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Abstract

An isoparametric foliation is a certain kind of decomposition of a given Rieman-
nian manifold into equidistant submanifolds, where those of the highest dimension
have parallel mean curvature and the distribution defined by their normal bundles
is integrable. Typical examples are given by the orbit foliations of polar actions,
that is, of isometric actions that admit a submanifold intersecting all the orbits
perpendicularly; such isoparametric foliations are called homogeneous.

In this paper we explain the main ideas of the classification of isoparametric
foliations of codimension greater than one on complex projective spaces, as well as
the surprising existence of inhomogeneous examples.

1 Isoparametric foliations: a quick introduction

The term isoparametric was first used by Levi-Civita [13] in 1937. Initially, it was only
applied to hypersurfaces. Thus, a hypersurface of a given Riemannian manifold is called
isoparametric if, locally, it and its nearby equidistant hypersurfaces have constant mean
curvature. This notion was motivated by a problem in Geometric Optics and was first
studied by Somigliana, Levi-Civita, Segre and Cartan; see [20] for a survey on the origins
of the theory as well as for an extensive list of references. Cartan showed that, for spaces of
constant curvature, a hypersurface is isoparametric if and only if it has constant principal
curvatures, so the notion turns out to be rather rigid. In fact, it follows from Segre’s and
Cartan’s classifications of isoparametric hypersurfaces in Euclidean and real hyperbolic
spaces that all examples are homogeneous, that is, orbits of isometric actions. For example,
in Rn the only isoparametric hypersurfaces are affine hyperplanes, spheres and cylinders.
Cartan also addressed the problem in spheres, but he failed to obtain a classification. The
amount of examples in this case is larger and the most surprising fact is the existence
of many inhomogeneous isoparametric hypersurfaces. These were constructed by Ferus,
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Karcher and Münzner [8] using Clifford modules. There have been several major contri-
butions to the classification problem in spheres over the last few years (see for example
[2], [3], [10], [15]), but a complete classification is not yet known nowadays.
In the eighties, the notion of isoparametricity was generalized from hypersurfaces to
submanifolds of arbitrary codimension by several authors (see [20]). However, it was
Terng [18] who developed what we now know as the general theory of isoparametric
submanifolds in real space forms. According to her, a submanifold of a space form is
called isoparametric if its normal bundle is flat and if it has constant principal curvatures
in the direction of any parallel normal vector field. Any isoparametric submanifold in
the Euclidean space turns out to be the product of an isoparametric submanifold in a
sphere times an affine subspace. Thus, it is equivalent to study these objects in Euclidean
spaces or in spheres. The case of real hyperbolic spaces RHn was tackled by Wu [22], who
reduced the classification problem of isoparametric submanifolds in RHn to the problem
in spheres.
In real space forms, every isoparametric submanifold extends to a global isoparametric
foliation, as follows from the works by Terng and Wu. Here and henceforth, the word
foliation is used to refer to a singular Riemannian foliation. Let us explain this concept;
see [21] for more details. Consider a decomposition F of a Riemannian manifold into
connected injectively immersed submanifolds, called leaves, which may have different
dimensions. We say that F is a singular Riemannian foliation if it is a transnormal
system (i.e. every geodesic orthogonal to one leaf is also orthogonal to all the leaves that
it intersects), and if TpL = {Xp : X ∈ ΞF} for every leaf L in F and every p ∈ L, where
TpL is the tangent space to L at p, and Ξ is the module of smooth vector fields on the
ambient manifold that are everywhere tangent to the leaves of F . The leaves of maximal
dimension are called regular, and the other ones are called singular. The codimension of
the (singular Riemannian) foliation is the codimension of any regular leaf. Finally, we say
that a foliation is isoparametric if its regular leaves are isoparametric submanifolds.
As explained above, for isoparametric foliations of codimension one on spheres, there
are many inhomogeneous examples and the classification problem is still open. However,
the situation for higher codimension is very different. Using the theory of Tits buildings,
Thorbergsson [19] showed that all such examples are homogeneous. More precisely:

Theorem 1.1. [19] Every irreducible isoparametric foliation of codimension higher than
one on a sphere Sn is the orbit foliation of an s-representation.

Here irreducible means that the corresponding foliation on the Euclidean space Rn+1

determined by homotheties is not the product of two nontrivial foliations on linear sub-
spaces of smaller dimensions. Recall as well that the term s-representation refers to the
isotropy representation of a semisimple symmetric space. Specifically, if M = G/K is
a simply connected symmetric space, where G is the identity connected component of
the isometry group of M and K is the isotropy group at some point o ∈ M , then K
acts infinitesimally on the tangent space ToM : K × ToM → ToM , (k, v) 7→ k∗v. This
action is an orthogonal representation with respect to the inner product on ToM , and
is called the isotropy representation of the symmetric space. Such actions are also called
s-representations in case G is semisimple. The isotropy representations of two dual sym-
metric spaces are equivalent. Every s-representation restricts to an isometric action on the
unit sphere of ToM . Hence, Thorbergsson’s theorem guarantees that the only irreducible
isoparametric foliations of codimension at least two on spheres are the restrictions to the
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unit sphere of ToM of the orbit foliations of the isotropy representations of irreducible
symmetric spaces M of compact type (equivalently, of noncompact type). Finally, the
well-known classification of symmetric spaces allows to obtain the explicit classification
of irreducible isoparametric foliations of codimension at least two on spheres.
In spaces of nonconstant curvature the study of isoparametric submanifolds is much more
involved. Even for isoparametric hypersurfaces, no complete classifications are known in
symmetric spaces other than Euclidean and real hyperbolic spaces. The homogeneous hy-
persurfaces (orbits of cohomogeneity one actions) are quite well understood in symmetric
spaces of compact type [12], but not yet in spaces of noncompact type [1]. Without the
assumption of the homogeneity, very few results and examples were known; see [5] for a
recent construction of many inhomogeneous isoparametric hypersurfaces in the noncom-
pact rank one symmetric spaces.
In [9], Heintze, Liu and Olmos proposed a definition of isoparametric submanifold in an
arbitrary Riemannian manifold which subsumes the notions of isoparametric hypersur-
face in a Riemannian manifold, and of isoparametric submanifold of a real space form.
Thus, we will say that a submanifold M of a Riemannian manifold is an isoparametric
submanifold if the following conditions are satisfied:

(a) The normal bundle of M is flat.

(b) Every parallel submanifold M ′ of M has constant mean curvature with respect to
every parallel normal vector field of M ′.

(c) M admits sections, that is, for each p ∈ M there exists a totally geodesic subman-
ifold Σp that meets M at p orthogonally and whose dimension is the codimension
of M .

The locally defined parallel submanifolds of an isoparametric submanifold are isopara-
metric as well, and thus define locally a regular isoparametric foliation. Similarly as for
space forms, we will use the term isoparametric foliation to refer to a singular Riemannian
foliation whose regular leaves are isoparametric submanifolds. The main set of examples
of isoparametric submanifolds are provided by the principal orbits of the so-called polar
actions. Let us recall that a proper isometric action is polar if there exists a submanifold
intersecting all the orbits of the action and always perpendicularly. In this case, there is
a globally defined isoparametric foliation (i.e. the orbit foliation of the action), which is
something that cannot be guaranteed in general. These isoparametric foliations obtained
by (polar) isometric actions are said to be homogeneous.
In the preprint [6] we have obtained a complete classification of irreducible isoparamet-
ric foliations of codimension at least two on complex projective spaces CP n. The main
implication of this classification is the existence of inhomogeneous examples, which con-
trasts with the situation in spheres and Thorbergsson’s theorem. Very recently as well,
Lytchak [14] proposed a new approach for the study of the so-called polar foliations (that
is, singular Riemannian foliations where the distribution of normal spaces to the regular
leaves is integrable) on symmetric spaces of compact type. Together with a previous result
by Christ [4], the result of Lytchak implies the homogeneity (and hence the classification,
thanks to [12]) of every irreducible isoparametric foliation of codimension at least three
on a simply connected irreducible symmetric space of compact type and rank at least
two.
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The results in [6] and in [14] are, as far as we know, the first ones involving classifications
of isoparametric foliations of higher codimension on spaces of nonconstant curvature.
However, an important difference between both contexts is the question of the homo-
geneity: while for symmetric spaces of rank greater than one the classified examples are
homogeneous, rank one symmetric spaces of nonconstant curvature allow a greater di-
versity of examples, including inhomogeneous foliations of large codimension. The aim of
the rest of this paper is to explain the results in [6] and, in particular, the existence of
inhomogeneous isoparametric foliations.

2 Isoparametric foliations on complex projective

spaces

The starting point for the study of isoparametric submanifolds in complex projective
spaces is their good behaviour with respect to the Hopf map π : S2n+1 → CP n. The idea
of using the Hopf fibration for the study of geometric objects in CP n is not new; it has
been used, for example, by Takagi [17] for the classification of homogeneous hypersurfaces
in CP n, by Xiao [23] in his study of isoparametric hypersurfaces in CP n, or by Podestà
and Thorbergsson [16] for the classification of polar actions on CP n. Using results in [9],
one can show the following:

Proposition 2.1. [6] Let M be a submanifold of CP n of positive dimension. Then M is
isoparametric if and only if its lift π−1M to the sphere S2n+1 is isoparametric.

Using this result, together with the fact that isoparametric submanifolds in spheres can
be extended to globally defined analytic isoparametric foliations [18], one can also show
that:

Proposition 2.2. [6] Each isoparametric submanifold of CP n is an open part of a unique
complete isoparametric submanifold, and this one is a regular leaf of a unique isopara-
metric foliation on CP n.

In view of the previous two propositions, we conclude that, in order to study isoparametric
submanifolds of CP n, it is enough to analyse the projections via the Hopf map π of the
isoparametric foliations existing on odd-dimensional spheres S2n+1. We will focus on
irreducible isoparametric foliations on CP n, that is, those foliations for which there is no
totally geodesic CP k, k ∈ {0, . . . , n−1}, being a union of leaves of the foliation. Note that
an isoparametric foliation on CP n is irreducible if and only if its lift π−1M is irreducible
as an isoparametric foliation on S2n+1.
Since by Thorbergsson’s result (Theorem 1.1) we know all irreducible isoparametric foli-
ations of codimension higher than one on spheres, then it seems natural to propose the
following approach to classify irreducible isoparametric foliations of codimension higher
than one on complex projective spaces. For each isoparametric foliation F on S2n+1,
decide if it “can be projected” to an isoparametric foliation on CP n; more precisely, de-
termine if F is the pullback under the Hopf map of an isoparametric foliation on CP n

or, equivalently, if the leaves of F are foliated by the Hopf S1-fibers. If we do this for all
irreducible isoparametric foliations of codimension at least two on S2n+1, we obtain the
classification of irreducible isoparametric foliations of codimension at least two on CP n.

119



However, it turns out that it is not trivial to carry out this procedure. The reason is that,
somewhat surprisingly, there is not a one-to-one correspondence between congruence
classes of isoparametric foliations on S2n+1 that can be projected and congruence classes
of isoparametric foliations on CP n. If two foliations on CP n are congruent, then their
pullbacks are congruent as well, but it can happen that two noncongruent foliations on
CP n pullback to congruent foliations on S2n+1. This phenomenon (whose analogue does
not occur for homogeneous hypersurfaces or polar actions) was discovered by Xiao [23]
for the orbit foliations of codimension one induced by the real Grassmannians SO(n +
3)/S(O(2) × O(n + 1)) with odd n. In [6] we show that this behaviour happens for
foliations of higher codimension as well.
But, as shown in [6], there is another phenomenon which is even more interesting. There
are homogeneous isoparametric foliations on S2n+1 that can be projected to inhomoge-
nous isoparametric foliations on CP n. This happens in codimension one (as noticed by
Xiao [23]), but also in higher codimension, which gives rise to the inhomogeneous exam-
ples announced above.
In order to analyse the possible projections of a fixed isoparametric foliation F on an
odd-dimensional sphere S2n+1, we can follow two equivalent procedures. The first one
would consist in determining all possible orthogonal transformations A ∈ O(2n+ 2) such
that the foliation A(F) is the pullback of a foliation on CP n, then study the congruence
in CP n of the projections π(A(F)) for all possible A, and finally decide the homogeneity
of these projections.
However, we will follow a second procedure, which we formalize now. We fix a congruence
class of isoparametric foliations on S2n+1, and take any fixed representative of this class,
say F . The first step is to find the set JF of complex structures on R2n+2 that preserve F .
Here and henceforth, by complex structure we mean an orthogonal linear transformation
J ∈ O(2n + 2) such that J2 = −Id. We will say that a complex structure preserves the
foliation F if F is the pullback of some foliation on CP n under the Hopf map determined
by J or, equivalently, if for every x ∈ S2n+1 the Hopf circle {cos(t)x+ sin(t)Jx ∈ R2n+2 :
t ∈ R} through x determined by J is contained in the leaf of F through x. Secondly,
we have to determine the quotient set JF/∼, where ∼ is the equivalence relation “yield
congruent foliations on CP n”. Note that JF/∼ is isomorphic to the set of congruence
classes of isoparametric foliations on CP n that pullback under a fixed Hopf map to a
foliation congruent to F . Finally, we have to decide which congruence classes correspond
to homogeneous foliations on CP n.
This procedure has been applied in [6] to analyse the possible projections of:

• the orbit foliations of the isotropy representations of semisimple symmetric spaces,
and

• the isoparametric foliations of codimension one on spheres S2n+1 constructed by
Ferus, Karcher and Münzner [8], except when n = 15.

As a result, and thanks to the classification theorems of isoparametric foliations on
spheres, we obtained a classification of irreducible isoparametric foliations on CP n of
arbitrary codimension q, except for the case (n, q) = (15, 1).
Here, we will focus on the first type of foliations. It will be convenient to introduce
some notation. Let G/K be an irreducible simply connected compact symmetric space of
dimension 2n+ 2 and rank at least two. Consider the Cartan decomposition g = k⊕ p of
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the Lie algebra of G, where k is the Lie algebra of K and p is the orthogonal complement
of k in g with respect to the Killing form of g. It is well-known that we can identify
p with the tangent space To(G/K) and regard the isotropy representation of G/K at
o as the adjoint representation Ad: K → O(p), where O(p) is the orthogonal group
of the Euclidean vector space p (endowed with the negative of the Killing form of g

restricted to p). Finally, we denote by FG/K the orbit foliation of the adjoint action
Ad: K → O(p) restricted to the unit sphere S2n+1 of p. This is an isoparametric foliation
whose codimension on S2n+1 agrees with the rank of G/K minus 1.
Now we explain the main ideas of how to carry out the three steps in the procedure
described above, namely: determination of the complex structures, congruence of the
projected foliations, and homogeneity.

2.1 Complex structures preserving FG/K

The first step consists in finding all complex structures on p that preserve a given foliation
FG/K . The key observation is the fact that the group Ad(K)|p is the largest connected
subgroup of O(p) acting on p with the same orbits as the isotropy representation of
G/K. This maximality property was proved by Eschenburg and Heintze [7]. Now, let J
be a complex structure on p preserving FG/K . Then T 1 = {cos(t)Id + sin(t)J : t ∈ R}
is a 1-dimensional group leaving invariant the leaves of FG/K . Let K ′ be the subgroup
of O(p) generated by Ad(K) and T 1, which is connected and leaves each leaf of FG/K

invariant. Using the maximality property we get that K ′ ⊂ Ad(K)|p, so T 1 is a subgroup
of Ad(K)|p. If we differentiate, we get that J ∈ ad(k)|p, where ad is the adjoint action at
the Lie algebra level. Thus, a complex structure J preserves FG/K if and only if it can
be written in the form J = ad(X)|p for some X ∈ k. In other words, the set of complex
structures on p preserving FG/K can be parametrized by the set

JFG/K
= {X ∈ k : ad(X)|2p = −Id},

since every transformation ad(X)|p, with X ∈ k, is skew-symmetric.
Now let t be a maximal abelian subalgebra of k. A general fact about compact groups
guarantees that if X ∈ k, then there is a k ∈ K such that Ad(k)X ∈ t. In this situation,
one can then show that X ∈ JFG/K

if and only if Ad(k)X ∈ JFG/K
∩t. This means that we

will know JFG/K
once we determine the subset JFG/K

∩ t. This restriction to a maximal
abelian subalgebra of k suggests the utilization of the theory of roots of the compact
Lie algebra g and, more specifically, the Borel-de Siebenthal theory. Here we give only
some basic terminology needed to state the main consequences of the use of this theory
in our problem; we refer to our article [6] for more details, and to [11, §VI.8-10] for an
introduction to the Borel-de Siebenthal theory.
We say that the symmetric space G/K is inner if the rank of g equals the rank of k. This
means that a maximal abelian subalgebra t of k is also a maximal abelian subalgebra
of g. Let ∆g be the root system of g with respect to t, and let gC = tC ⊕ ⊕

α∈∆g
gα be

the corresponding root space decomposition of the complexified Lie algebra gC. One can
show that, for each α ∈ ∆g, the root space gα is either contained in kC or in pC. In the
first case we say that the root α is compact, whereas we call it noncompact in the second
case.
We can now state an algebraic method that can be used to completely determine the set
JFG/K

∩ t for each symmetric space G/K.

121



Theorem 2.1. [6] There exists a complex structure on p preserving FG/K if and only if
G/K is an inner symmetric space.
In this situation, let T ∈ t. Then ad(T )|p is a complex structure on p preserving FG/K if
and only if α(T ) ∈ {−1, 1} for all noncompact roots α.

2.2 Congruence of the projected foliations

We are now interested in classifying the complex structures parametrized by the set JFG/K

in terms of the congruence of the projected isoparametric foliations. More concretely,
we have to study the equivalence relation ∼ on JFG/K

defined as follows: given X1,
X2 ∈ JFG/K

, we say that X1 ∼ X2 if π1(JFG/K
) and π2(JFG/K

) are congruent foliations
on CP n, where π1, π2 : S2n+1 → CP n are the Hopf fibrations determined by the complex
structures ad(X1)|p and ad(X2)|p, respectively.
The main object of study in this subproblem turns out to be the group Aut(FG/K) of
orthogonal transformations of p that map leaves of FG/K to leaves of FG/K . Roughly, the
reason for this is that, if J1 and J2 are two complex structures preserving FG/K and with
corresponding Hopf maps π1 and π2, then π1(FG/K) is congruent to π2(FG/K) if and only
if there exists A ∈ Aut(FG/K) such that AJ1A

−1 = ±J2.
The determination of the group Aut(FG/K) can be a very difficult task for an arbitrary
singular Riemannian foliation on a sphere. Nonetheless, it can be done for the homoge-
neous isoparametric foliations FG/K , and also for most of the inhomogeneous foliations
of codimension one constructed by Ferus, Karcher and Münzner (although in this case
the task is more difficult and involves working with Clifford modules). For the case we
are here interested in, it happens that Aut(FG/K) is canonically isomorphic to the group
Aut(g, k) of automorphisms of the Lie algebra g that restrict to automorphisms of k; the
isomorphism is simply given by the restriction to p of the elements of Aut(g, k). In partic-
ular, the adjoint transformations in Ad(K)|p belong to Aut(FG/K). This readily implies
that every ∼-equivalence class interesects any maximal abelian subalgebra t of k. Thus,
we can restrict the study of ∼ to the set JFG/K

∩ t, which turns out to be much more
manageable in view of the following result.

Theorem 2.2. [6] Let Πk be a set of simple roots for k, and C̄ the closed Weyl chamber
in t defined by the inequalities α ≥ 0, for all α ∈ Πk. Let T1, T2 ∈ JFG/K

∩ t.
Then T1 ∼ T2 if and only if there is an autormophism ϕ of the extended Vogan diagram
of the pair (g, k) such that ϕ(T1) = T2.

This result requires some explanations. We recall first that the extended Dynkin diagram
of g consists in the Dynkin diagram of g together with an extra node corresponding to the
lowest root of the root system of g; this node is linked to the other nodes according to the
usual rules of Dynkin diagrams. Now, we define the extended Vogan diagram of the pair
(g, k) as the extended Dynkin diagram of g, where the nodes corresponding to noncompact
roots are painted while the ones corresponding to compact roots remain unpainted. Due
to the Borel-de Siebenthal theorem, one can always assume that there are at most two
painted nodes: one simple root of g and, maybe, the lowest root. An automorphism of
the extended Vogan diagram is a permutation of its nodes preserving the types of edges
between nodes and the colours of the nodes. One can show that every automorphism of
the extended Vogan diagram determines (in a unique way) an autormorphism ϕ : t → t

of the root system of g that restricts to an automorphism of the root system of k. For the
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sake of brevity and since it should not lead to confusion, we did not distinguish between
both automorphisms in the statement of Theorem 2.2.
Since for each inner irreducible symmetric space G/K the corresponding extended Vogan
diagram is known (see Table 2 in [6] for the pictures), one can completely understand
the equivalence relation ∼ on the set JFG/K

∩ t and, thus, on JFG/K
. Going through

all possible cases of inner symmetric spaces, one can obtain the desired classification of
complex structures preserving the irreducible homogeneous isoparametric foliations on
S2n+1. As we mentioned earlier, it follows from this classification that the cardinality of
JFG/K

/∼ is at least one for every inner symmetric space G/K, but it is strictly higher
than one in several cases. For instance, its value is 1 + [ν/2] + [p+ 1 − ν] for the complex
Grassmannian SU(p + 1)/S(U(ν)U(p + 1 − ν)) (where [·] denotes the integer part of a
real number), whereas such cardinality is 2 for the symmetric space E6/SU(6) · SU(2).

2.3 Homogeneity

Although the arguments above complete the classification of irreducible isoparametric
foliations of codimension at least two on complex projective spaces, it is important to
know which of the examples in the classification are homogeneous. The first observation
is that, if G is a homogeneous isoparametric foliation on CP n, then its pullback π−1G ⊂
S2n+1 under the Hopf map is homogeneous as well. This implies that π−1G is induced
by some s-representation. In other words, π−1G = FG/K for some semisimple symmetric
space G/K, which must necessarily be inner because of Theorem 2.1. However, one can
prove even more:

Theorem 2.3. [6] Let G/K be an irreducible inner symmetric space of rank at least
two, J = ad(X)|p a complex structure preserving FG/K, with X ∈ k, and π the Hopf
map determined by J . Then π(FG/K) is homogeneous if and only if G/K is a Hermitian
symmetric space and X belongs to the one-dimensional center of k.

Since there are inner non-Hermitian symmetric spaces of rank higher than two, Theo-
rems 2.1 and 2.3 readily imply the existence of inhomogeneous irreducible isoparametric
foliations of codimension higher than one on complex projective spaces. However, not for
all dimensions does the complex projective space CP n admit inhomogeneous irreducible
isoparametric foliations. We conclude this article with a result that answers this question
in a surprising way.

Theorem 2.4. [6] Every irreducible isoparametric foliation on CP n is homogeneous if
and only if n+ 1 is a prime number.
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