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1. INTRODUCTION

A hypersurface of a Riemannian manifold is said to be isoparametric if it and its nearby
equidistant hypersurfaces have constant mean curvature. This notion was introduced and
studied in the first decades of the 20th century by Somigliana, Segre, Levi-Civita and
Cartan. The initial motivation for the study of these objects was the following problem of
Geometric Optics: consider waves whose wavefronts are time-independent and parallel;
then those wavefronts of codimension one are precisely isoparametric hypersurfaces.
For a survey on isoparametric hypersurfaces and related topics, as well as for further
references, see [11].

Cartan characterized isoparametric hypersurfaces in spaces of constant curvature as
those hypersurfaces with constant principal curvatures. He also classified these objects
in real hyperbolic spaces, while Segre did so for Euclidean spaces. In these cases, all
such hypersurfaces are open parts of (extrinsically) homogeneous hypersurfaces, that
is, open parts of orbits of isometric actions on the ambient space. However, in spheres
the situation is different, since they admit inhomogeneous isoparametric hypersurfaces.
All known examples were constructed by Ferus, Karcher and Münzner using represen-
tations of Clifford algebras [9]. In spite of several major advances in the last years, the
classification of isoparametric hypersurfaces in spheres is still open nowadays.

In ambient spaces of nonconstant curvature, an isoparametric hypersurface does not
need to have constant principal curvatures. On the one hand, the study of hypersurfaces
with constant principal curvatures has been a fruitful area of research in the last decades,
particularly in nonflat complex space forms (that is, complex projective spaces and
complex hyperbolic spaces); see for example the recent work [5] on this topic, or
the survey [8]. On the other hand, with the exception of homogeneous isoparametric
hypersurfaces, there has not been much research on isoparametric hypersurfaces in
manifolds of nonconstant curvature.



Recently, Díaz-Ramos and the author have found many new isoparametric hypersur-
faces in complex hyperbolic spaces [6], most of which are not homogeneous and have
nonconstant principal curvatures. In [7] we have developed a more general method of
construction of isoparametric hypersurfaces in the so-called Damek-Ricci spaces. These
spaces constitute a family of solvable Lie groups with left-invariant metric which in-
cludes the noncompact rank-one symmetric spaces as particular cases (i.e. real, complex
and quaternionic hyperbolic spaces, and the Cayley hyperbolic plane).

The aim of this work is to explain a remarkable particular example that is obtained
by our method: an isoparametric family of inhomogeneous hypersurfaces with constant
principal curvatures in the Cayley hyperbolic plane [7, §5.3]. This example is of par-
ticular interest because the only inhomogenous hypersurfaces with constant principal
curvatures known so far (at least in Riemannian symmetric spaces, cf. [10, p. 7]) were
the examples in spheres discovered by Ferus, Karcher and Münzner.

The isoparametric family will appear as the set of tubes around certain homogeneous
focal submanifold of OH2. In order to define this focal submanifold we will use the
fact that the Cayley hyperbolic plane can be seen as a solvable Lie group with left-
invariant metric. We recall this fact in Section 2. Then, in Section 3 we will explain the
construction of the new example and derive its main properties.

2. THE CAYLEY HYPERBOLIC PLANE AS A LIE GROUP

The Cayley hyperbolic plane OH2 (where O stands for the algebra of octonions) is
the only simply connected complete noncompact Riemannian manifold with holonomy
Spin(9). It is a rank-one symmetric space of noncompact type: OH2 = G/K, where G
is the exceptional Lie group F−20

4 , and K = Spin(9) is the isotropy group at some point.
As for any other symmetric spaces of noncompact type, the Iwasawa decomposition

of the Lie group G allows to identify G/K with a solvable Lie group AN equipped with a
left-invariant metric. For noncompact rank-one symmetric spaces, one can give a direct
construction of the Lie group structure and metric on AN. This approach, which is due to
Damek and Ricci, provides many non-symmetric solvable Lie groups as well. We now
briefly explain this construction; for further information, see [1, §5] and [4, Ch. 4].

Let z=Rm and denote by 〈·, ·〉 the usual inner product on z. Let q be the quadratic form
on z defined by q(Z) =−〈Z,Z〉, and J : Z ∈Cl(z,q) 7→ JZ ∈ End(v) a real representation
of the Clifford algebra Cl(z,q) on some real vector space v. It is possible to extend
〈·, ·〉 to an inner product on n = v⊕ z such that: v and z are perpendicular, and for
every unit Z ∈ z, JZ is an orthogonal (and hence skew-symmetric) endomorphism of v
with respect to 〈·, ·〉. Now we define a skew-symmetric bilinear map [·, ·] : n×n→ n by
〈[U +X ,V +Y ],W +Z〉= 〈JZU,V 〉, for all U,V,W ∈ v and X ,Y,Z ∈ z. Then n becomes
a two-step nilpotent Lie algebra with center z, which is called a generalized Heisenberg
algebra. The corresponding simply connected Lie group N with Lie algebra n, equipped
with the induced left-invariant metric, is called a generalized Heisenberg group.

Now we construct a solvable extension of n. Let a=R and B ∈ a. We define [B,V ] =
1
2V and [B,Z] = Z, for all V ∈ v and Z ∈ z, so that we obtain a Lie algebra structure on
a⊕n that extends the one on n. Since [a⊕n,a⊕n] = n, the extension is solvable. We
also extend 〈·, ·〉 to an inner product on a⊕n such that both factors are orthogonal and



B has unit length. The corresponding simply connected solvable Lie group AN endowed
with the induced left-invariant metric is called a Damek-Ricci space.

Finally we particularize this construction to obtain the Cayley hyperbolic plane.
Choose z=R7. Then there are two inequivalent irreducible Clifford algebra representa-
tions J of Cl(z,q). But with independence of the choice of the irreducible representation
J, we have that dimv = 8, and AN becomes isometric to the Cayley hyperbolic plane
OH2 with minimal sectional curvature −1 (see [4, §4.1.9]).

Before proceeding with the definition of the new isoparametric family of hypersur-
faces in Section 3, we need to recall here the notion of generalized Kähler angle intro-
duced by Díaz-Ramos and the author in [7].

Let z = Rm, consider a real representation J : Z ∈ Cl(z,q) 7→ JZ ∈ End(v) of the
Clifford algebra Cl(z,q) on a real vector space v, and endow n= v⊕ z with the structure
of generalized Heisenberg algebra as above. Let w⊥ be any vector subspace of v, and
let ξ ∈w⊥ be of unit length. Let us denote by (v)⊥ the orthogonal projection of a vector
v ∈ v onto w⊥. Since the map Z ∈ z 7→ (JZξ )⊥ ∈w⊥ is linear, we have that

Qξ : Z ∈ z 7→ 〈(JZξ )⊥,(JZξ )⊥〉 ∈ R

is a quadratic form. Let {Z1, . . . ,Zm} be an orthonormal basis of z for which the quadratic
form Qξ takes a diagonal form. Clearly, for each i ∈ {1, . . . ,m} we have that Qξ (Zi) =

cos2(ϕi) for a unique real number ϕi ∈ [0,π/2]. Reorder the elements of {Z1, . . . ,Zm}
if necessary so that ϕ1 ≤ ·· · ≤ ϕm. Then, we define the generalized Kähler angle of
ξ ∈w⊥ with respect to the subspace w⊥ of v as the m-tuple (ϕ1, . . . ,ϕm). If this m-tuple
is independent of the unit vector ξ ∈w⊥, we say that the subspace w⊥ of v has constant
generalized Kähler angle (ϕ1, . . . ,ϕm).

3. THE EXAMPLE

In this section we construct the inhomogeneous isoparametric family of hypersurfaces
with constant principal curvatures in OH2 announced before.

First let us proceed with the construction of the focal submanifold of the family.
Consider the solvable model AN for the Cayley hyperbolic plane OH2 explained above;
the corresponding Lie algebra is a⊕ n = a⊕ v⊕ z, where a = R, v = R8 and z = R7.
Take a 3-dimensional subspace w of v and denote by w⊥ the orthogonal complement of
w in v. Then one can easily check that sw = a⊕w⊕ z is a solvable Lie subalgebra of
a⊕n. The connected subgroup Sw of AN with Lie algebra sw is clearly a homogeneous
submanifold of OH2. Moreover, Sw is a minimal (even austere) submanifold [7, p. 7].
One can also show that, if we choose any other 3-dimensional subspace w′ of v, the
resulting submanifold Sw′ is congruent to Sw (see [3, p. 3436]).

Fix an arbitrary unit vector ξ in w⊥. A property of generalized Heisenberg algebras
is that 〈JXU,JYU〉 = 〈X ,Y 〉〈U,U〉, for every X ,Y ∈ z and U ∈ v (see [4, p. 24]).
From this, we obtain that the linear map Z ∈ z = R7 7→ JZξ ∈ v	Rξ = R7 is an
isometry (here v	Rξ denotes the orthogonal complement of Rξ in v). Hence, we can
find an orthonormal basis {Z1, . . . ,Z7} of z such that w = span{JZ5ξ ,JZ6ξ ,JZ7ξ} and
w⊥ = span{ξ ,JZ1ξ ,JZ2ξ ,JZ3ξ ,JZ4ξ}. Then, the quadratic form Qξ defined in Section 2



assumes a diagonal form in the orthonormal basis {Z1, . . . ,Zm}; moreover Qξ (Zi) = 1
for i = 1,2,3,4, whereas Qξ (Zi) = 0 for i = 5,6,7. By definition, the generalized
Kähler angle of ξ with respect to w⊥ is then (0,0,0,0,π/2,π/2,π/2). Since this
value is independent of ξ , we deduce that w⊥ has constant generalized Kähler angle
(0,0,0,0,π/2,π/2,π/2).

The next theorem, which has been proved in [7], implies that every tube Mr around the
above defined submanifold Sw is an isoparametric hypersurface with constant principal
curvatures. Therefore, Sw and the tubes Mr, r > 0, define a global isoparametric family
of hypersurfaces with constant principal curvatures in the Cayley hyperbolic plane.

Theorem 3.1 [7] Let AN be a Damek-Ricci space with Lie algebra a⊕ n, where a is
one-dimensional and n = v⊕ z is a generalized Heisenberg algebra with center z. Let
Sw be the connected subgroup of AN whose Lie algebra is sw = a⊕w⊕ z, where w is
any proper subspace of v.

Then, the tubes Mr around the submanifold Sw are isoparametric hypersurfaces of
AN, and have constant principal curvatures if and only if w⊥ = v	w has constant
generalized Kähler angle.

The proof of Theorem 3.1 in [7] is based on the calculation of the shape operator of the
tubes Mr. To this aim, the technique used is similar to standard Jacobi field theory, but
adapted in a suitable way to the study of submanifolds of Lie groups with left-invariant
metric. In the proof, the notion of generalized Kähler angle plays a crucial role, because
otherwise calculations would become unmanageable.

Let us come back to our construction in OH2. According to the discussion of the
principal curvatures of the tubes Mr in [7, p. 12], and since w⊥ has constant generalized
Kähler angle (0,0,0,0,π/2,π/2,π/2), the principal curvatures of the tube Mr of radius
r > 0 around Sw are:
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. The corresponding multiplicities are 5, 4, 3, and 3, respectively.

Let us now show why no tube Mr is homogeneous. If for some r the hypersurface
Mr were homogeneous, there would exist a group acting isometrically on OH2 with
cohomogeneity one and with Mr as an orbit. The orbits of this action would then coincide
with the leaves of the isoparametric family. Hence, the cohomogeneity one action would
have one singular orbit of codimension 5, namely Sw. But this is impossible according
to the classification of cohomogeneity one actions on OH2 [3, Th. 4.7, Th. 4.8].

Hence, the homogeneous minimal submanifold Sw of codimension 5 and the tubes
around it form an isoparametric family of inhomogeneous hypersurfaces with constant
principal curvatures in the Cayley hyperbolic plane.

Finally, let us say a word about another interesting situation that arises from our
method when one considers a subspace w of v with dimw = 4, instead of dimw =
3. Arguing as above, one can show that w⊥ has constant generalized Kähler angle
(0,0,0,π/2,π/2,π/2,π/2). Again, using [7, p. 12], we obtain that the principal cur-
vatures of the tube Mr of radius r > 0 around Sw are the same as in the case dimw= 3



above, but this time with respective multiplicities 4, 3, 4 and 4. In particular, these prin-
cipal curvatures and multiplicities are independent of the subspace w of dimension 4
chosen. By means of Theorem 3.1, every tube Mr is an isoparametric hypersurface with
constant principal curvatures in OH2. In fact, these tubes are homogeneous hypersur-
faces [1], so that they are the principal orbits of cohomogeneity one actions on OH2.

Contrary to what happened for dimw = 3, now different choices of the subspace w
of v with dimw = 4 can lead to (uncountably many) orbit inequivalent cohomogeneity
one actions [3, Th. 4.7]. This means that, for an arbitrary but fixed radius r, in spite
of having the same constant principal curvatures and corresponding multiplicities, the
tubes of radius r produced by different choices of w can be noncongruent. Thus, for
every r > 0, we obtain an uncountable set of noncongruent homogeneous hypersurfaces
with the same constant principal curvatures and multiplicities.

The existence of noncongruent hypersurfaces with the same constant principal cur-
vatures was known for spheres [9] (in which case such examples are inhomogeneous),
and also for symmetric spaces of noncompact type and rank greater than two [2] (where
the examples are homogeneous). Our result shows that this phenomenon also occurs for
homogeneous hypersurfaces in symmetric spaces of rank one.
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