Some results on isoparametric hypersurfaces in nonflat complex space forms

Miguel Domínguez Vázquez

Joint work with J. Carlos Díaz Ramos Universidade de Santiago de Compostela

1. Preliminaries

Aim: classify isoparametric hypersurfaces in nonflat complex space forms Nonflat complex space forms: $\mathbb{C}P^n = \frac{SU(n+1)}{S(U(1)U(n))}, \quad \mathbb{C}H^n = \frac{SU(1,n)}{S(U(1)U(n))}$

Simply connected complete Kähler manifolds of nonzero constant holomorphic sectional curvature (complex structure J)

Isoparametric hypersurface: hypersurface whose sufficiently close parallel hypersurfaces have constant mean curvature [9]

Constant principal curvatures: the eigenvalues of the shape operator are constant along the hypersurface

Homogeneous hypersurface: orbit of a cohomogeneity one action of a closed subgroup of the isometry group of the ambient manifold

Homogeneous hypersurface ⇒

• constant principal curvatures
• isoparametric

Homogeneous hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$ were classified in [8] and [3].

Notation: M hypersurface in $\mathbb{C}P^n$ or $\mathbb{C}H^n$

ξ normal unit vector field

g number of principal curvatures

 $J\xi$ is called the Hopf vector field (it is tangent to M)

h number of nontrivial projections of the Hopf vector field onto the principal curvature spaces

2. The case $h \le 2$

É. Cartan proved that a hypersurface in a real space form is isoparametric if and only if it has constant principal curvatures. The same holds in nonflat complex space forms if $h \leq 2$, but not if h is arbitrary (see Section 4).

Theorem. Let M be a connected hypersurface in $\mathbb{C}P^n$ or $\mathbb{C}H^n$ with h < 2. Then, M is isoparametric if and only if M has constant principal curvatures. In this case, h is constant.

Hypersurfaces with constant principal curvatures in nonflat complex space forms with h = 1 (the so called Hopf hypersurfaces) and with h = 2 have been classified. See [6] for a survey.

Theorem. [1,7] Let M be a Hopf hypersurface with constant principal curvatures of a nonflat complex space form. We have

- (a) If $M \subset \mathbb{C}P^n$, then M is an open part of the projection via the Hopf map $S^{2n+1} \to \mathbb{C}P^n$ of a principal orbit of the isotropy representation of a Hermitian symmetric space of rank 2
- (b) If $M \subset \mathbb{C}H^n$, then M is an open part of
 - (i) A tube around a totally geodesic $\mathbb{C}H^k$, for $k \in \{0, \ldots, n-1\}$
 - (ii) A tube around a totally geodesic $\mathbb{R}H^n$
 - (iii) A horosphere

In particular, M is an open part of a homogeneous hypersurface.

Theorem. [4] Let M be a hypersurface with constant principal curvatures of a nonflat complex space form, with h = 2. We have

- (a) The case $M \subset \mathbb{C}P^n$ is impossible.
- (b) If $M \subset \mathbb{C}H^n$, then M is an open part of:
 - (i) a ruled minimal real hypersurface $W^{2n-1} \subset \mathbb{C}H^n$ or one of the equidistant hypersurfaces to W^{2n-1}
 - (ii) a tube around a ruled minimal Berndt-Brück submanifold with totally real normal bundle $W^{2n-k} \subset \mathbb{C}H^n$, for $k \in \{2, ..., n-1\}$

In particular, M is an open part of a homogeneous hypersurface.

For the description of the submanifolds W^{2n-k} see Section 4.

3. The hyperbolic case

For the case of complex hyperbolic spaces we have obtained the following

Theorem. Let M be an isoparametric hypersurface in $\mathbb{C}H^n$ and $p \in M$. Then the principal curvatures of M at p and their multiplicities coincide with those of the homogeneous hypersurfaces in $\mathbb{C}H^n$. In particular, we have that $h(p) \in \{1,2,3\}$ and $g(p) \in \{2,3,4,5\}$.

In general, the functions h and g could be nonconstant.

4. New isoparametric examples

In this section we construct examples of isoparametric hypersurfaces in $\mathbb{C}H^n$ that, in general, are not homogeneous [5]. These inhomogeneous examples do not have constant principal curvatures and the functions h and g can be nonconstant on these hypersurfaces.

```
G = SU(1,n) acts transitively on \mathbb{C}H^n
```

Fix $o \in \mathbb{C}H^n$ $K = G_o \cong S(U(1)U(n))$ (isotropy group of G at o)

Cartan decomposition (with respect to o): $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

□ □ p maximal abelian subspace

Restricted root space decomposition: $\mathfrak{g} = \mathfrak{g}_{-2\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$

$$\mathfrak{g}_{\lambda} = \{ X \in \mathfrak{g} : \operatorname{ad}(H)X = \lambda(H)X, \forall H \in \mathfrak{a} \}$$

 $\mathfrak{n}=\mathfrak{g}_{lpha}\oplus\mathfrak{g}_{2lpha}\cong\mathsf{Heisenberg}$ algebra

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ (Lie algebra level) Iwasawa decomposition:

G = KAN (Lie group level)

 $\mathbb{C}H^n$ is isometric to AN (semi-direct product of Lie groups)

 \mathfrak{w} : proper subspace of \mathfrak{g}_{α}

 $\mathfrak{w}^{\perp} = \mathfrak{g}_{\alpha} \ominus \mathfrak{w}$ (orthogonal complement of \mathfrak{w} in \mathfrak{g}_{α})

 $k = \dim \mathfrak{w}^{\perp}$

 $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$ (Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$)

 $S_{\mathfrak{w}}$: connected subgroup of AN with Lie algebra $\mathfrak{s}_{\mathfrak{w}}$

 $W_{\mathfrak{w}} = S_{\mathfrak{w}} \cdot o$

(minimal homogeneous submanifold of $\mathbb{C}H^n$)

Theorem. The tubes around $W_{\mathfrak{m}}$ are isoparametric hypersurfaces. Moreover, these tubes are homogeneous hypersurfaces if and only if \mathfrak{w}^{\perp} has constant Kähler angle.

By definition, \mathfrak{w}^{\perp} has constant Kähler angle if the angle between Jv and \mathfrak{w}^{\perp} is the same for all $v \in \mathfrak{w}^{\perp}$.

If \mathfrak{w}^{\perp} has constant Kähler angle φ , one gets the Berndt-Brück submanifolds $W_{\varphi}^{2n-k} = W_{\mathfrak{w}}$, and $W^{2n-k} = W_{\pi/2}^{2n-k}$ [2].

However, for a generic choice of \mathfrak{w}^{\perp} , tubes around $W_{\mathfrak{w}}$ are inhomogeneous hypersurfaces with nonconstant principal curvatures.

The tubes around $W_{\mathfrak{w}}$ have constant principal curvatures if and only if they are homogeneous, that is, when they are precisely the tubes around the Berndt-Brück submanifolds.

For the inhomogeneous examples, the functions h and q may be nonconstant, and we can have $h \in \{1, 2, 3\}$ and $g \in \{3, 4, 5\}$.

References

- [1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- [2] J. Berndt, M. Brück, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209-235.
- [3] J. Berndt, H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces of rank one, Trans. Amer. Math. Soc. 359 (2007), 3425-3438.
- [4] J. C. Díaz-Ramos, M. Domínguez-Vázquez, Non-Hopf real hypersurfaces with constant principal curvatures in complex space forms, to appear in *Indiana* Univ. Math. J. (preprint arXiv:0911.3624v1 [math.DG]).
- [5] J. C. Díaz-Ramos, M. Domínguez-Vázquez, Inhomogeneous isoparametric hypersurfaces in complex hyperbolic spaces, Math. Z.., DOI 10.1007/s00209-011-0901-z.
- [6] M. Domínguez-Vázquez, Real hypersurfaces with constant principal curvatures in complex space forms, Differential Geom. Appl. 29 (2011), suppl. 1, 65-70.
- [7] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, *Trans. Amer. Math. Soc.* 296 (1986), 137-149.
- [8] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [9] G. Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, Handbook of differential geometry, Vol. 1, 963-995, North-Holland, Amsterdam, 2000.