
Proceedings of The Seventeenth International

Workshop on Diff. Geom. 17(2013) 1-2

Some interesting families of non-Hopf real hypersurfaces in
complex space forms
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Abstract. This article contains a survey on the construction of some interesting non-Hopf

real hypersurfaces in nonflat complex space forms. Specifically, we explain the construction

of homogeneous hypersurfaces and inhomogeneous isoparametric hypersurfaces in complex

hyperbolic spaces, and of real hypersurfaces with two nonconstant principal curvatures in

the complex projective and hyperbolic planes.

1 Introduction

Originally, the interest of studying real hypersurfaces in Kähler manifolds ap-
peared in the field of Complex Analysis. In the theory of several complex variables,
an important problem is to understand the relation between holomorphic functions
defined on a domain of the complex space Cn and the boundary of such domain.
When this boundary is smooth, it becomes a real hypersurface, that is, a submani-
fold of the Euclidean space R2n with real codimension one. Note that the term real
is used to distinguish these objects from complex hypersurfaces, i.e. submanifolds
with complex codimension one. See [17] for a survey on real hypersurfaces from the
viewpoint of Complex Analysis.

From the point of view of Differential Geometry, a problem that has attracted
the attention of many mathematicians over the last few decades is to classify real hy-
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persurfaces in terms of different geometric conditions. The case of real hypersurfaces
in nonflat complex space forms, that is, in the complex projective and hyperbolic
spaces (CPn and CHn, respectively), deserves special attention, for these spaces
are the nonflat Kähler manifolds with simplest curvature tensor.

Traditionally, geometers interested in real hypersurfaces in complex space forms
have mostly focused on studying the so-called Hopf examples. Given a real hyper-
surface M in a complex space form with complex structure J , the hypersurface
M is said to be Hopf if its Reeb vector field (or structure vector field) Jξ is an
eigenvector of the shape operator of M at every point. Hopf real hypersurfaces
provide a large list of examples, among which we can find for example all homoge-
neous hypersurfaces in complex projective spaces (see [13], [19], [24]). Recall that
a submanifold of any Riemannian manifold is called homogeneous if it is an orbit
of an isometric action on the ambient manifold.

However, some interesting families of non-Hopf real hypersurfaces have been
discovered over the last few years. Our purpose in this paper is to describe some of
them. The examples we present are related to homogeneous hypersurfaces, isopara-
metric hypersurfaces and hypersurfaces with two principal curvatures. Let us recall
here that a hypersurface of any Riemannian manifold is called isoparametric if it
and its close-by equidistant hypersurfaces have constant mean curvature.

The first important class of examples we will describe is provided by some non-
Hopf homogeneous hypersurfaces in the complex hyperbolic spaces CHn. We review
their construction, due to Berndt and Brück [1], in Section 2.

The previous construction can be generalized to produce inhomogeneous non-
Hopf isoparametric hypersurfaces in CHn. This generalization is due to Dı́az-Ramos
and the author [9], and is described in Section 3.

Finally, in Section 4 we explain how one can construct new real hypersurfaces
with two (nonconstant) principal curvatures in the complex projective and hyper-
bolic planes CP 2 and CH2. These new examples are motivated by an open question
proposed by Niebergall and Ryan in [22], and their construction is part of an ongoing
joint project with Dı́az-Ramos and Vidal-Castiñeira [11].

2 Non-Hopf homogeneous hypersurfaces in complex hyperbolic spaces

As we mentioned before, whereas all homogeneous hypersurfaces in CPn are
Hopf, this is not the case for CHn. The purpose of this section is to review the
construction of the non-Hopf homogeneous hypersurfaces in CHn.

The description of these examples makes use of a Lie group theoretic model of
the complex hyperbolic space. This model is related to the Iwasawa and root space
decompositions of the isometry group of CHn, but can also be described directly
from the point of view of the so-called Damek-Ricci spaces. Here we will content
ourselves with a succinct description of this model, and we refer the reader to [2],
[13] and [15, §1.7.3] for detailed information and references.

The complex hyperbolic space CHn can be identified with a solvable Lie group
AN endowed with a left-invariant Riemannian metric. Here AN is a semidirect
product of an abelian 1-dimensional Lie group A and a (2n− 1)-dimensional nilpo-
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tent Lie group N . Let a and n denote the Lie algebras of A and N , respectively.
The center z of n is 1-dimensional, and the orthogonal complement v = n	 z of z in
n turns out to admit a complex structure J (which can be related to the complex
structure of CHn). Thus, we will identify the vector space v with the complex Eu-
clidean space Cn−1. Furthermore, the Lie bracket of the Lie algebra a⊕ n satisfies
the following properties: [a, X] ⊂ RX, for all X ∈ v and all X ∈ z, and [v, v] ⊂ z.

Let now w be a proper vector subspace of v ∼= Cn−1; here proper simply means
that w 6= v. Denote by w⊥ the orthogonal complement of w in v. We say that w⊥

has constant Kähler angle ϕ ∈ [0, π/2] if for every unit vector ξ ∈ w⊥, the angle
between Jξ and w⊥ is ϕ. In particular, w⊥ is a complex subspace of v if and only
if w⊥ has constant Kähler angle 0, and w⊥ is a totally real subspace of v if and
only if w⊥ has constant Kähler angle π/2. However, if n ≥ 3, there are subspaces
of v ∼= Cn−1 with constant Kähler angle ϕ, for each ϕ ∈ (0, π/2). In fact, these
subspaces can be classified (see [1, Proposition 7]).

We proceed now with the definition of the non-Hopf homogeneous hypersurfaces.
Assume that the subspace w of v is such that w⊥ = v 	 w has nonzero constant
Kähler angle ϕ ∈ (0, π/2]. Then

sw = a⊕w⊕ z

is a Lie subalgebra of a ⊕ n. Denote by Sw the connected subgroup of AN with
Lie algebra sw. From the Riemannian viewpoint, this subgroup Sw is a homoge-
neous austere (and hence minimal) submanifold of AN ∼= CHn. It turns out that
the distance tubes of any radius around Sw are homogeneous hypersurfaces of the
complex hyperbolic space. If Sw has dimension 2n− 1 (that is, dimw⊥ = 1), then
Sw is a homogeneous hypersurface itself. These two claims follow from the work
of Berndt and Brück [1], where these submanifolds were first introduced. However,
more is true: every non-Hopf homogeneous hypersurface of CHn is either Sw for
some subspace w ⊂ v of dimension 2n− 1, or a tube around a submanifold Sw such
that w⊥ = v	w has nonzero constant Kähler angle. This is a consequence of the
classification of homogeneous hypersurfaces in complex hyperbolic spaces, due to
Berndt and Tamaru [5].

The submanifolds Sw are often denoted in the literature by W 2n−k
ϕ , where ϕ is

the value of the constant Kähler angle of w⊥, and k = dimw⊥. Their geometry, as
well as the geometry of the corresponding homogeneous hypersurfaces, was studied
in [2]. A partial characterization of these examples by means of the property of the
constancy of the principal curvatures was obtained in [8].

3 New isoparametric hypersurfaces

The previous definition of the non-Hopf homogeneous hypersurfaces due to
Berndt and Brück admits a noteworthy generalization to the realm of isopara-
metric hypersurfaces in CHn. This was first pointed out by Dı́az-Ramos and the
author in [9]. More recently, in [10] we generalized the construction to the harmonic
Damek-Ricci spaces and, in particular, to the quaternionic hyperbolic spaces and
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the Cayley hyperbolic plane. In this section we review the main result in [9] about
the construction of new isoparametric hypersurfaces in complex hyperbolic spaces.
We will also make use of the notation and results concerning the Lie group theoretic
description of CHn explained in the previous section.

In the definition of the non-Hopf homogeneous hypersurfaces above, we had to
consider subspaces w of v such that w⊥ = v	w has constant Kähler angle. However,
the definition of the submanifold Sw makes perfect sense for any choice of the sub-
space w of v. What can we say about the tubes around Sw? The surprising answer
is that all these tubes have constant mean curvature. Since by definition the tubes
are equidistant to each other, it follows that they are isoparametric hypersurfaces.

Theorem 3.1. [9] Identify the complex hyperbolic space CHn with the solvable Lie

group AN as in Section 2. Let w be any proper vector subspace of v and define the

Lie subalgebra sw = a ⊕ w ⊕ z of a ⊕ n. Let Sw be the connected subgroup of AN

with Lie algebra sw.

Then, the tubes around the submanifold Sw of AN ∼= CHn are isoparametric

hypersurfaces of CHn. Moreover, the following conditions are equivalent:

• The tubes around Sw are homogeneous.

• The tubes around Sw have constant principal curvatures.

• w⊥ has constant Kähler angle as a subspace of v.

An important consequence of the previous result is the existence of uncountably
many inhomogeneous isoparametric hypersurfaces in complex hyperbolic spaces.
Moreover, the tubes around Sw are Hopf hypersurfaces if and only if w is a complex
subspace of v; in this case Sw is a totally geodesic complex hyperbolic subspace of
CHn and the tubes around it are well-known homogeneous Hopf hypersurfaces.
Therefore, most of the examples produced by the method above are non-Hopf. In
fact, the number of nontrivial projections of their structure vector field onto the
principal curvature spaces may vary from 1 to 3.

Let us conclude this section with a short remark on isoparametric hypersurfaces
in complex projective spaces CPn. Whereas the classification of isoparametric hy-
persurfaces in CHn is still elusive (in spite of the amount of examples provided
above), the classification in the projective case has been almost completely settled
by the author in [14]. As well as for CHn, every Hopf isoparametric hypersurface
in CPn is an open part of a homogeneous hypersurface, but there exist many non-
Hopf isoparametric examples with nonconstant principal curvatures. All of them
are obtained by projecting isoparametric hypersurfaces in odd-dimensional spheres
by means of the Hopf fibration S2n+1 → CPn. However, two interesting phenom-
ena arise in this context. On the one hand, there can be noncongruent isopara-
metric hypersurfaces in CPn that pullback under the Hopf fibration to congruent
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isoparametric hypersurfaces in S2n+1. On the other hand, there are inhomogeneous
isoparametric hypersurfaces in CPn that pullback under the Hopf map to homo-
geneous isoparametric hypersurfaces in S2n+1. See [14] for more details on these
interesting properties.

4 Niebergall and Ryan’s open problem and new real hypersurfaces with

two principal curvatures

In the influential survey [22] by Niebergall and Ryan, the authors included a list
of open problems in the field of real hypersurfaces in complex space forms. This list
has motivated many investigations over the last years. One of the problems that was
still outstanding, in spite of the efforts of several geometers, is Question 9.2 in [22].
Below, we explain this problem and announce a surprising answer that has been
obtained in the preprint [11] by J. Carlos Dı́az-Ramos, Cristina Vidal-Castiñeira
and the author.

A classical result by Tashiro and Tachibana [25] asserts that there are no um-
bilical real hypersurfaces in nonflat complex space forms, that is, there are no real
hypersurfaces with only one principal curvature in CPn and CHn. Later, Cecil and
Ryan [6] showed that a real hypersurface with exactly two principal curvatures in
CPn, n ≥ 3, has constant principal curvatures and is an open part of a geodesic
sphere. An analogous result for CHn, n ≥ 3, was obtained by Montiel [21], who
showed that a real hypersurface with two distinct principal curvatures must be an
open part of a geodesic sphere, a tube around a totally geodesic CHn−1 in CHn, a
tube of radius 1√

−c ln(2+
√

3) around a totally geodesic RHn, or a horosphere; here

c is the constant sectional curvature of CHn. In both cases, the examples that arise
in these classifications are open parts of homogeneous Hopf hypersurfaces, which
are sometimes referred to as the standard examples.

The problem appears when one tries to generalize the results by Cecil and Ryan,
and Montiel, to the case n = 2, since the methods used by these authors fail for
this case. Niebergall and Ryan stated the problem in [22, Question 9.2] as follows:

Problem. Do the above results by Cecil, Ryan and Montiel extend to n = 2?
Are there hypersurfaces in CP 2 or CH2 that have 2 principal curvatures, other than
the standard examples?

In [11] we show that the answer to the second question is affirmative: there
are non-Hopf real hypersurfaces with two nonconstant principal curvatures in CP 2

and CH2. Moreover, in [11] we obtain a geometric description of all such examples.
Below, we explain the main ideas of our construction.

We will denote by M̄2(c) the complex projective plane CP 2 of constant holo-
morphic sectional curvature c > 0, or the complex hyperbolic plane CP 2 of constant
holomorphic sectional curvature c < 0. We also need to recall here the notion of
polar action. Given a group H of isometries of a given Riemannian manifold M̄ , its
action on M̄ is said to be polar if there exists a submanifold Σ of M̄ that intersects
all the orbits of the action, and always orthogonally. Such submanifold Σ must then
be totally geodesic, and is called a section of the action. Given a polar action on M̄ ,
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there is a section through every point in M̄ . The investigation of polar actions and
their classification, particularly on symmetric spaces, is an active field of research
nowadays. We refer the reader to [7], [16], [20] and [26] for more information on
polar actions.

In order to construct our new hypersurfaces, we start by recalling that the
group U(3) of unitary linear transformations of C3 acts transitively on the complex
projective plane CP 2 by isometries. For the case of the complex hyperbolic plane
CH2, we consider the group U(1, 2) of complex 3 × 3 matrices that preserve a
Hermitian metric on C3 of signature (1, 2). Similarly as for CPn, its action on the
anti-de Sitter space of dimension 5 descends to a transitive isometric action on CH2.

Now we consider the product group H = U(1) × U(1) × U(1) embedded as a
subgroup of U(3), and also of U(1, 2), in the canonical way (i.e., by means of diagonal
matrices). It is easy to show that the action of H on CP 2 is polar and its sections are
totally geodesic real projective planes RP 2; this also follows from the classification
of polar actions on complex projective spaces due to Podestà and Thorbergsson [23].
Similarly, the classification of polar actions on the complex hyperbolic plane, due to
Berndt and Dı́az-Ramos [4], shows that H also acts polarly on CH2, and the sections
are totally geodesic real hyperbolic planes RH2. It is worthwhile to point out that,
although in general there does not exist a one-to-one correspondence between polar
actions on CP 2 and on CH2, it does exist for the action of compact groups [12], as
is the case of H = U(1)× U(1)× U(1).

We describe now the structure of orbits of the action of H on M̄2(c), c 6= 0.
The situation is quite similar for the cases c > 0 and c < 0, although there are some
differences due to the compactness of M̄2(c) = CPn when c > 0.

We start considering the subgroup K = U(1) × U(2) of U(3) and of U(1, 2),
embedded in the canonical way. The group K acts isometrically on M̄2(c) with
cohomogeneity one and with a fixed point, say o. The principal orbits of this action
are all geodesic spheres centered at o. If c < 0, all such geodesic spheres, together
with the point o, fill the whole CHn, since CHn is a Hadamard manifold. However,
in the case c > 0, the conjugate locus of o is not empty: it consists of a totally
geodesic complex projective line CP 1 inside CP 2. Hence, the orbits of the H-action
on CP 2 are: the point o, the geodesic spheres centered at o, and the conjugate locus
CP 1 of o.

The group H = U(1)× U(1)× U(1) is contained in the subgroup K = U(1)×
U(2). Hence, the orbits of the H-action are contained in the orbits of the K-
action. The orbits of H contained in a fixed geodesic sphere around o turn out to
be equidistant, flat, totally real tori S1 × S1, and two singular orbits isometric to
circles S1. In the projective case (i.e. when c > 0), we have to describe the orbits
contained in the conjugate locus of o. It turns out that the restriction of the H-
action to this conjugate locus (which is a CP 1 ∼= S2) is equivalent to the standard
action of SO(2) on the sphere S2. In particular, whereas the H-action on CHn has
only one fixed point o, the action on CPn has exactly three fixed points. In both
cases, the remaining orbits are either circles or tori.

A convenient way of visualizing the action of H is by geometrically interpreting
each one of the points of a section of the action (see Figure 1(a)). This interpretation
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follows for example from the theory of polar actions and Weyl groups, see [26]. So,
let Σ be a section of the polar action of H. Recall that Σ is a totally geodesic RP 2

if c > 0, or a totally geodesic RH2 if c < 0. By definition, Σ intersects all the orbits
of the H-action at least once, but maybe more than once. The fixed points of the
action (in particular, the point o) must then be contained in Σ. The intersections of
the 1-dimensional orbits contained in geodesic spheres around o with the section Σ
lie in two orthogonal geodesics of Σ, which we will call axes. On the other hand, the
intersections of the geodesic spheres around o with Σ are circles in Σ centered at o.
Fix a given geodesic sphere around o. Then one of the two 1-dimensional orbits in
this geodesic sphere intersects Σ in exactly two points, which are symmetric with
respect to the center o. Each of the tori contained in the geodesic sphere intersects
Σ in exactly four points, which are symmetric with respect to the two axes in Σ.

o

(a) This figure represents the section Σ

where two geodesics and one circle were

drawn. The circle is the intersection of Σ

with a geodesic sphere in CP 2 centered at

o. The square-shaped points are the inter-

sections of Σ with the two orbits diffeomor-

phic to S1 inside the geodesic sphere. The

four short segments represent the intersec-

tion of Σ with a principal orbit.

o

Γ

(b) Σreg is diffeomorphic to the Euclidean

plane minus both coordinate axes. We seek

a connected curve γ in one of the four quad-

rants of Σreg. The dashed curves are ob-

tained by reflecting γ with respect to the

axes. The four resulting curves are the in-

tersection of Σ with the hypersurface H ·γ.

Figure 1: Geometric interpretation of the polar action of H.

We will be interested only in the regular part Σreg of Σ, that is, the points
in the section that belong to orbits of maximal dimension of the H-action, in this
case, to the two-dimensional tori. This regular part is an open and dense subset
of Σ diffeomorphic to the plane R2 minus two orthogonal lines. Given a curve
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γ : t ∈ (−ε, ε) 7→ γ(t) ∈ Σreg in the regular part of Σ, the subset

H · γ = {h(γ(t)) : t ∈ (−ε, ε), h ∈ H}

is a real 3-dimensional hypersurface in M̄2(c). The tangent space to H ·γ at a point
h(γ(t)) is spanned by the velocity γ̇(t) of the curve and the tangent space to the
torus H · γ(t). The real hypersurface H · γ is clearly foliated by equidistant tori,
and perpendicularly, by the curves h · γ : t ∈ (−ε, ε) 7→ (h · γ)(t) = h(γ(t)) ∈ Σreg,
for each h ∈ H.

Now, our purpose is to determine which curves γ give rise to hypersurfaces with
exactly two principal curvatures at every point.

The first observation is that the principal curvatures of any principal H-orbit
(any torus) with respect to any nonzero normal vector are always different, that
is, there are exactly two. This follows, after some calculations, from the explicit
expression of the shape operator of these tori (see for example [18, p. 299]).

Fix now a point p ∈ Σreg and a tangent vector v ∈ TpΣreg. Consider a (locally
defined) regular curve γ in Σreg, parametrized by arc-length and such that γ(0) = p
and γ̇(0) = v. Fix a unit vector field ξ normal along γ, i.e. 〈ξγ(t), γ̇(t)〉 = 0 for
all t where γ is defined. Consider also a local chart U for Σreg around p, with
coordinates (x1, x2). Let α, β : TU→ R be the principal curvature functions of the
tori intersecting U at the intersection points. Note that TU is a fiber bundle of
normal spaces to the tori intersecting U at the points of U. As explained above, we
know that α(w) 6= β(w) for any vector w ∈ TU.

We want to impose the condition that the hypersurface H ·γ have two principal
curvatures. It turns out that the shape operator of H · γ at γ(t) with respect to
the unit normal vector ξγ(t) has the following eigenvalues: α(ξγ(t)), β(ξγ(t)), and
the curvature of the curve γ in M̄2(c). The latter coincides with the curvature of γ
(with respect to the orientation determined by the normal field ξ) as a curve in Σ,
since Σ is totally geodesic.

Hence, H · γ will have two principal curvatures at the points of γ if and only
if the curvature of γ (with respect to ξ) as a curve in Σ coincides with one of the
two functions α(ξγ(t)) or β(ξγ(t)). One can then see that this condition determines
two possible systems of ordinary differential equations of second order. If we write
γ in local coordinates as γ(t) = (x1(t), x2(t)) and denote by ∇̄ the Levi-Civita
connection of M̄2(c), we have:

∇̄γ̇ γ̇ = x′′1∂1 + x′1∇̄γ̇∂1 + x′′2∂2 + x′1∇̄γ̇∂2
= (x′′1 + f(x1, x2, x

′
1, x
′
2))∂1 + (x′′2 + g(x1, x2, x

′
1, x
′
2))∂2,

where f , g are differentiable functions of x1, x2, x
′
1, x
′
2 and of the Christoffel symbols

of Σ. The requirement that the curvature of γ coincides with α(ξγ(t)) means that
∇̄γ̇ γ̇ = α(ξγ(t))ξγ(t) (similarly with β instead of α). Hence, there exist smooth
functions Fα and Gα (depending on x1, x2, x

′
1, x
′
2, the Christoffel symbols of Σ and

the function α) such that

x′′1 = Fα(x1, x2, x
′
1, x
′
2)

x′′2 = Gα(x1, x2, x
′
1, x
′
2)

}
.
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This is a second order system of ordinary differential equations written in normal
form and with two unknowns, x1 and x2. Hence, it has a unique solution for given
initial conditions γ(0) = p and γ̇(0) = v. A completely analogous argument applies
for β instead of α. Therefore, the hypersurface H · γ has two principal curvatures
at the points of γ if and only if γ is a solution to one of two possible systems of
ODEs constructed as explained above. Using the fact that the action of H is polar,
it is not difficult to show that, given a solution γ to one of the systems of ODEs,
the hypersurface H · γ has two principal curvatures at all points, not only along γ.

Finally, one has to show that the examples we have just constructed are indeed
new, that is, their two principal curvatures are nonconstant. We start fixing a point
p ∈ Σreg. Then we know that for every unit v ∈ TpΣreg there is a locally defined
curve γv such that γv(0) = p, γ̇v(0) = v and H · γv has two principal curvatures. In
fact, there are exactly two such curves, but the arguments that follow apply to any
one of them. Assume that, for all v in an open subset of the unit sphere S1(TpΣreg)
of TpΣreg, the real hypersurfaces H · γv are Hopf at p. We will get a contradiction
with this assumption. For each hypersurface, let ξv be a unit normal vector field
along H · γv, which we know is H-equivariant along the tori that foliate H · γv.
Note that the subindex v in ξv only denotes that the normal vector field depends on
the initial value v for γ̇v; in particular, 〈γ̇v(t), (ξv)γv(t)〉 = 0 for each posible t. The
assumption that H ·γv is Hopf at p means that (Jξv)p is an eigenvector of the shape
operator of H · γv, and hence, (Jξv)p is also an eigenvector of the shape operator
S(ξv)p of the torus H · p with respect to the normal vector (ξv)p. In particular, the
map

v ∈ S1(TpΣreg) 7→ 〈S(ξv)p(Jξv)p, Jv〉 ∈ R

vanishes in an open subset of the unit sphere of TpΣreg. Since this map is analytic,
it vanishes identically, which means that (Jξv)p is an eigenvector of S(ξv)p , for
every unit v ∈ TpΣreg. Since Jv is perpendicular to (Jξv)p, we have that Jv is
an eigenvector of S(ξv)p for each v, because S(ξv)p is a self-adjoint endomorphism
of a two-dimensional vector space. But now, if we fix any v and take unit normal
vectors ξ = (ξv)p and η = v at p, then {Jξ, Jv} is a common basis of eigenvectors
for the shape operators Sξ and Sη of the torus H · p at p with respect to ξ and
η. This means that the shape operators Sξ and Sη commute. Using this and the
fact that the torus H · p has flat normal bundle, the Ricci equation of H · p can be
used to derive a contradiction. Therefore, the real hypersurfaces H · γv are Hopf
at p for all v in a subset of S1(TpΣreg) with measure zero. So, generically, our
hypersurfaces are non-Hopf. But since they have two principal curvatures, these
cannot be constant, because all hypersurfaces in M̄2(c) with two constant principal
curvatures are Hopf, as follows from their well-known classification result (see [3]).

The arguments above imply the existence of non-Hopf real hypersurfaces with
two nonconstant principal curvatures in the complex projective and hyperbolic
planes. However, the most difficult part of our work [11] consists in proving a
classification result for hypersurfaces with two principal curvatures in M̄2(c), c 6= 0.
Several ingredients are needed to prove such result, but the most complicated part
consists in dealing with all the information provided by the fundamental equations of
the hypersurfaces under consideration. This information can then be used to prove
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a structure result for such hypersurfaces, which turn out to be locally foliated by flat
surfaces with parallel second fundamental form and, perpendicularly, by geodesic
curves of the hypersurface. We include below the main result in [11], which first
states the existence result for both CP 2 and CH2, and then the characterization
result for CP 2.

Theorem 4.1. [11] Let M̄2(c) be a complex space form of complex dimension 2

and constant holomorphic curvature c 6= 0. Consider a polar action of the group

H = U(1)× U(1)× U(1) on M̄2(c) with section Σ.

Then, for any regular point p ∈ Σ and any tangent vector v ∈ TpΣ, there are

exactly two different locally defined curves γi : (−ε, ε)→ Σ, i = 1, 2, with γi(0) = p

and γ̇i(0) = v, such that the set H · γi = {h(γi(t)) : h ∈ H, t ∈ (−ε, ε)} is a real

hypersurface with two principal curvatures in M̄2(c). Generically, such hypersurface

is non-Hopf and with nonconstant principal curvatures.

Conversely for the case c > 0, let M be an analytic real hypersurface of CP 2(c)

with two nonconstant principal curvatures and which is non-Hopf at every point.

Then M locally congruent to an open part of a real hypersurface constructed as

above.

The arguments in [11] also apply to the complex hyperbolic plane CH2. How-
ever, in this case there are even more examples. Roughly, the reason for this stems
from the following fact. While in CP 2 there is only one polar action of cohomogene-
ity two up to orbit equivalence (the action of U(1)×U(1)×U(1)), in CH2 there are
three more polar actions of cohomogeneity two, as follows from the classification
in [4]. The construction explained in this section may be adapted to deal with these
other polar actions and, thus, obtain more examples of real hypersurfaces with two
principal curvatures. For more details and the proofs, we refer the reader to [11].

As a final remark, I would like to point out the interest of obtaining new char-
acterizations of the non-Hopf hypersurfaces described in this and the previous two
sections. There exists a good number of characterization and classification results
for Hopf hypersurfaces in nonflat complex space forms. Most of these results were
included in the survey [22], or motivated by the open questions proposed in [22],
and involve geometric conditions related to the structure Jacobi operator of real hy-
persurfaces, the pseudo-Einstein condition or the property of being a Ricci soliton,
just to give a few examples. However, the problem of finding geometric properties
that can be used to characterize non-Hopf real hypersurfaces is virtually unsettled
and, thus, constitutes a broad field for future research in the context of Differential
Geometry.
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