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Abstract. We present the motivation and current state of the classification
problem of real hypersurfaces with constant principal curvatures in complex
space forms. In particular, we explain the classification result of real hyper-
surfaces with constant principal curvatures in nonflat complex space forms
and whose Hopf vector field has nontrivial projection onto two eigenspaces of
the shape operator. This constitutes the following natural step after Kimura
and Berndt’s classifications of Hopf real hypersurfaces with constant principal
curvatures in complex space forms.

1. Introduction

An isometric action on a Riemannian manifold M̄ is called a cohomogeneity one
action if its principal (or generic) orbits are hypersurfaces. These hypersurfaces
are then called (extrinsically) homogeneous hypersurfaces of M̄ . The study of
cohomogeneity one actions is a topic of current interest because it has shown to
be useful in the construction of geometrical structures on manifolds, such as Ricci
solitons, Einstein metrics and metrics with special holonomies. The reason is that
certain systems of partial differential equations defining those structures can be
reduced to ordinary differential equations, which can help to find explicit solutions.

From the point of view of Submanifold Geometry, an important problem is to
classify cohomogeneity one actions on a given ambient manifold M̄ , and also to
characterize the outcoming homogeneous hypersurfaces in terms of geometric data.
This work focuses on this aim and, in particular, on the geometric property of having
constant principal curvatures. It is clear that every homogeneous hypersurface has
constant principal curvatures, because the shape operators at two different points
are always conjugate by the differential of an element of the group that is acting
with cohomogeneity one. It is natural to ask to what extent the constancy of
principal curvatures characterizes homogeneous hypersurfaces. In other words, if
M is a hypersurface with constant principal curvatures, is then M an open part of
a homogeneous hypersurface?

In general, the methods that have been developed to answer this question address
directly the problem of the classification of hypersurfaces with constant principal
curvatures in a certain ambient manifold M̄ . But already since the decade of the
30s, when Élie Cartan studied this topic, the problem appears to be far from being
trivial, as we will see.
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In this work we will expose the evolution of this topic, focusing on the case
where the ambient manifold is a complex space form. The objective of this work
is to provide the necessary contextualization, definitions and notation required to
understand the following classification theorem, which constitutes the main result
of the work [11], developed by José Carlos Dı́az Ramos and the author.

Main Theorem. We have:

(a) There are no real hypersurfaces with constant principal curvatures in the com-

plex projective space CPn, n ≥ 2, whose Hopf vector field has h = 2 nontrivial

projections onto the principal curvature spaces.

(b) Let M be a connected real hypersurface in the complex hyperbolic space CHn,

n ≥ 2, with constant principal curvatures and whose Hopf vector field has h = 2
nontrivial projections onto the principal curvature spaces of M . Then, M has

g ∈ {3, 4} principal curvatures and is holomorphically congruent to an open

part of:

(i) a ruled minimal real hypersurface W 2n−1 ⊂ CHn or one of the equidistant

hypersurfaces to W 2n−1, or

(ii) a tube around a ruled minimal Berndt-Brück submanifold with totally real

normal bundle W 2n−k ⊂ CHn, for some k ∈ {2, . . . , n− 1}.
In particular, M is an open part of a homogeneous real hypersurface of CHn.

The structure of this text is as follows. In Section 2 we give a historical approach
to the problem of hypersurfaces with constant principal curvatures in space forms.
Then, in Section 3, we move on to the case when the ambient manifold is a complex
space form, introducing some important notions and exposing the results known so
far. The examples that appear in our classification result are explained in Section
4. Finally, in Section 5, we state some open problems of interest in this topic.

2. The problem in space forms

Given a Riemannian manifold M̄ , a hypersurface M is called isoparametric if
it and its nearby equidistant hypersurfaces have constant mean curvature. This
terminology was first introduced by Levi-Civita [17], motivated by a problem in
Geometric Optics (see [27] for more details). Cartan [9] proved that, if the ambi-
ent manifold is a space form, a hypersurface is isoparametric if and only if it has
constant principal curvatures. This is the reason why it is very common to refer
to hypersurfaces with constant principal curvatures in real space forms as isopara-
metric hypersurfaces. However, it is important to notice that this equivalence is
not true in general, as some examples in the complex projective space show [28].

In the rest of this work, g will denote the number of principal curvatures of a
hypersurface with constant principal curvatures.

The classification of isoparametric hypersurfaces in Euclidean spaces Rn is usu-
ally attributed to Levi-Civita [17] for n = 3, and to Segre [22] for the general case.
The examples that appear in this classification are affine hyperplanes, spheres and
products of spheres by affine subspaces. When the ambient manifold is a real hy-
perbolic space RHn, the analogous result is due to Cartan [9], who proved that, in
this case, the examples can be geodesic hyperspheres, horospheres, totally geodesic
real hyperbolic hyperspaces and their equidistant hypersurfaces, and tubes around
totally geodesic real hyperbolic subspaces of codimension greater than one. A con-
sequence of these results is that every isoparametric hypersurface in a space form
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of nonpositive curvature satisfies g ∈ {1, 2} and is an open part of a homogeneous
hypersurface, so the constancy of principal curvatures characterizes homogeneous
hypersurfaces for these ambient manifolds.

Nevertheless, the problem in spheres turns out to be much more involved. In a se-
ries of papers at the end of the 30s, Cartan classified hypersurfaces with g ∈ {1, 2, 3}
constant principal curvatures in spheres, but could not solve the general case. Then,
the problem stayed abandoned for about thirty years, until Hsiang and Lawson Jr.
[13] classified cohomogeneity one actions on spheres and, hence, homogeneous hy-
persurfaces in spheres. For these homogeneous examples g ∈ {1, 2, 3, 4, 6} holds.
Using Algebraic Topology methods, Münzner proved that this restriction on g is
also valid for every isoparametric hypersurface in a sphere, what could lead to think
that, again, every isoparametric hypersurface is homogeneous. However, this is not
the case, as follows from the paper [14], where Ferus, Karcher and Münzner, using
representations of Clifford algebras, found a family of inhomogeneous isoparametric
hypersurfaces in spheres, with g = 4. This made the problem much more difficult
and interesting. Recently, some important advances have been made towards a final
classification, which is still not known. We emphasize the works of Cecil, Chi and
Jensen [10] and Immervoll [15] who proved, using quite different methods, that,
with a few possible exceptions, hypersurfaces with g = 4 constant principal cur-
vatures are among the known homogeneous and inhomogeneous examples. Some
progress has also been made in the case g = 6 (Abresch [1], Dorfmeister and Neher
[12]), but the problem in this case seems to be open, as well.

For a more detailed exposition on the history of isoparametric hypersurfaces in
space forms and related problems, see the survey article [27].

3. The problem in complex space forms

In this work, by a complex space form we will understand a simply connected
complete Kähler manifold with constant holomorphic sectional curvature c. These
spaces are classified in three families according to the curvature: even-dimensional
Euclidean spaces Cn (c = 0), complex hyperbolic spaces CHn(c) with the Bergman
metric if c < 0, or complex projective spaces CPn(c) with the Fubini-Study metric
if c > 0. As C

n is isometric to R
2n, we will restrict to the nonflat case and, since

CP 1(c) is isometric to a sphere, and CH1(c) is isometric to the real hyperbolic
plane RH2, we also restrict to the case n ≥ 2. When we are not concerned about
the value of c, we will just write CPn or CHn.

When an ambient manifold is Kähler, we have two different notions of a hyper-
surface: either a submanifold with real codimension one, or a complex submanifold
with complex codimension one. As we are interested in the relation with cohomo-
geneity one actions, we will focus on the first case, that is, on real hypersurfaces.

From now on, M will denote a real hypersurface in a nonflat complex space form
M̄ (that is, CPn or CHn) with complex structure J . Let ξ be a unit normal vector
field to the hypersurface M (maybe defined just locally).

An important definition for the study of real hypersurfaces in complex space
forms is the following. The Hopf vector field (also Reeb vector field) of the hy-
persurface M is the tangent vector field Jξ. When this vector field is a principal
curvature vector field, that is, Jξ is an eigenvector field of the shape operator of
the hypersurface, then M is called a Hopf hypersurface. We will denote by h the
number of principal curvature spaces of M onto where the Hopf vector field has
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nontrivial projection. Then h is an integer-valued map defined on the hypersurface
M , and h is pointwise less or equal to the number of principal curvatures of M ,
that is, h ≤ g. With this notation, a real hypersurface is Hopf if and only if h = 1.

In the study of real hypersurfaces, it is very common to impose geometric con-
ditions which usually imply the property of being Hopf, and this often simplifies
considerably some calculations. However, in this work we are mainly concerned
with the study of non-Hopf real hypersurfaces, as will become clearer soon.

In the rest of this section, we will summarize the evolution and current state of
the classification problem for real hypersurfaces with constant principal curvatures
in complex space forms. Another survey on this topic is [3]. For a schematic view
of the possible real hypersurfaces with constant principal curvatures in CPn and
CHn for different values of h and g, we refer to the tables placed two pages later.

In 1963, Tashiro and Tachibana proved that there are no umbilical real hyper-
surfaces in nonflat complex space forms. In particular, there is no real hypersurface
with g = 1 constant principal curvature. Years later, in 1973, Takagi achieved the
classification of homogeneous real hypersurfaces in the complex projective space
[23]. He used the classification of homogeneous hypersurfaces in spheres due to
Hsiang and Lawson, to prove that the only homogeneous hypersurfaces in spheres
which preserve the S1-fiber of the Hopf fibration S2n+1 → CPn are the principal
orbits of isotropy representations of rank 2 Hermitian symmetric spaces. Hence,
every homogeneous hypersurface in CPn is the projection by the Hopf map of one
of these principal orbits (see Table 1 for the description of the examples). From
this classification it follows that the homogeneous examples satisfy g ∈ {2, 3, 5}. A
remarkable feature of homogeneous hypersurfaces in CPn is that they are Hopf.

Subsequently, Takagi classified real hypersurfaces with g ∈ {2, 3} constant prin-
cipal curvatures in CPn [24], [25], with the exception of the case n = 2, g = 3, which
was solved by Wang [29]. All the examples classified in these results are Hopf and
open parts of homogeneous hypersurfaces. In 1986, Kimura [16] classified Hopf real
hypersurfaces with constant principal curvatures in CPn and showed that these
are open parts of homogeneous ones. No examples are known of real hypersurfaces
with constant principal curvatures in CPn with h > 1.

The situation is more interesting in the complex hyperbolic space CHn, where,
surprisingly, there are non-Hopf homogeneous real hypersurfaces. Such real hyper-
surfaces were constructed by Berndt and Brück [4]. Indeed, with h = 3 there are
uncountably many non-congruent homogeneous real hypersurfaces with g ∈ {4, 5}.
In Section 4 and in [7] one can find the definition of these non-Hopf examples and
some of their remarkable properties. Recently, Berndt and Tamaru obtained in [8]
the classification of cohomogeneity one actions on CHn. The number of principal
curvatures of the resulting homogeneous hypersurfaces is g ∈ {2, 3, 4, 5} and the
number of nontrivial projections of the Hopf vector field onto the principal curva-
ture spaces is h ∈ {1, 2, 3}. In 1985, Montiel [19] had classified real hypersurfaces
with g = 2 constant principal curvatures in CHn (n ≥ 3), proving that they are
Hopf. In 1989, Hopf real hypersurfaces with constant principal curvatures in CHn

were classified by Berndt [2]. All these hypersurfaces are open parts of homoge-
neous ones. Berndt and Dı́az-Ramos solved the cases g = 3, and g = 2, n = 2 in
[5] and [6]. It follows from these results that h = 1 when g = 2 and that h ≤ 2 if
g = 3. To our knowledge, the first classifications of this kind involving non-Hopf
real hypersurfaces are [5] and [6]. Nothing is known about h if g ≥ 4.
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The Main Theorem stated in Section 1, which is proved in [11], addresses the next
natural step after Kimura and Berndt’s classifications of Hopf real hypersurfaces
with constant principal curvatures in CPn and CHn [16], [2]. Thus, it provides the
classification of real hypersurfaces with constant principal curvatures and h = 2
nontrivial projections of the Hopf vector field onto the principal curvature spaces
in CPn and CHn. In the projective case, there are no such hypersurfaces, and, in
the hyperbolic case, all the examples are homogeneous and have g ∈ {3, 4} principal
curvatures. The construction of these hypersurfaces is the aim of the next section.

4. Non-Hopf homogeneous hypersurfaces

For some time it was believed that, as in the case of the complex projective
space, every homogeneous hypersurface in the complex hyperbolic space was Hopf.
However, in 1998 Lohnherr [18] constructed a counterexample: the minimal ruled
hypersurface W 2n−1 in CHn. Later, in [4], Berndt and Brück generalized this
construction to the minimal ruled submanifolds W 2n−k and W 2n−k

ϕ . As a conse-
quence of the classification of cohomogeneity one actions on CHn [8], tubes around
these submanifolds constitute the only nonclassical (and non-Hopf) examples of
homogeneous hypersurfaces in the complex hyperbolic space.

The aim of this section is to construct the submanifolds W 2n−k and W 2n−k
ϕ ,

which we are going to call Berndt-Brück submanifolds, and explain some of the
properties of the non-Hopf real hypersurfaces that they give rise to. For a more
detailed description of these, see [4] and [7].

In order to define the Berndt-Brück submanifolds, we will have to recall some
definitions and results about the structure of the complex hyperbolic space as a
symmetric space of noncompact type.

The expression of CHn as a symmetric space is G/K where G = SU(1, n) is a
connected simple Lie group that acts isometrically and transitively on CHn, and
K = S(U(1)U(n)) is the isotropy group of G at a point o ∈ CHn. Write g for
the Lie algebra of G and k for the Lie algebra of K. Let B be the Killing form
of g, which is nondegenerate due to Cartan’s criterion for semisimple Lie algebras.
Then we have the Cartan decomposition g = k ⊕ p with respect to o, where p is
the orthogonal complement of k in g with respect to B. This means that [k, k] ⊂ k,
[k, p] ⊂ p, [p, p] ⊂ k and B is negative definite on k and positive definite on p.
The Cartan involution θ corresponding to the Cartan decomposition g = k ⊕ p

is the automorphism of g defined by θ(X) = X for all X ∈ k and θ(X) = −X
for all X ∈ p. Then we can define a positive definite inner product Bθ on g by
Bθ(X,Y ) = −B(X, θY ), for all X,Y ∈ g.

Now fix a maximal abelian subspace a of p. It can be shown that dim a = 1,
which means by definition that the rank of the symmetric space G/K is one. The
set {ad(H) : H ∈ a} is a family of commuting Bθ-selfadjoint endomorphisms of g,
hence simultaneously diagonalizable. Their common eigenspaces are the root spaces
of the semisimple Lie algebra g. In other words, if for each λ ∈ a∗ we define

gλ = {X ∈ g : ad(H)X = λ(H)X for all H ∈ a} ,

then the root space decomposition of g with respect to a adopts the form g =
g−2α⊕g−α⊕g0⊕gα⊕g2α, for a certain covector α ∈ a∗. In addition, [gλ, gµ] ⊂ gλ+µ.
Now assume that α is a positive root. Then, due to the properties of the root space
decomposition, n = gα ⊕ g2α is a 2-step nilpotent subalgebra of g, which is in fact
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Table 1. Real hypersurfaces with constant principal curvatures in CPn(c)

h = 1 Hermitian symmetric

space of rank 2

h = 2
h ≥ 3

Kimura [16] Main Theorem [11]

g = 1

ImpossibleTachibana,

Tashiro [26]

g = 2
Geodesic hypersphere CP 1 × CPn Impossible

Takagi [24]

g = 3 Tube around a totally geodesic CP k, 1 ≤ k ≤ n− 2 CP k+1 × CPn−k

Impossible ?Takagi [25]
Tube around the complex quadric

{

[z] ∈ CPn : z20 + · · ·+ z2n = 0
}

G+

2 (R
n+3)

Wang [29]

g = 4 Impossible Impossible ?

g = 5

Tube around the Segre embedding of CP 1×CP k in CP 2k+1, k ≥ 2 G2(C
k+3)

Impossible ?Tube around the Plücker embedding of the complex Grassmannian
G2(C

5) in CP 9 SO(10)/U(5)

Tube around the half spin embedding of SO(10)/U(5) in CP 15 E6/ (U(1) × Spin(10))

g ≥ 6 Impossible Impossible ?

(1) In Tables 1 and 2 all known classification results and examples of real hypersurfaces with constant principal curvatures in CPn and CHn are shown,
up to holomorphic congruence.

(2) A shaded cell just means that h > g is impossible.
(3) When for a particular case of g and h there are some known examples, but a classification is missing, we write Not yet classified. If neither any

example nor a classification is known, we write a question mark ?.
(4) For each homogeneous hypersurface in CPn, we indicate the associated Hermitian symmetric space of rank 2 whose isotropy representation give rise

to that homogeneous hypersurface, via the projection of a principal orbit by the Hopf fibration.
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Table 2. Real hypersurfaces with constant principal curvatures in CHn(c)

h = 1 h = 2
h = 3 h ≥ 4

Berndt [2] Main Theorem [11]

g = 1

ImpossibleTachibana,

Tashiro [26]

g = 2

Montiel [19]

Berndt,

Dı́az-Ramos

[6]

Horosphere

Impossible

Geodesic hypersphere

Tube around a totally geodesic CHn−1

Tube of radius 1
√

−c
ln

(

2 +
√
3
)

around

a totally geodesic RHn

g = 3

Berndt,
Dı́az-Ramos

[5], [6]

Tube around a totally geodesic CHk,
1 ≤ k ≤ n− 2

Hypersurface W 2n−1 and its equidis-
tant hypersurfaces

Impossible
Tube of radius r 6= 1

√

−c
ln

(

2 +
√
3
)

around a totally geodesic RHn

Tube of radius 1
√

−c
ln

(

2 +
√
3
)

around

a submanifold W 2n−k, 2 ≤ k ≤ n− 1

g = 4 Impossible

Tube of radius r 6= 1
√

−c
ln

(

2 +
√
3
)

around a submanifold W 2n−k, 2 ≤ k ≤
n− 1

Tube around a submanifold
W 2n−2

ϕ , 0 < ϕ < π
2

Not yet classified

?

g = 5 Impossible Impossible

Tube around a submanifold
W 2n−k

ϕ , 0 < ϕ < π
2
, k even,

4 ≤ k ≤ n− 1

Not yet classified

?

g ≥ 6 Impossible Impossible ? ?
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isomorphic to the (2n − 1)-dimensional Heisenberg algebra. Moreover, a ⊕ n is a
solvable Lie algebra. The direct sum decomposition g = k ⊕ a ⊕ n is called the
Iwasawa decomposition of the Lie algebra g with respect to a and the choice of α
as a positive root. We emphasize that this is only a direct sum of vector spaces and
not a decomposition at the Lie algebra level.

Let A, N and AN be the connected subgroups of G with Lie algebras a, n and
a⊕ n, respectively. These three groups are simply connected and the Iwasawa de-
composition of g induces an Iwasawa decomposition of G, as the Cartesian product
K ×A×N . Again, by this we just mean that G is diffeomorphic to that Cartesian
product, and not that G is isomorphic to the direct product of the groups K, A and
N . From this Iwasawa decomposition it follows that the simply connected solvable
Lie group AN acts simply transitively on CHn. Thus, we can identify a ⊕ n with
the tangent space ToCH

n, and the group AN with the complex hyperbolic space
CHn. The Riemannian metric of CHn induces a left-invariant metric on AN which
makes AN isometric to CHn. Similarly, the complex structure J on CHn induces
a complex structure on a⊕ n and on AN . We will denote these structures also by
J . It is then possible to prove that gα is J-invariant and Ja = g2α.

Altogether, we got a model for the complex hyperbolic space as a solvable Lie
group AN with a left-invariant metric, which turns out to be very useful for the
study of some properties of CHn. In our case, this model and the constructions
explained above will allow us to define the Berndt-Brück submanifolds, as we are
going to see in the rest of this section.

Let w be a vector subspace of the root space gα, such that its orthogonal com-
plement w⊥ = gα ⊖ w in gα has constant Kähler angle ϕ ∈ (0, π/2]. This means
that, for all nonzero v ∈ w⊥, the angle between Jv and w⊥ is ϕ or, equivalently, the
projection of Jv onto w⊥ has length cos(ϕ) ‖v‖. A particular case is when ϕ = π/2,
which means that w⊥ is real, that is, Jw⊥ is orthogonal to w⊥.

Now define s = a ⊕ w ⊕ g2α. According to the properties of the root space
decomposition, s is a Lie subalgebra of a ⊕ n. Let us denote by S the connected
subgroup of AN with Lie algebra s, and set k = dimw⊥. The group S is a simply
connected closed subgroup of AN of dimension 2n−k. We define the Berndt-Brück
submanifolds as the orbits through the point o of the isometric action of S on CHn:

W 2n−k
ϕ = S · o and W 2n−k = W 2n−k

π/2 .

These are (2n−k)-dimensional homogeneous submanifolds of CHn and their normal
bundles have constant Kähler angle ϕ ∈ (0, π/2]. In particular, if ϕ = π/2, one gets
the submanifold W 2n−k, which has totally real normal bundle. One can also give a
geometric construction of Berndt-Brück submanifolds [7]. In particular, for the case
ϕ = π/2, the construction is as follows. Fix a horosphere H in a totally geodesic
real hyperbolic subspace RHk+1 ⊂ CHn. Attach at each point p ∈ H the totally
geodesic CHn−k which is tangent to the orthogonal complement of the complex
span of the tangent space of H at p. The resulting submanifold is congruent to
W 2n−k. Moreover, the submanifolds W 2n−k

ϕ are minimal and ruled by the totally
geodesic complex hyperbolic subspaces determined by their maximal holomorphic
tangent distribution.

The Berndt-Brück submanifolds are orbits of cohomogeneity one actions onCHn.
This was proved in [4]. Although the proof is not elementary, we can sketch an
idea. Let N0

K(S) be the connected component of the identity transformation of the
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normalizer of S in K, NK(S) =
{

k ∈ K : kSk−1 ⊂ S
}

, which consists of all the

elements of K that fix S · o. Therefore, S · o is an orbit of the action of N0
K(S)S on

CHn. It follows that N0
K(S) leaves invariant the unit sphere of the normal bundle

of S · o, because the tangent bundle is also invariant under N0
K(S). To conclude

that the action of N0
K(S)S on CHn is of cohomogeneity one, it remains to see that

N0
K(S) acts transitively on the unit sphere of the normal bundle of S · o. This can

be consulted in [4]. We conclude that W 2n−k
ϕ = N0

K(S)S · o = S · o is the orbit

through o of the cohomogeneity one action of N0
K(S)S on CHn. In particular,

when k = 1, then ϕ = π/2, and the orbits of this action generate a codimension
one homogeneous foliation.

As a result of the previous argument, tubes around the submanifolds W 2n−k
ϕ ,

k ∈ {2, . . . , n − 1}, and equidistant hypersurfaces to the hypersurface W 2n−1 are
principal orbits of cohomogeneity one actions and, hence, homogeneous hypersur-
faces. All these hypersurfaces are non-Hopf real hypersurfaces with constant prin-
cipal curvatures in CHn. If ϕ = π/2, these hypersurfaces have g ∈ {3, 4} principal
curvatures and their Hopf vector field has nontrivial projection onto h = 2 principal
curvature spaces. If ϕ ∈ (0, π/2), tubes around W 2n−k

ϕ have g ∈ {4, 5} principal
curvatures and h = 3 nontrivial projections of the Hopf vector field onto the prin-
cipal curvature spaces. The proof of these facts can be found in [7].

By means of the Main Theorem stated in the first section of this work, tubes
around the Berndt-Brück submanifolds W 2n−k with totally real normal bundle
(equidistant hypersurfaces if k = 1) exhaust all the examples of real hypersurfaces
with constant principal curvatures in nonflat complex space forms satisfying h = 2.

5. Open problems

To conclude, we state some open problems on homogeneous hypersurfaces and
hypersurfaces with constant principal curvatures in complex space forms.

• Are there inhomogeneous real hypersurfaces with constant principal curva-
tures in complex space forms? If the answer is yes, these examples would
satisfy g ≥ 4 due to the results of Montiel, Berndt and Dı́az-Ramos, and
h ≥ 3, due to the classifications of Kimura, Berndt and the Main Theorem.

• Find a bound on the number of principal curvatures g of a hypersurface
with constant principal curvatures in CPn or CHn.

• Find a bound on h for a hypersurface with constant principal curvatures in
CPn or CHn. This seems to be even better than a bound of g, with the
aim to achieve a final classification.

• Classify real hypersurfaces with constant principal curvatures in complex
space forms.

We refer to [21] for a more extensive list of problems on real hypersurfaces in
complex space forms.
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