations on RHn are not so
rigid and are not isoparametric in general (see [98, p. 89, Remark 1]).

We have explained in Section 4 that, for isoparametric foliations of codimension one on
spheres, there are many inhomogeneous examples and the classification problem is still
open. However, the situation for higher codimension is very different. Using theory of
Tits buildings, Thorbergsson [92] showed that all such examples are homogeneous. More
precisely:

Theorem 7.7. [92] Every irreducible isoparametric foliation of codimension higher than
one on a sphere is the orbit foliation of an s-representation.

An s-representation is the isotropy representation of a semisimple symmetric space;
see Appendix C for more details. Moreover, in the statement, irreducible means the
following. Given an isoparametric foliation F on the unit sphere Sn of a Euclidean
space Rn+1, one can construct an isoparametric foliation F̂ on Rn+1 via homotheties,
F̂ = {rL : L ∈ F , r ∈ R}. Then we say that F is irreducible if F̂ is irreducible, that is,

F̂ is not the product of two foliations on linear subspaces Rk and Rn−k+1 of Rn+1, with
k ∈ {1, . . . , n}.

Hence, Thorbergsson’s theorem guarantees that the only irreducible isoparametric folia-
tions of codimension at least two on spheres are the restrictions to the unit sphere of ToM
of the orbit foliations of the isotropy representations of irreducible symmetric spaces M
of compact type (equivalently, of noncompact type). Finally, the well-known classification
of symmetric spaces allows to obtain the explicit classification of irreducible isoparametric
foliations of codimension at least two on spheres.

7.3. Isoparametric submanifold in general Riemannian manifolds. The attempts
to generalize isoparametric submanifolds to ambient spaces of nonconstant curvature have
led to several different but related concepts. Our aim is to focus on the notion of isopara-
metric submanifold proposed by Heintze, Liu and Olmos in [49], see Definition 7.8 below.
However, let us briefly comment on other related concepts.

We have already mentioned the notion of polar foliation introduced by Alexandrino [2].
Another important concept, which was introduced by Terng and Thorbergsson [91], is that
of equifocal submanifold of a compact symmetric space. A closed submanifold of a compact
symmetric space is equifocal if it has globally flat and abelian normal bundle and its focal
directions and distances are invariant under parallel translation in the normal bundle. This
notion of equifocality has been modified by eliminating the requirement of having abelian
normal bundle (or, equivalently, having flat sections). Thus, Alexandrino [2] defines an
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immersed submanifold of a complete Riemannian manifold to be equifocal if it has globally
flat normal bundle, its focal directions and distances are invariant under parallel translation
in the normal bundle, and it admits sections. Here, admitting sections means that, for
every point p in the submanifold M , there exists a complete, immersed, totally geodesic
submanifold Σp such that νpM = TpΣp. It turns out that, with this definition of equifocal
submanifold, the regular leaves of polar foliations are equifocal. The converse, the fact that
the partition of a Riemannian manifold into the parallel submanifolds determined by an
equifocal submanifold is a polar foliation, is also true under some mild assumption; see [3,
§4] for more details. Thus, the original notion of equifocality with flat sections turns out
to be equivalent to that of hyperpolar foliation, i.e. polar foliation with flat sections.

Terng and Thorbergsson [91] developed a powerful method to study equifocal subman-
ifolds, based on the use of a Riemannian submersion H → G/K from a Hilbert space H
of paths to a compact symmetric space G/K, which allows to lift equifocal submanifolds
(equivalently, hyperpolar foliations) from G/K to H. This technique was employed by
Christ [22] to show the homogeneity of every irreducible hyperpolar foliation of codimen-
sion at least two on a simply connected compact symmetric space. Christ’s theorem makes
use of a homogeneity result for isoparametric submanifolds of a Hilbert space H (with codi-
mension greater than one if H is infinite dimensional, or with codimension greater than
two if H is finite dimensional). This result is due to Heintze and Liu [48] and provides
a different proof of Thorbergsson’s theorem when applied to a finite dimensional Hilbert
space.

As announced above, the definition of isoparametric submanifold that we will consider
is the one due to Heintze, Liu and Olmos [49], which we present now.

Definition 7.8. An immersed submanifold M of a Riemannian manifold M̄ is an isopara-
metric submanifold if the following properties are satisfied:

(i) The normal bundle νM is flat.
(ii) Locally, the parallel submanifolds of M have constant mean curvature in radial di-

rections (see below for explanation).
(iii) M admits sections, i.e. for each p ∈M there exists a totally geodesic submanifold Σp

that meets M at p orthogonally and whose dimension is the codimension of M .

Let us explain the meaning of condition (ii). Since νM is flat, every point p ∈M admits
an open neighbourhood U where every normal vector can be extended to a parallel normal
field. By restricting U further if necessary, we can assume that there is an s > 0 such that
for all r < s and for every parallel normal field ξ on U , the set U r,ξ = {exp(rξp) : p ∈ U}
is an embedded parallel submanifold of U ⊂ M . The radial vector field ∂/∂r = ∇r is
normal to every such U r,ξ. Then we say that locally the parallel submanifolds of M have
constant mean curvature in radial directions if the mean curvature of each U r,ξ is constant
with respect to the normal field ∂/∂r.

It was proved in [49, Theorem 2.4] that condition (ii) above may be replaced by the
following condition (ii’) without changing the notion of isoparametric submanifold:

(ii’) Locally, the parallel submanifolds M r,ξ of M have constant mean curvature with
respect to any parallel normal field of M r,ξ.
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This implies that the locally defined parallel submanifolds of an isoparametric submanifold
are isoparametric as well [49, Corollary 2.5], and thus define locally a regular foliation
where all leaves are isoparametric. When this local foliation can be extended to a global
singular Riemannian foliation where the regular leaves are isoparametric, we obtain an
isoparametric foliation.

Definition 7.9. A singular Riemannian foliation on a Riemannian manifold is called an
isoparametric foliation if it is polar and its regular leaves are isoparametric submanifolds.

Note that, for the codimension one case, the definition of isoparametric submanifold
above simplifies and one recovers the definition of isoparametric hypersurface given in
Definition 1.2. This definition extends, not only the notion of isoparametric hypersurface
in any Riemannian manifold, but also of isoparametric submanifold of a real space form;
see [49].

By definition, isoparametric foliations are always polar. The converse is not true in
general even for codimension one; see [98, p. 89, Remark 1] for counterexamples in the
real hyperbolic space. However, homogeneous polar foliations, i.e. orbit foliations of polar
actions, are isoparametric.

Theorem 7.10. The principal orbits of a polar proper action are isoparametric subman-
ifolds. The family of orbits of a polar action on a simply connected complete Riemannian
manifold is an isoparametric foliation.

Proof. Let G be a closed subgroup of the isometry group of the ambient Riemannian
manifold M̄ that acts polarly on M̄ . By a general result about polar actions (see [6,
Corollary 3.2.5]) we know that each G-equivariant normal vector field (i.e. g∗ξp = ξg(p), for
all g ∈ G) along a principal orbit G · p is parallel with respect to the normal connection of
H · p. This implies that G · p has globally flat normal bundle.

If ξ is a G-equivariant normal vector field along G · p, then the shape operators Sξp and
Sξq at any two points of G · p are conjugate by means of g∗, where g is any element of G
mapping p to q. Thus, G · p has constant principal curvatures with respect to any parallel
normal vector field. In particular, it has parallel mean curvature. This is valid for any
principal orbit of the action of G. For proper actions, the nearby parallel submanifolds to a
principal orbit are principal orbits of the action as well (see [6, §3.1h]). Thus, all principal
orbits of a polar action have parallel mean curvature.

By definition of polar action, each principal orbit admits sections through every point.
This shows that principal orbits of polar actions are isoparametric.

Finally note that if the ambient space is complete and simply connected, any polar action
only has principal or singular orbits (see [63, Corollary 1.3]). Thus, all regular leaves of the
corresponding orbit foliation are principal orbits and, as we have shown, are isoparametric.
Thus, the orbit foliation is an isoparametric foliation. �

This result is important, since it provides us with a lot of examples of isoparametric
foliations, analogously as cohomogeneity one actions provide examples of isoparametric
families of hypersurfaces. However, all such examples are obviously homogeneous. Explicit
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classifications of polar actions are known in irreducible symmetric spaces of compact type;
see for example [56] and [57]. In symmetric spaces of noncompact type, the classification
problem of polar actions is much more involved, and we only know complete classifications
for real hyperbolic spaces [101] and complex hyperbolic spaces [31]. Beyond symmetric
spaces, Fang, Grove and Thorbergsson [39] have recently studied polar actions on simply
connected, compact, positively curved manifolds of cohomogeneity greater than one. Their
main result shows that these actions are equivariantly diffeomorphic to polar actions on
compact rank one symmetric spaces.

But, what do we know about explicit classifications of not necessarily homogeneous
isoparametric submanifolds of higher codimensions in specific spaces of nonconstant cur-
vature?

Recently, Lytchak [64] proposed a new approach for the study of polar foliations on
symmetric spaces of compact type. Together with Christ’s result [22], Lytchak’s work
implies the homogeneity (and hence the classification, thanks to [55]) of every irreducible
isoparametric foliation of codimension at least three on a simply connected irreducible
symmetric space of compact type and rank at least two.

In [36], Domı́nguez-Vázquez obtained a complete classification of irreducible isopara-
metric foliations of codimension at least two on complex projective spaces CP n. The
main implication of this classification is the existence of inhomogeneous examples, which
contrasts with the situation in spheres and Thorbergsson’s theorem.

The results in [64] and in [36] are, as far as we know, the first ones involving classifications
of isoparametric foliations of higher codimension on spaces of nonconstant curvature. How-
ever, an important difference between both contexts is the question of the homogeneity:
while for symmetric spaces of rank greater than one the classified examples are homoge-
neous, rank one symmetric spaces of nonconstant curvature allow a greater diversity of
examples, including inhomogeneous foliations of large codimension. The aim of the rest of
these notes is to explain the main ideas of the results in [36].

8. Isoparametric foliations on complex projective spaces

In this section we will present the main ideas of the almost complete classification of
isoparametric foliations on complex projective spaces obtained in [36]. The exposition here
is basically extracted from [35].

The starting point for the study of isoparametric submanifolds in complex projective
spaces is their good behaviour with respect to the Hopf map π : S2n+1 → CP n. The idea
of using the Hopf fibration for the study of geometric objects in CP n is not new; it has
been used, for example, by Takagi [85] for the classification of homogeneous hypersurfaces
in CP n, by Xiao [102] in his study of isoparametric hypersurfaces in CP n, or by Podestà
and Thorbergsson [79] for the classification of polar actions on CP n. Using results in [49],
one can show the following:

Proposition 8.1. [36] Let M be a submanifold of CP n of positive dimension. Then M is
isoparametric if and only if its lift π−1M to the sphere S2n+1 is isoparametric.
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Using this result, together with the fact that isoparametric submanifolds in spheres can
be extended to globally defined analytic isoparametric foliations [89], one can also show
that:

Proposition 8.2. [36] Each isoparametric submanifold of CP n is an open part of a unique
complete isoparametric submanifold, and this one is a regular leaf of a unique isoparametric
foliation on CP n.

In view of the previous two propositions, we conclude that, in order to study isopara-
metric submanifolds of CP n, it is enough to analyse the projections via the Hopf map π of
the isoparametric foliations existing on odd-dimensional spheres S2n+1. We will focus on
irreducible isoparametric foliations on CP n, that is, those foliations for which there is no
totally geodesic CP k, k ∈ {0, . . . , n−1}, being a union of leaves of the foliation. Note that
an isoparametric foliation on CP n is irreducible if and only if its lift π−1M is irreducible
as an isoparametric foliation on S2n+1.

By Thorbergsson’s result (Theorem 7.7) we know all irreducible isoparametric foliations
of codimension higher than one on spheres. Moreover, the classification results of isopara-
metric hypersurfaces in spheres tell us that, with maybe some exceptions, all examples
are either homogeneous, or of FKM-type. Then, it seems natural to propose the following
approach in order to obtain an almost complete classification of irreducible isoparamet-
ric foliations on complex projective spaces. For each isoparametric foliation F on S2n+1,
decide if it “can be projected” to an isoparametric foliation on CP n; more precisely, de-
termine if F is the pullback under the Hopf map of an isoparametric foliation on CP n

or, equivalently, if the leaves of F are foliated by the Hopf S1-fibers. If we do this for all
known (homogeneous and inhomogeneous) irreducible isoparametric foliations on S2n+1,
we would obtain an almost complete classification of irreducible isoparametric foliations
on CP n.

However, it turns out that it is not trivial to carry out this procedure. The reason is
that, somewhat surprisingly, there is not a one-to-one correspondence between congruence
classes of isoparametric foliations on S2n+1 that can be projected and congruence classes
of isoparametric foliations on CP n. If two foliations on CP n are congruent, then their
pullbacks are congruent as well, but it can happen that two noncongruent foliations on
CP n pullback to congruent foliations on S2n+1. This phenomenon (whose analogue does
not occur for homogeneous hypersurfaces or polar actions) was discovered by Xiao [102]
for the orbit foliations of codimension one induced by the real Grassmannians SO(n +
3)/S(O(2) × O(n + 1)) with odd n. In [36] we show that this behaviour happens for
foliations of higher codimension as well.

But, as shown in [36], there is another phenomenon which is even more interesting.
There are homogeneous isoparametric foliations on S2n+1 that can be projected to inho-
mogenous isoparametric foliations on CP n. This happens in codimension one (as noticed
by Xiao [102]), but also in higher codimension, which gives rise to the inhomogeneous
examples announced above.

In order to analyse the possible projections of a fixed isoparametric foliation F on an
odd-dimensional sphere S2n+1, we can follow two equivalent procedures. The first one
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would consist in determining all possible orthogonal transformations A ∈ O(2n + 2) such
that the foliation A(F) is the pullback of a foliation on CP n, then study the congruence
in CP n of the projections π(A(F)) for all possible A, and finally decide the homogeneity
of these projections.

However, we will follow a second procedure, which we formalize now. We fix a congruence
class of isoparametric foliations on S2n+1, and take any fixed representative of this class,
say F . The first step is to find the set JF of complex structures on R2n+2 that preserve F .
Here and henceforth, by complex structure we mean an orthogonal linear transformation
J ∈ O(2n + 2) such that J2 = −Id. We will say that a complex structure preserves the
foliation F if F is the pullback of some foliation on CP n under the Hopf map determined
by J or, equivalently, if for every x ∈ S2n+1 the Hopf circle {cos(t)x + sin(t)Jx ∈ R2n+2 :
t ∈ R} through x determined by J is contained in the leaf of F through x. Secondly,
we have to determine the quotient set JF/∼, where ∼ is the equivalence relation “yield
congruent foliations on CP n”. Note that JF/ ∼ is isomorphic to the set of congruence
classes of isoparametric foliations on CP n that pullback under a fixed Hopf map to a
foliation congruent to F . Finally, we have to decide which congruence classes correspond
to homogeneous foliations on CP n.

This procedure has been applied to analyse the possible projections of:

• the orbit foliations of the isotropy representations of semisimple symmetric spaces,
and
• the isoparametric foliations of codimension one on spheres S2n+1 constructed by

Ferus, Karcher and Münzner [40], except when n = 15.

As a result, and thanks to the classification theorems of isoparametric foliations on spheres,
we obtained a classification of irreducible isoparametric foliations on CP n of arbitrary
codimension q, except for the case (n, q) = (15, 1).

Here, in order to simplify the exposition, we will focus on the first type of foliations, and
we refer to [36] for the second type of foliations, and also for details and proofs. It will
be convenient to introduce some notation. Let G/K be an irreducible simply connected
compact symmetric space of dimension 2n+ 2 and rank at least two. Consider the Cartan
decomposition g = k⊕p of the Lie algebra of G, where k is the Lie algebra of K and p is the
orthogonal complement of k in g with respect to the Killing form of g. It is well-known that
we can identify p with the tangent space To(G/K) and regard the isotropy representation
of G/K at o as the adjoint representation Ad: K → O(p), where O(p) is the orthogonal
group of the Euclidean vector space p (endowed with the negative of the Killing form of
g restricted to p). Finally, we denote by FG/K the orbit foliation of the adjoint action
Ad: K → O(p) restricted to the unit sphere S2n+1 of p. This is an isoparametric foliation
whose codimension on S2n+1 agrees with the rank of G/K minus 1.

Now we explain the main ideas of how to carry out the three steps in the procedure
described above, namely: determination of the complex structures, congruence of the pro-
jected foliations, and homogeneity.

8.1. Complex structures preserving FG/K. The first step consists in finding all com-
plex structures on p that preserve a given foliation FG/K . The key observation is the fact
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that the group Ad(K)|p is the largest connected subgroup of O(p) acting on p with the
same orbits as the isotropy representation of G/K. This maximality property was proved
by Eschenburg and Heintze [38]. Now, let J be a complex structure on p preserving FG/K .
Then T 1 = {cos(t)Id + sin(t)J : t ∈ R} is a 1-dimensional group leaving invariant the
leaves of FG/K . Let K ′ be the subgroup of O(p) generated by Ad(K) and T 1, which is
connected and leaves each leaf of FG/K invariant. Using the maximality property we get
that K ′ ⊂ Ad(K)|p, so T 1 is a subgroup of Ad(K)|p. If we differentiate, we get that
J ∈ ad(k)|p, where ad is the adjoint action at the Lie algebra level. Thus, a complex
structure J preserves FG/K if and only if it can be written in the form J = ad(X)|p for
some X ∈ k. In other words, the set of complex structures on p preserving FG/K can be
parametrized by the set

JFG/K = {X ∈ k : ad(X)|2p = −Id},

since every transformation ad(X)|p, with X ∈ k, is skew-symmetric.
Now let t be a maximal abelian subalgebra of k. A general fact about compact groups

guarantees that if X ∈ k, then there is a k ∈ K such that Ad(k)X ∈ t. In this situation,
one can then show that X ∈ JFG/K if and only if Ad(k)X ∈ JFG/K ∩ t. This means
that we will know JFG/K once we determine the subset JFG/K ∩ t. This restriction to
a maximal abelian subalgebra of k suggests the utilization of the theory of roots of the
compact Lie algebra g and, more specifically, the Borel-de Siebenthal theory. Here we
give only some basic terminology needed to state the main consequences of the use of this
theory in our problem; we refer to our article [36] for more details, and to [54, §VI.8-10]
for an introduction to the Borel-de Siebenthal theory.

We say that the symmetric space G/K is inner if the rank of g equals the rank of k.
This means that a maximal abelian subalgebra t of k is also a maximal abelian subalgebra
of g. Let ∆g be the root system of g with respect to t, and let gC = tC ⊕

⊕
α∈∆g

gα be the

corresponding root space decomposition of the complexified Lie algebra gC. One can show
that, for each α ∈ ∆g, the root space gα is either contained in kC or in pC. In the first case
we say that the root α is compact, whereas we call it noncompact in the second case.

We can now state an algebraic method that can be used to completely determine the set
JFG/K ∩ t for each symmetric space G/K.

Theorem 8.3. [36] There exists a complex structure on p preserving FG/K if and only if
G/K is an inner symmetric space.

In this situation, let T ∈ t. Then ad(T )|p is a complex structure on p preserving FG/K
if and only if α(T ) ∈ {−1, 1} for all noncompact roots α.

8.2. Congruence of the projected foliations. We are now interested in classifying the
complex structures parametrized by the set JFG/K in terms of the congruence of the pro-
jected isoparametric foliations. More concretely, we have to study the equivalence relation
∼ on JFG/K defined as follows: given X1, X2 ∈ JFG/K , we say that X1 ∼ X2 if π1(JFG/K )

and π2(JFG/K ) are congruent foliations on CP n, where π1, π2 : S2n+1 → CP n are the Hopf

fibrations determined by the complex structures ad(X1)|p and ad(X2)|p, respectively.
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The main object of study in this subproblem turns out to be the group Aut(FG/K) of
orthogonal transformations of p that map leaves of FG/K to leaves of FG/K . Roughly, the
reason for this is that, if J1 and J2 are two complex structures preserving FG/K and with
corresponding Hopf maps π1 and π2, then π1(FG/K) is congruent to π2(FG/K) if and only
if there exists A ∈ Aut(FG/K) such that AJ1A

−1 = ±J2.
The determination of the group Aut(FG/K) can be a very difficult task for an arbitrary

singular Riemannian foliation on a sphere. Nonetheless, it can be done for the homoge-
neous isoparametric foliations FG/K , and also for most of the inhomogeneous foliations of
codimension one constructed by Ferus, Karcher and Münzner (although in this case the
task is more difficult and involves working with Clifford modules). For the case we are here
interested in, it happens that Aut(FG/K) is canonically isomorphic to the group Aut(g, k)
of automorphisms of the Lie algebra g that restrict to automorphisms of k; the isomor-
phism is simply given by the restriction to p of the elements of Aut(g, k). In particular,
the adjoint transformations in Ad(K)|p belong to Aut(FG/K). This readily implies that
every ∼-equivalence class interesects any maximal abelian subalgebra t of k. Thus, we can
restrict the study of ∼ to the set JFG/K ∩ t, which turns out to be much more manageable
in view of the following result.

Theorem 8.4. [36] Let Πk be a set of simple roots for k, and C̄ the closed Weyl chamber
in t defined by the inequalities α ≥ 0, for all α ∈ Πk. Let T1, T2 ∈ JFG/K ∩ t.

Then T1 ∼ T2 if and only if there is an autormophism ϕ of the extended Vogan diagram
of the pair (g, k) such that ϕ(T1) = T2.

This result requires some explanations. We recall first that the extended Dynkin diagram
of g consists in the Dynkin diagram of g together with an extra node corresponding to the
lowest root of the root system of g; this node is linked to the other nodes according to the
usual rules of Dynkin diagrams. Now, we define the extended Vogan diagram of the pair
(g, k) as the extended Dynkin diagram of g, where the nodes corresponding to noncompact
roots are painted while the ones corresponding to compact roots remain unpainted. Due
to the Borel-de Siebenthal theorem, one can always assume that there are at most two
painted nodes: one simple root of g and, maybe, the lowest root. An automorphism of
the extended Vogan diagram is a permutation of its nodes preserving the types of edges
between nodes and the colours of the nodes. One can show that every automorphism of
the extended Vogan diagram determines (in a unique way) an autormorphism ϕ : t→ t of
the root system of g that restricts to an automorphism of the root system of k. For the
sake of brevity and since it should not lead to confusion, we did not distinguish between
both automorphisms in the statement of Theorem 8.4.

Since for each inner irreducible symmetric space G/K the corresponding extended Vo-
gan diagram is known (see Table 3 for the pictures), one can completely understand the
equivalence relation ∼ on the set JFG/K ∩ t and, thus, on JFG/K . Going through all pos-
sible cases of inner symmetric spaces, one can obtain the desired classification of complex
structures preserving the irreducible homogeneous isoparametric foliations on S2n+1. As
we mentioned earlier, it follows from this classification that the cardinality of JFG/K/∼
is at least one for every inner symmetric space G/K, but it is strictly higher than one in
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several cases. For instance, its value is 1+[ν/2]+[p+1−ν] for the complex Grassmannian
SU(p + 1)/S(U(ν)U(p + 1 − ν)) (where [·] denotes the integer part of a real number),
whereas such cardinality is 2 for the symmetric space E6/SU(6) · SU(2).

8.3. Homogeneity. Although the arguments above complete the classification of irre-
ducible isoparametric foliations of codimension at least two on complex projective spaces,
it is important to know which of the examples in the classification are homogeneous. The
first observation is that, if G is a homogeneous isoparametric foliation on CP n, then its pull-
back π−1G ⊂ S2n+1 under the Hopf map is homogeneous as well. This implies that π−1G
is induced by some s-representation. In other words, π−1G = FG/K for some semisimple
symmetric space G/K, which must necessarily be inner because of Theorem 8.3. However,
one can prove even more:

Theorem 8.5. [36] Let G/K be an irreducible inner symmetric space of rank at least
two, J = ad(X)|p a complex structure preserving FG/K, with X ∈ k, and π the Hopf
map determined by J . Then π(FG/K) is homogeneous if and only if G/K is a Hermitian
symmetric space and X belongs to the one-dimensional center of k.

Since there are inner non-Hermitian symmetric spaces of rank higher than two, Theo-
rems 8.3 and 8.5 readily imply the existence of inhomogeneous irreducible isoparametric
foliations of codimension higher than one on complex projective spaces. However, not for
all dimensions does the complex projective space CP n admit inhomogeneous irreducible
isoparametric foliations. We conclude this article with a result that answers this question
in a surprising way.

Theorem 8.6. [36] Every irreducible isoparametric foliation on CP n is homogeneous if
and only if n+ 1 is a prime number.
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Table 3. Extended Vogan diagrams of irreducible compact inner symmetric spaces

Extended Dynkin diagram µ G/K λ N(FG/K)

Ap
α1 α2 αν αp−1 αp

α0

(1 . . . 1) A III (1 . . . 1)

1+
[
ν
2

]
+
[
p−ν+1

2

]
(if 2ν 6= p+ 1)

1 +
[
ν
2

]
(if 2ν = p+ 1)

Bp α2 αν αp−2αp−1 αp

α0

α1

(122 . . . 2) B I (11 . . .
ν
12 . . . 2) 1

Cp α1 α2 αν αp−1 αpα0
(2 . . . 221)

C I
(ν = p)

(2 . . . 221) 1

C II
(ν < p)

(1 . . . 1
ν
2 . . . 21)

2 (if 2ν 6= p)

1 (if 2ν = p)

Dp α2 αν αp−2

αp−1

αpα0

α1

(12 . . . 211)

D I
(ν ≤ p− 2)

(1 . . .
ν
12 . . . 211)

2 (if 2ν 6= p)

1 (if 2ν = p)

D III
(ν ≥ p− 1)

(12 . . . 211) 2

E6

α1α3α4

α2 E II

α0

α5α6

E III
(122321)

E II (112321) 2

E III (122321) 2

E7

α1

E VI

α3α4

α2 E V

α5α6α7

E VII

α0

(2234321)

E V (1123321) 1

E VI (1234321) 2

E VII (2234321) 1

E8

α1

EVIII

α3α4

α2

α5α6α7α8

E IX

α0

(23465432)
E VIII (13354321) 1

E IX (23465431) 1

F4
α1

F II

α2 α3 α4

F I

α0

(2432)
F I (2431) 1

F II (1321) − (rank one)

G2 α1 α2

G

α0
(32) G (31) 1

For each extended Dynkin diagram, we provide the maximal root µ and the associated symmetric spaces
G/K using Cartan’s notation. For every such G/K, we show the corresponding maximal noncompact
root λ and the number N(FG/K) of noncongruent isoparametric foliations on the complex projective
space induced by FG/K . Roots are specified in coordinates with respect to Πg.
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Table 4. Lowest weight diagrams of FKM-foliations with m1 ≤ m2

m Lowest weight diagram h N(FP)

αs1 αs2 αsp−2α
s
p−1 αsp

λ+ α+
1 α+

q+−2
α+
q+−1

α+
q+

λ− α−1 α−q−−2
α−q−−1

α−q−
so(k+)⊕ so(k−)

k± = 2q±
2

0
αs1 αs2 αsp−2α

s
p−1 αsp

λ+ α+
1

α+
q+−2

α+
q+−1

α+
q+

λ− α−1 α−q−−1

α−q−

so(k+)⊕ so(k−)

k+ = 2q+,

k− = 2q− + 1

1

αs1 αs2 αsp−2α
s
p−1 αsp

λ+ α+
1

α+
q+−1

α+
q+

λ− α−1 α−q−−1

α−q−

so(k+)⊕ so(k−)

k± = 2q± + 1
1

1, 7

αs1 αs2 αsp−3α
s
p−2

αsp−1

αsp λ+

λ−
α1 α2 αq−2

αq−1

αq so(k)

k = 2q
2

αs1 αs2 αsp−3α
s
p−2

αsp−1

αsp λ+

λ−
α1 α2 αq−1 αq

so(k)

k = 2q + 1
1

2, 6
αs1 αs2 αsp−2α

s
p−1 αsp

λ+ α1 α2

λ− αq−1αq−2

u(k)

k = q
2 +

[
k
2

]

3, 5 αs1 αs2 αsp−3α
s
p−2

αsp−1

αsp λ+

λ−
α1 α2 αq−1 αq

sp(k)

k = q
2

4
αs1 αs2 αsp−2α

s
p−1 αsp

λ+ α+
1

α+
q+−1

α+
q+

λ− α−1 α−q−−1

α−q−

sp(k+)⊕ sp(k−)

k± = q±
2

The following data are provided for each value of m (mod 8): the corresponding lowest weight
diagrams, the Lie algebra h such that so(m+ 1)⊕ h is the Lie algebra of Aut(FP), and the value of
N(FP).
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Appendix A. Jacobi field theory

A rather useful method in submanifold theory is based on employing Jacobi vector fields
for the study of the geometric behaviour of a submanifold when this is moved along normal
directions. In this appendix (extracted from [34]) we will briefly present the main features
of this technique in the Riemannian setting. A more thorough discussion of this method
can be found in [6, Chapter 8]. In §A.1 we present the basic definitions and ideas. However,
the reader interested only in studying the normal displacement of hypersurfaces can consult
directly §A.2 below.

A.1. General theory and definitions. Let M̄ be a Riemannian manifold of dimension
n and M ⊂ M̄ a Riemannian submanifold of M̄ . For fixed r > 0, we define the set

M r = {exp(rξ) : ξ ∈ νM, ‖ξ‖ = 1}.
In general M r is not a submanifold of M̄ . But if M r is a hypersurface then we say that
M r is the tube of radius r around M . Locally, if r is sufficiently small, such a set is always
a tube. If M r is a submanifold of M̄ but with codimension greater than one, we call it
focal submanifold of M . In particular, if M r is a tube around M and M has codimension
greater than one, then M is a focal submanifold of M r.

Let p be any point of M and γ : [0, 1] → M̄ a unit speed geodesic with γ(0) = p and
γ̇(0) ∈ νM . Here and henceforth, γ̇ denotes the tangent vector field to the curve γ. Let
F (s, t) = γs(t) be a geodesic variation of γ = γ0 such that c(s) = F (s, 0) = γs(0) ∈M and
ξ(s) = γ̇s(0) ∈ νM for all s. Let ζ be the variational vector field of F . Then ζ is a solution
to the initial value problem

ζ ′′ + R̄(ζ, γ̇)γ̇ = 0, ζ(0) = ċ(0) ∈ TpM, ζ ′(0) = −Sξ(0)ζ(0) +∇⊥ζ(0)ξ,

where S is the shape operator of M and the prime ′ denotes covariant derivative of a
vector field along a curve. A Jacobi vector field ζ along γ satisfying ζ(0) ∈ TpM and
ζ ′(0) + Sγ′(0)ζ(0) ∈ νpM is called an M-Jacobi vector field.

We say that γ(r) is a focal point of M along γ if there exists an M -Jacobi vector field
ζ along γ such that ζ(r) = 0. A focal point arising from a Jacobi vector field ζ such that
ζ(0) = 0, ζ ′(0) ∈ νM and ζ(r) = 0 is a conjugate point of p in M̄ along γ.

Assume now that M r is a submanifold of M̄ . Let ξ be a smooth curve in νM with
ξ(0) = γ̇(0) such that ‖ξ(s)‖ = 1 for all s. Then F (s, t) = exp

(
t ξ(s)

)
is a smooth

geodesic variation of γ consisting of geodesics intersecting M perpendicularly. Let ζ be
the corresponding M -Jacobi vector field which is the variational vector field of F . Then ζ
is determined by the initial values ζ(0) = ċ(0) and ζ ′(0) = ξ′(0), where c(s) = F (s, 0). For
any r, the curve cr(s) = F (r, s) = exp(r ξ(s)) is a smooth curve in M r. Then,

Tγ(r)M
r = {ζ(r) : ζ is an M -Jacobi vector field along γ}.

Let us denote by Sr the shape operator of M r. Then it follows that

Srγ̇(r)ζ(r) = −ζ ′(r)>.
If M r is a tube, that is, if M r is a hypersurface, its shape operator can be described

in an efficient way, as we now explain. Let X ∈ TpM̄ 	 Rγ̇(0), where 	 denotes the
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orthogonal complement. We introduce the following notation. By BX we denote the
parallel translation of X along the geodesic γ. Let ζX be the M -Jacobi vector field along
γ given by the following initial conditions

ζX(0) = X, ζ ′X(0) = −Sγ̇(0)X, if X ∈ TpM,

ζX(0) = 0, ζ ′X(0) = X, if X ∈ νpM 	 Rγ̇.

We define D(r) by D(r)BX(r) = ζX(r) for all X ∈ TpM̄ 	Rγ̇(0). In other words, D is the
End(γ̇⊥)-valued tensor field along γ determined by the following initial value problem

D′′ + R̄γ̇ ◦D = 0, D(0) =

(
IdTpM 0

0 0

)
, D′(0) =

(
−Sγ̇(0) 0

0 IdνpM	Rγ̇(0)

)
,

where R̄γ̇(v) = R̄(v, γ̇)γ̇ for v ∈ γ̇⊥. The endomorphism D(r) is singular if and only if γ(r)
is a focal point of M along γ. If this is not the case, M r is a tube and its shape operator
in the direction of γ̇(r) is given by

Srγ̇(r) = −D′(r)D(r)−1.

A.2. Normal displacement of hypersurfaces. Of special interest is the case when M
is a hypersurface. Let us now have a closer look at this case.

Let M ⊂ M̄ be a hypersurface and ξ a unit normal vector field on an open set of M .
Our objective is the study of local geometric properties of the displacement of M in the
direction given by ξ at a certain distance r. We can hence assume that ξ is globally defined
on M . For r > 0 we define the map

Φr :M −→ M̄

p 7→ Φr(p) = exp(rξp).

We denote by η the vector field along Φr such that ηr(p) = γ̇p(r) for each p ∈M , where γp
is the geodesic of M̄ determined by the initial conditions γp(0) = p and γ̇p(0) = ξp. The
map Φr is smooth and parametrizes the tube M r of radius r around M . Clearly, M r is an
immersed submanifold of M̄ if and only if Φr is an immersion. It may happen, however,
that M r is a focal submanifold. The fact that M r has higher codimension depends on the
rank of Φr.

Let ζX be an M -Jacobi vector field. We have X = ζX(0) ∈ TM and ζ ′X(0) = −SX
because ξ has unit length and the normal bundle of M has rank one. Then it follows that

Φr
∗X = ζX(r), ∇̄Xη

r = ζ ′X(r).

Thus, Φr is not an immersion at p ∈ M if and only if Φr(p) is a focal point of M along
the geodesic γp. In this case, the dimension of the kernel of Φr

∗p is called the multiplicity
of the focal point. If there exists a positive integer k such that Φr(q) is a focal point of
M along γq with multiplicity k for all q in some open neighbourhood U of p, then, if U is
sufficiently small, Φr|U parametrizes and embedded (n − 1 − k)–dimensional submanifold
of M̄ , which is a focal submanifold of M . If Φr(q) is not a focal point of M along γq for
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any q in a sufficiently small neighbourhood U of p, then Φr|U parametrizes an embedded
hypersurface of M̄ , which is called an equidistant hypersurface to M in M̄ .

If M r is a hypersurface, its shape operator can be calculated using the endomorphism-
valued tensor field D defined above. In this case the initial conditions simplify slightly and
D is determined by the initial value problem

D′′ + R̄γ̇ ◦D = 0, D(0) = IdTpM , D′(0) = −Sξp .
Finally, let us mention that the notion of equidistant hypersurface can be generalized

to arbitrary codimension in the following way. Let M be a submanifold of M̄ . Assume
that M has globally flat normal bundle. For each parallel normal vector field ξ and each
sufficiently small r > 0, we can consider the set M r,ξ = {exp(rξp) : p ∈M}. If such a set is
a submanifold, then we call it a parallel submanifold of M determined by the vector field
ξ. Locally and for r sufficiently small, M r,ξ is always a parallel submanifold. Note as well
that if M r is a tube, then it is foliated by parallel submanifolds M r,ξ of M .

Appendix B. Isometric actions

Our purpose here is to review the basic terminology and concepts that arise in the study
of isometric actions on Riemannian manifolds. A more detailed reference is [6, Chapter 3].

Let M̄ be a Riemannian manifold and G a Lie group acting smoothly on M̄ by isometries.
This means that we have an isometric action, that is, a smooth map

ϕ : G× M̄ → M̄, (g, p) 7→ gp

satisfying (gg′)p = g(g′p) for all g, g′ ∈ G and p ∈ M̄ , and such that the map

ϕg : M̄ → M̄, p 7→ gp

is an isometry of M̄ for every g ∈ G. If we denote by I(M̄) the isometry group of M̄ , which
is known to be a Lie group [72], then we have a Lie group homomorphism ρ : G → I(M̄)
given by ρ(g) = ϕg.

For each point p ∈ M̄ , the orbit of the action of G through p is

G · p = {gp : g ∈ G}
and the isotropy group or stabilizer at p is

Gp = {g ∈ G : gp = p}.
If G · p = M̄ for some p ∈ M̄ , and hence for each p ∈ M̄ , the G-action is said to be

transitive and M̄ is a homogeneous G-space. If all leaves are points, the action is said to
be trivial. An action is called effective if the associated map ρ above is injective, which
means that G is isomorphic to a subgroup of I(M̄). When for every p ∈ M̄ and every g,
h ∈ G, the equality gp = hp implies g = h, then the action is free. If a G-action on M̄ is
free and transitive we say that G acts simply transitively on M̄ .

Consider two isometric actions G × M̄ → M̄ and G × M̄ ′ → M̄ ′. They are said to be
conjugate or equivalent if there is a Lie group isomorphism ψ : G → G′ and an isometry
f : M̄ → M̄ ′ such that f(gp) = ψ(g)f(p) for all p ∈ M̄ and g ∈ G. We say that both
isometric actions are orbit equivalent if there is an isometry f : M̄ → M̄ ′ that maps the
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orbits of the G-action on M̄ to the orbits of the G′-action on M̄ ′. Clearly, two conjugate
actions are orbit equivalent.

An (extrinsically) homogeneous submanifold of M̄ is an orbit of an isometric action on
M̄ . In general, these orbits will only be immersed submanifolds of M̄ . With respect to
the induced metric, each orbit G · p is a Riemannian homogeneous space G · p = G/Gp, on
which G acts transitively by isometries.

Each isometric action induces certain orthogonal representations in a natural way. Recall
that a representation of a Lie group G on a vector space V is a Lie group homomorphism
ρ : G→ GL(V ) or, equivalently, an action G×V → V given by automorphisms of V ; when
V is a Euclidean space and the automorphisms ρ(g), g ∈ G, are orthogonal transformations
of V , we have an orthogonal representation ρ : G → O(V ). Let ϕ : G × M̄ → M̄ be
an isometric action on a Riemannian manifold M̄ , and let p ∈ M̄ . Since the isotropy
group Gp fixes p and Gp leaves the orbit G · p invariant, the differential of each isometry
ϕg : M̄ → M̄, p 7→ gp, for g ∈ Gp, leaves the tangent space Tp(G · p) and the normal space
νp(G · p) invariant. Thus, the action

Gp × Tp(G · p)→ Tp(G · p), (g,X) 7→ (ϕg)∗pX,

is called the isotropy representation of the action ϕ at p, while

Gp × νp(G · p)→ νp(G · p), (g, ξ) 7→ (ϕg)∗pξ,

is called the slice representation of the action ϕ at p.
Let M̄/G be the set of orbits of the action of G on M̄ , and equip M̄/G with the quotient

topology relative to the canonical projection M̄ → M̄/G, p 7→ G · p. In general, M̄/G is
not a Hausdorff space. In order to avoid this behaviour, the particular type of proper
isometric actions was introduced. Thus, the action of G on M̄ is proper if, for any two
points p, q ∈ M̄ , there exist open neighbourhoods Up and Uq of p and q in M̄ , respectively,
such that {g ∈ G : gUp ∩ Uq 6= ∅} is relatively compact in G. Equivalently, the map

G× M̄ → M̄ × M̄, (g, p) 7→ (p, gp)

is a proper map, i.e. the inverse image of each compact set in M̄ × M̄ is also compact in
G× M̄ . Every compact Lie group action is proper. If G is a subgroup of I(M̄), then the
G-action is proper if and only if G is closed in I(M̄). Moreover, if G acts properly on M̄ ,
then M̄/G is a Hausdorff space, each isotropy group Gp is compact, and each orbit G · p is
closed in M̄ and hence an embedded submanifold. In fact, the orbits of an isometric action
are closed if and only if the action is orbit equivalent to a proper isometric action, see [27].

We can distinguish three different kinds of orbits of a proper isometric action: principal,
exceptional and singular orbits. An orbit G · p is called a principal orbit if for each q ∈ M̄
the isotropy group Gp at p is conjugate in G to some subgroup of Gq. The union of all
principal orbits is a dense and open subset of M̄ and any orbit G · p of a proper action is
principal if and only if the slice representation at p is trivial. Each principal orbit is an orbit
of maximal dimension. The codimension of any principal orbit is the cohomogeneity of the
action. A non-principal orbit of maximal dimension is called an exceptional orbit. Finally,
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a singular orbit is an orbit whose dimension is less than the dimension of a principal orbit
or, equivalently, an orbit whose codimension is greater than the cohomogeneity.

Another important kind of isometric actions are polar actions. An isometric action of a
group G on a Riemannian manifold M̄ is called polar if its orbit foliation is polar, i.e. if
there exists an immersed submanifold Σ of M that intersects all the orbits of the G-action,
and for each p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit
through p at p, Tp(G · p), are orthogonal. In such a case, the submanifold Σ is totally
geodesic and is called a section of the G-action. If, in addition, the section Σ is flat in
its induced Riemannian metric, the action is called hyperpolar. Any polar action admits
sections through any given point.

Polar actions are much more rigid than arbitrary isometric actions. For complete, simply
connected ambient manifolds M̄ , the orbits of polar actions are always closed submanifolds,
none of them is exceptional, and the image of the group G on the isometry group I(M̄) is
closed (see [63, Corollary 1.3]). This, in particular, implies that polar actions on complete,
simply connected manifolds are orbit equivalent to proper actions. Furthermore, if ϕ is a
polar action of a connected group G on M̄ , p ∈ M̄ and Σ is a section through p, then the
slice representation of such action at p is polar with section TpΣ.

Appendix C. Symmetric spaces

Symmetric spaces constitute a particularly nice class of homogeneous spaces. They
share, moreover, many connections with the theory of polar actions. Here we provide a
quick review on some basic facts about these spaces. Standard references for this topic are
[50], [60, 61] and [105].

Firstly, let us fix some notation concerning Lie groups and Lie algebras. As customary,
the Lie algebra of a Lie group G will be written with the corresponding gothic letter, in
this case, g. The Lie exponential map will be denoted by Exp. Given g ∈ G, we have the
conjugation map Ig : G → G, h 7→ ghg−1. Its differential at the identity element e ∈ G
allows to define the Lie group adjoint map Ad: G → Aut(g), g → (Ig)∗, where Aut(g) is
the group of automorphisms of the Lie algebra g, i.e. those linear transformations ϕ : g→ g
such that ϕ[X, Y ] = [ϕX,ϕY ] for all X, Y ∈ g. The differential of Ad at e yields the Lie
algebra adjoint map ad: g→ End(g), X 7→ ad(X) = [X, · ]. The Killing form of a real Lie
algebra g is the bilinear form B = Bg : g× g→ R, (X, Y ) 7→ tr(ad(X) ad(Y )).

Let now M be a Riemannian manifold. Let o ∈ M . Take r > 0 sufficiently small so
that normal coordinates are defined on the open ball Br(o). We define the local geodesic
symmetry at o as the map so : Br(o)→ Br(o) given by so(expo(tv)) = expo(−tv) for t ∈ R
and v ∈ ToM . In general, this map is defined only locally. A Riemannian manifold M is
said to be locally symmetric if at each point there is a ball such that the corresponding
local geodesic symmetry is a local isometry. A locally symmetric space is characterized
by the fact that ∇R = 0. A connected Riemannian manifold M is called a (Riemannian)
symmetric space if each local geodesic symmetry so can be extended to a global isometry
so : M → M . Since isometries are characterized by their differential at a point, this is
equivalent to saying that for each point o ∈ M there is an involutive isometry of M such
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that o is an isolated fixed point of that isometry; this involutive isometry turns out to
be so.

If M is a connected, complete, locally symmetric Riemannian manifold, then its univer-
sal covering is a symmetric space. In particular, every locally symmetric space is locally
isometric to a symmetric space. Moreover, every symmetric space is complete and homo-
geneous.

Now we give a more algebraic description of symmetric spaces. Denote by G = I(M)0

the connected component of the identity of the isometry group I(M) and by g the Lie
algebra of G. Let o ∈ M and so the geodesic symmetry at o. Define K as the isotropy
group of G at o, that is, K = Go, which is compact. The coset space G/K is diffeomorphic
to M by means of the map Φ: G/K →M , gK 7→ g(o). If 〈·, ·〉 denotes the metric obtained
by pulling back the metric of M , then Φ becomes an isometry and the metric 〈·, ·〉 is G-
invariant, that is, the map gK → hgK is an isometry for each h ∈ G. The isotropy
representation of the symmetric space M ∼= G/K at o is the orthogonal representation
defined by K × ToM → ToM , (k, v) 7→ k∗v.

The map σ : G→ G, g 7→ sogso, is an involutive automorphism of G, and G0
σ ⊂ K ⊂ Gσ,

where Gσ = {g ∈ G : σ(g) = g}, and G0
σ is the connected component of the identity of

Gσ . Let θ be the differential of σ at the identity. The Lie algebra of K is given by
k = {X ∈ g : θ(X) = X}, and we define p = {X ∈ g : θ(X) = −X}. The space p may be
identified with ToM by using the map Φ and taking into account that p is a complementary
subspace to k in g. Thus, p inherits an inner product from ToM which turns out to be
Ad(K)-invariant. In fact, the isotropy representation of G/K is equivalent to the adjoint
representation of K on p, K × p → p, (k,X) 7→ Ad(k)X. Moreover, we have the Lie
bracket relations [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. The decomposition g = k⊕ p is called
the Cartan decomposition of g with respect to the involution θ (or the point o ∈ M), and
θ is called the Cartan involution.

The pair (G,K) defined above is an effective (Riemannian) symmetric pair. In general,
if G is a connected Lie group and K a compact subgroup, the pair (G,K) is called a
(Riemannian) symmetric pair if there exists an involutive automorphism σ of G such that
G0
σ ⊂ K ⊂ Gσ, and (G,K) is effective if the action of G on M ∼= G/K is effective.

The isotropy representation of an effective symmetric pair is effective, since isometries are
determined by their derivatives. The infinitesimal counterpart of a symmetric pair is the
notion of orthogonal symmetric pair. Given a real Lie algebra g and a compact subalgebra
k of g, we will say that (g, k) is an orthogonal symmetric pair if k is the fixed point set of
an involutive automorphism θ of g. The pair (g, k) is said to be effective if k ∩ Z(g) = 0,
where Z(g) is the center of g. Any effective symmetric pair (G,K) determines an effective
orthogonal symmetric pair (g, k).

Let M = G/K be a symmetric space. The long homotopy sequence of K → G→ G/K
implies that K is connected if M is simply connected and G is connected. Conversely, if
G is simply connected and K connected, then M is simply connected.

Let M be a symmetric space and M̃ its universal covering. Then the De Rham theorem

guarantees that M̃ can be decomposed as M̃ = M̃0 × M̃1 × · · · × M̃k. Here M̃0 is the
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Euclidean factor, that is, M̃0 is locally isometric to a Euclidean space, and each M̃i, i =
1, . . . , k, is a simply connected, irreducible symmetric space. A symmetric space M = G/K
is irreducible if its isotropy representation restricted to the identity connected component
K0 of K is an irreducible representation, and is reducible otherwise. M is irreducible if

and only if its universal covering M̃ is irreducible.
A semisimple symmetric space (or symmetric pair) is one for which the Euclidean factor

of its universal covering space has dimension zero. In this case, the Lie algebra of the

isometry group of M̃ is semisimple. A semisimple symmetric space (or symmetric pair) is
said to be of compact type if all the De Rham factors of its universal covering are compact.
It is said to be of noncompact type if all the De Rham factors of its universal covering are
non-Euclidean, irreducible and noncompact. Again, the Lie algebra g of the isometry group
of a symmetric space of compact (resp. noncompact) type is compact (resp. noncompact).
By definition, an irreducible symmetric space must be one of these three: of Euclidean
type (i.e. flat), of compact type, or of noncompact type. If B is the Killing form of g, then
G/K is of compact type if and only if B|p is negative definite, is of noncompact type if and
only if B|p is positive definite, and is of Euclidean type if and only if B|p = 0. Moreover,
if (G,K) is an effective irreducible symmetric pair of non-Euclidean type, then either G is
a simple Lie group, or (G,K) = (K ×K,∆K) and G/K is isometric to a compact simple
Lie group with bi-invariant metric; here ∆K stands for the diagonal of K ×K. If (G,K)
is an effective symmetric pair with no Euclidean factor, then G = I(M)0.

There is a duality between symmetric spaces of compact and noncompact type which we
explain now. Assume (G,K) is an effective symmetric pair with no Euclidean factor and
such that M = G/K is simply connected. We have the Cartan decomposition g = k⊕ p as
defined above. We consider the real Lie subalgebra g∗ = k⊕ip of the complexification g⊗C
of g, where i is the imaginary unit. Let G∗ be the simply connected real Lie group with
Lie algebra g∗. Then we have that G∗/K is a simply connected symmetric space, which
we call the dual symmetric space of G/K. If G/K is of compact type, then G∗/K is of
noncompact type, and if G/K is of noncompact type, then G∗/K is of compact type. Dual
symmetric spaces have the same isotropy representation. Duality establishes a one-to-one
correspondence between simply connected symmetric spaces of compact and noncompact
type, which respects the irreducibility.

Riemannian symmetric spaces have been classified by Cartan. One can find a list of
irreducible simply connected symmetric spaces in [50, p. 515–520].

An important subclass of symmetric spaces is that of the Hermitian ones, which we
review below. But, first, let us recall some definitions concerning complex, Hermitian and
Kähler manifolds. See [103] for more details and proofs.

To start with, let V be a vector space with an inner product 〈·, ·〉. In these notes,
by complex structure on the vector space V we will always understand an orthogonal
transformation J of V such that J2 = − Id. Thus, any endomorphism J of V is a complex
structure if and only if any two of the following properties are satisfied: (i) 〈Jv, Jw〉 =
〈v, w〉 for all v, w ∈ V (that is, J ∈ O(V )); (ii) J2 = − Id; and (iii) 〈Jv, w〉 = −〈v, Jw〉 for
all v, w ∈ V (that is, J ∈ so(V )).
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A complex manifold is a manifold that admits charts with image onto open subsets of
Cn such that the coordinate transitions are holomorphic. This induces an almost complex
structure J on M , i.e. an endomorphism of the tangent bundle of M such that J2 = − Id.
If M is Riemannian and complex, and the complex structure J is orthogonal (equivalently,
J restricts to a complex structure of each tangent space TpM , p ∈ M), then M is called
a Hermitian manifold. A Kähler manifold is a Hermitian manifold M satisfying ∇J = 0,
where ∇ is the Levi-Civita connection of M . The endomorphism J is known as the Kähler
structure or the complex structure of M .

Thus, a symmetric space M is Hermitian if it is a Hermitian manifold and the geodesic
symmetries sp, p ∈ M , are holomorphic transformations. It occurs that every Hermitian
symmetric space is Kähler. A symmetric space M is Hermitian if and only if its dual is
Hermitian, and every Hermitian symmetric space is simply connected. If, in addition, M
is irreducible, then the complex structure J is unique up to sign. An irreducible sym-
metric pair (G,K) is Hermitian if and only if K is not semisimple. Given an effective
irreducible Hermitian symmetric pair (G,K) of non-Euclidean type, then the center of K
is isomorphic to U(1) and the induced complex structure J on p ≡ To(G/K) is given by
the Ad(K)-invariant transformation J = Ad(i), where i stands for the imaginary unit in
U(1). Furthermore, every isometry in I(M)0 is holomorphic, and M = G/K is an inner
or equal-rank symmetric space, which means that rankG = rankK.

It is also possible to define the rank of a symmetric space M . This is by definition
the dimension of a maximal flat, totally geodesic submanifold of M , or equivalently, the
dimension of a maximal abelian subspace of p. The isotropy representation of a semisimple
symmetric space is said to be an s-representation. It turns out that the isotropy repre-
sentation of a semisimple symmetric space M is a polar action on the Euclidean space
ToM ∼= p, and its cohomogeneity is precisely the rank of M . In fact, any maximal abelian
subspace of p is a section of this representation. This action also induces a polar action
on the unit sphere of ToM ∼= p, which in this case has cohomogeneity equal to the rank of
M minus one. A remarkably result by Dadok [24] says that the only homogeneous polar
foliations on spheres are the orbit foliations of s-representations.

Of particular interest are the rank one symmetric spaces. Together with Euclidean spaces
Rn (which have rank n), rank one symmetric spaces are precisely those manifolds M which
are homogeneous and isotropic. This means that for any two points p, q ∈M and any two
tangent vectors v ∈ TpM , w ∈ TqM , there is an isometry f of M such that f(p) = q and
f∗(v) = w. Equivalently, these are the so-called two-point homogeneous spaces, i.e. for any
four points p1, p2, q1, q2 ∈ M , there is an isometry f of M such that f(pi) = qi for i = 1,
2.

Simply connected rank one symmetric spaces of non-Euclidean type are shown in Table 5.
Duality of symmetric spaces allows to classify these manifolds into two groups. Those
spaces of compact type are spheres and the projective spaces over the algebras of the
complex numbers C, of the quaternions H and of the octonions O. Those of noncompact
type are the hyperbolic spaces over the reals R, the complex numbers C, the quaternions
H and the octonions O.
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Compact Noncompact Gcompact Gnoncomp. K

Spheres Sn Real hyperbolic
spaces RHn

SO(n+ 1) SO(1, n) SO(n)

Complex projective
spaces CP n

Complex hyperbolic
spaces CHn

SU(n+ 1) SU(1, n) S(U(1)U(n))

Quaternionic projec-
tive spaces HP n

Quaternionic hyper-
bolic spaces HHn

Sp(n+ 1) Sp(1, n) Sp(1)Sp(n)

Cayley projective
plane OP 2

Cayley hyperbolic
plane OH2

F4 F−20
4 Spin(9)

Table 5. Duality in rank one symmetric spaces

The spaces in the first row of Table 5 (i.e. spheres Sn and real hyperbolic spaces RHn) to-
gether with Euclidean spaces, are precisely the real space forms, which are the Riemannian
manifolds with the simplest curvature tensor.

The second row of Table 5 contains the nonflat complex space forms : complex projective
spaces CP n and complex hyperbolic spaces CHn. These are Kähler manifolds, so they
become Hermitian symmetric spaces.

Quite analogously to the complex case, the third row of Table 5 shows the so-called
quaternionic space forms HP n and HHn, which can be seen as the most basic examples of
quaternionic-Kähler manifolds.

The last row of Table 5 is constituted by two somehow exceptional 16-dimensional man-
ifolds: the Cayley projective and hyperbolic planes, OP 2 and OH2.
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