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On isoparametric hypersurfaces
in complex hyperbolic spaces
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Abstract

We review some results of an ongoing research on isoparametric
hypersurfaces and hypersurfaces with constant principal curvatures in
the complex hyperbolic space. In order to motivate this topic, we recall
first the main steps of its long history.

1 Introduction

The history of isoparametric hypersurfaces traces back (at least) to the work
[42] of Somigliana in 1919, where the following problem of Geometric Optics
was studied. Consider a solution ¢ to the wave equation
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where A is the Laplace operator of R3 (that is, with respect to the space
variables), and ¢ is the time variable. Assume that the connected compo-
nents of the level surfaces of ¢ (in other words, the wavefronts of ¢) are
parallel. Somigliana refers to this condition as Huygens principle. What
are then the possible wavefronts? He then showed that these level surfaces
must have constant mean curvature, and from this, he deduced that only
very particular wavefronts satisfy this kind of Huygens principle, namely:
concentric spheres, coaxial cylinders and parallel planes.

The term isoparametric hypersurface was probably introduced by Levi-
Civita [30] in the year 1937, and it is motivated by a classical terminology
that we explain now. Let f: M — R be a smooth function, where M is a
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Riemannian manifold (in [30], M = R3). The first and the second differential
parameters of f are, respectively,

Af =|lgrad f|* and Asf = Af,

where A is the Laplace-Beltrami operator and grad f denotes the gradient
of f. When the first and the second differential parameters of a noncon-
stant function f are constant along the level sets of f, we say that f is an
isoparametric function. Its regular level sets are then called isoparametric
hypersurfaces, and the collection of all the level sets of f is called an isopara-
metric family of hypersurfaces. Note that f is isoparametric if and only if
there exist real functions F; and F5 of real variable such that

Alf = Fl(f) and Azf = Fg(f)

The constancy of the first differential parameter along the level sets
means that the level sets are parallel (equidistant), while for the second
differential parameter the condition means that these level sets have constant
mean curvature. In fact, Cartan showed that a hypersurface is isoparametric
if and only if it and its sufficiently close parallel hypersurfaces have constant
mean curvature [10]. Since this characterization holds in every Riemannian
manifold, it is sometimes taken as definition of isoparametric hypersurface.

The study of isoparametric hypersurfaces has today a long history which
has revealed many connections with different areas of mathematics, such as
Riemannian geometry, but also Lie group theory, algebraic geometry, alge-
braic topology, differential equations and Hilbert spaces; even some applica-
tions in physics have been found (for instance, see [40] for the appearance of
isoparametric hypersurfaces in a problem of fluid mechanics). Although in
Section 2 we will review some of the most important results on isoparametric
hypersurfaces, our exposition here does not attempt to be complete. For a
more detailed introduction to this topic and other related subjects (such as
isoparametric submanifolds of higher codimension, equifocal submanifolds,
Dupin hypersurfaces and polar actions), we refer the reader to the excellent
surveys [46], [12] and [47] and to the books [39] and [5].

Our purpose in this work is to introduce the reader to the topic of
isoparametric hypersurfaces and related notions (homogeneous hypersur-
faces, and hypersurfaces with constant principal curvatures) in complex hy-
perbolic spaces. We will focus on explaining some results on this subject
obtained recently by Diaz-Ramos and the author. More specifically, we will
present some restrictions on the extrinsic geometry of isoparametric hyper-
surfaces in complex hyperbolic spaces that we have obtained in the ongoing
research [18], and also a large new family of examples constructed in [16].
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This paper is organized as follows. In Section 2 we recall the main clas-
sical and modern results on isoparametric hypersurfaces in real space forms.
The differences between spaces of constant and nonconstant sectional curva-
ture with respect to the study of isoparametric hypersurfaces are explained
in Section 3. In Section 4, we recall some terminology for the study of real
hypersurfaces in complex space forms. In Section 5, we explain some re-
cent results on isoparametric hypersurfaces in complex hyperbolic spaces.
Finally, we provide a list of open problems on these topics in Section 6.

2 Isoparametric hypersurfaces in real space forms

In this section, we will give an idea of the main aspects of the history of
isoparametric hypersurfaces in the ambient manifolds where their study was
first developed: in real space forms. Recall that a real space form is a
complete simply connected Riemannian manifold with constant sectional
curvature, that is, Euclidean spaces R™, spheres S” or real hyperbolic spaces
RH".

2.1 The Euclidean and real hyperbolic cases

In the paper [30] published in 1937, Levi-Civita classified isoparametric hy-
persurfaces in R3. He was probably not aware that a similar result had
been obtained almost two decades ago by Somigliana [42]. In 1938, Segre
[41] explains that one can extend the results of [42] and [30] to Euclidean
spaces R™ of arbitrary dimension. Segre shows that isoparametric hypersur-
faces in R™ have constant principal curvatures (i.e. the eigenvalues of the
shape operator are independent of the point in the hypersurface), he proves
that there are at most two principal curvatures and from this he derives a
complete classification, in which there are again three types of examples:
concentric spheres, generalized coaxial cylinders (i.e. tubes around an affine
subspace of dimension at least 1) or parallel hyperplanes.

In the late thirties, Cartan also addressed the study of isoparametric
hypersurfaces. In [9] he characterized isoparametric hypersurfaces in real
space forms by the property of having constant principal curvatures. This
equivalence turns out to be very helpful in the investigation of isoparametric
hypersurfaces, and sometimes even the constancy of the principal curvatures
is taken as the definition of isoparametric hypersurface. However, this should
only be done in real space forms, since in spaces of nonconstant curvature
both notions are different, as we will see in Section 3.
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From now on in this section, we will denote by ¢g the number of distinct
constant principal curvatures of an isoparametric hypersurface, Ai,..., A,
will be the values of the principal curvatures, and myq,...,mg their corre-
sponding multiplicities. Cartan derived the following fundamental formula
of an isoparametric hypersurface in a real space form of constant sectional
curvature x:

Aij
g m]H—i_ J =0, foreachi=1,...,g.
. Ai — A
J=1L %N

From this relation, it is easy to show that if x < 0, then g € {1,2}. Using
this fact, Cartan was able to classify isoparametric hypersurfaces in real hy-
perbolic spaces RH"™. The examples that appear in this classification are:
geodesic spheres, totally geodesic real hyperbolic hyperspaces RH"~! and
their equidistant hypersurfaces, tubes around totally geodesic real hyper-
bolic subspaces RH* (1 < k <n—2) and horospheres. Since it will appear
frequently along the exposition, we recall here the definition of tube and
equidistant hypersurface. Given an embedded submanifold M of an am-
bient Riemannian manifold M, a tube of radius r around M is the set of
points {exp,(r§) : p € M, § € vy, M, |[£]| = 1}, where exp is the Riemannian
exponential map of M and where v, M denotes the normal space of M at
p € M. Locally and for r sufficiently small, the tube of radius r around
M is an embedded hypersurface in M. When M is a hypersurface, tubes
around M are normally called equidistant or parallel hypersurfaces to M, in
case they are embedded hypersurfaces.

2.2 The problem in spheres

Cartan also investigated isoparametric hypersurfaces in spheres. In this case,
since k > 0, the fundamental formula does not provide much information. In
fact, the problem in spheres is much more involved and rich. Cartan was able
to classify isoparametric hypersurfaces in spheres S™ with g € {1,2,3}. The
examples with g = 1 are just geodesic spheres, while those with ¢ = 2 are
tubes around totally geodesic submanifolds S* of S” with 1 < k < n—2. For
g = 3, Cartan showed that all three multiplicities m; are equal, and one has
m = m; = mg = mg € {1,2,4,8}. He also proved that the corresponding
isoparametric hypersurfaces are tubes around the standard embedding of
the projective plane FP? in S3"+! where F is the division algebra R, C,
H (quaternions) or @ (octonions), for m = 1,2,4, 8, respectively. Cartan
also found two examples of isoparametric hypersurfaces with four principal
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curvatures in S° and in S°, but he could get neither a classification for g > 4,
nor an upper bound on g (as for R™ and RH").

However, Cartan noticed that all the isoparametric hypersurfaces he con-
structed were homogeneous. We say that a connected submanifold M in an
ambient manifold M is (extrinsically) homogeneous if it is an orbit of an
isometric action on M, i.e. if there exists a (in general, closed) subgroup G
of the isometry group of M that acts on M having M as one of its orbits.
When the minimal codimension of the orbits of an isometric action is one,
we have a cohomogeneity one action and these orbits of codimension one
are called homogeneous hypersurfaces. It is clear that every homogeneous
hypersurface (or open part of it) has constant principal curvatures, since
the shape operators at any two points are conjugate by the differential of
an element of the group G that acts on the ambient manifold with cohomo-
geneity one. Moreover, the codimension one orbits of a cohomogeneity one
action are equidistant, since the action is isometric. Since each one of these
codimension one orbits has constant principal curvatures (in particular, con-
stant mean curvature) and are equidistant, they are always isoparametric
hypersurfaces. Therefore, the set of orbits of a cohomogeneity one action
in a Riemannian manifold M forms an isoparametric family of hypersur-
faces with constant principal curvatures. As all isoparametric hypersurfaces
known to Cartan were homogeneous (those in spheres, but also those in R"
and RH™), he asked the question whether every isoparametric hypersurface
is extrinsically homogeneous. A surprising negative answer would only come
several decades later.

The study of isoparametric hypersurfaces was taken up again in the
early seventies. Nomizu [36] shows that the focal manifolds of an isopara-
metric family of hypersurfaces in a sphere are minimal; the focal manifolds
of an isoparametric family are those elements of the family with codimension
greater than one. About that time and based on the work [27] of Hsiang
and Lawson, Takagi and Takahashi gave the classification of homogeneous
(isoparametric) hypersurfaces in spheres [45]. According to this result, every
homogeneous hypersurface in a sphere is a principal orbit (or, equivalently
in this case, an orbit of maximal dimension) of the isotropy representation
of a Riemannian symmetric space of rank two. Let us briefly recall what this
means. A Riemannian symmetric space is a connected Riemannian manifold
M for which the geodesic reflection exp,(tv) — exp,(—tv) (where o € M,
v runs through 7T,M and t runs through R) is a well-defined isometry of
M. This implies that M is a complete homogeneous space. Then it admits
a representation as homogeneous space G/K, where G is the identity con-
nected component of the isometry group of M, and K = G, is the isotropy
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group at some point 0. G and K are Lie groups, and K is a compact Lie
subgroup of G. The group K acts on M and fixes o, and hence induces an
action on T, M, which is called the isotropy representation of the symmetric
space M = G/K. The rank of G/K is defined as the maximal dimension of
a totally geodesic flat submanifold of G/K. Riemannian symmetric spaces
have been classified (also by Cartan); a classical reference on this topic is
[26] (tables can be found in [26, pp. 515-520]).

A consequence of Takagi and Takahashi’s work is that the number of
principal curvatures g of a homogeneous hypersurface in a sphere satisfies
g € {1,2,3,4,6}. In two remarkable articles [33], [34] (that were written
around 1973, but were published in 1980-1981), Miinzner was able to prove
that the same restriction on g holds for every (not necessarily homogeneous)
isoparametric hypersurface in a sphere. Miinzner’s papers contain a deep
analysis of the structure of isoparametric families of hypersurfaces in spheres,
using both geometric and topological methods. Apart from the restriction on
g, we emphasize other two consequences of Miinzner’s work. The first one is
that, if A\; < --- < A4 are the principal curvatures of an isoparametric hyper-
surface in a sphere, and my, ..., my their corresponding multiplicities, then
m; = m;42 (indices modulo g); in particular, if g is odd, all the multiplici-
ties coincide, and if g is even, there are at most two different multiplicities.
The second result is the algebraic character of isoparametric hypersurfaces
in spheres. More precisely, a hypersurface M in S” is isoparametric if and
only if M C F~1(¢) N S™, where F is a homogeneous polynomial of degree
g on R™"*! satisfying the differential equations

lgrad F(2)||* = g°||[|*~,

AF() = my —m)gell 9, xR

The intersection of S™ with the level sets of such an F' form an isoparametric
family of hypersurfaces in S™. From this result, it also follows that every
isoparametric hypersurface in S™ is an open part of a complete isoparametric
hypersurface in S™ (this happened for R” and RH™ as well). A polynomial
F like the one above is called a Cartan-Minzner polynomial. Notice that,
according to this result, the classification problem of isoparametric hyper-
surfaces in spheres is reduced to a problem of algebraic geometry, but a very
difficult one!

Since the restriction on g obtained by Miinzner coincides with the one
for homogeneous hypersurfaces, Cartan’s question on the homogeneity of
isoparametric hypersurfaces became even more attractive. However, in 1975
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Ozeki and Takeuchi gave a negative answer to this question [37]. They con-
structed some Cartan-Miinzner polynomials that give rise to isoparametric
hypersurfaces with ¢ = 4 that are not homogeneous, because their multi-
plicities do not coincide with the possible multiplicities of the homogeneous
examples (remember that these had been classified).

Some years later, Ferus, Karcher and Miinzner [22] found a much larger
family of inhomogeneous examples that included the ones given by Ozeki
and Takeuchi. For each representation of a Clifford algebra they constructed
a Cartan-Miinzner polynomial that yields an isoparametric family of hyper-
surfaces with ¢ = 4. We call these examples of FKM-type or of Clifford
type. Their inhomogeneity was proved in [22] in a direct way, without us-
ing the classification of homogeneous hypersurfaces. As a consequence of
this result, one gets the existence of an infinite countable collection of non-
congruent inhomogeneous isoparametric families in spheres. This made the
study of isoparametric hypersurfaces in spheres a much more appealing and
interesting topic of research.

Even today, all known isoparametric hypersurfaces in spheres are either
homogeneous or of FKM-type; and all those hypersurfaces with ¢ = 4 are
of FKM-type, with the exception of two homogeneous families of hypersur-
faces with multiplicities (2,2) and (4,5). A first step towards a classification
would be to determine the possible triples (g, m1, m2) that an isoparametric
hypersurface with ¢ = 4 or ¢ = 6 can take. Several authors have con-
tributed to this question (we just mention some of them, and refer to the
surveys [46] and [12] for further references). In [33] and [34], Miinzner al-
ready found some restrictions, which were improved by Abresch [1]. In
particular, Abresch showed that the only possible triples with ¢ = 6 are
(6,1,1) and (6,2,2); moreover, there exist homogeneous examples in both
cases. The determination of all possible triples with ¢ = 4 was established
by Stolz in 1999 [43]. He proved that every isoparametric hypersurface with
g = 4 constant principal curvatures in a sphere has the multiplicities of one
of the known homogeneous or inhomogeneous examples; in other words, the
possible triples (4, m1, m2) are (4,2,2), (4,4,5) and the ones of FKM-type
hypersurfaces (which can be consulted in [22]).

As we mentioned before, isoparametric hypersurfaces in spheres with
g € {1,2,3} had been classified by Cartan. In 1976, Takagi [44] showed
that if ¢ = 4 and one of the multiplicities is one, then the hypersurface
is homogeneous and of FKM-type. Ozeki and Takeuchi [38] proved that
those isoparametric hypersurfaces with ¢ = 4 and one multiplicity equal to
2 are homogeneous and, except for the case of multiplicities (2,2) (which
corresponds to the homogeneous example in S” obtained by Cartan), also
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of FKM-type. In 1985, Dorfmeister and Neher [20] proved the uniqueness
of the hypersurface with triple (6,1, 1), which is hence homogeneous. Quite
recently, in 2007-2008, Cecil, Chi and Jensen [11], and independently Immer-
voll [28], proved that, with a few possible exceptions, every isoparametric
hypersurface with g = 4 is one of the known examples. More precisely, if
the multiplicities (mq,m2) of an isoparametric hypersurface with ¢ =4 in a
sphere satisfy mo > 2m; — 1, then such hypersurface must be of FKM-type.
Together with other known results, this one gives a classification of the case
g = 4 with the exception of the pairs of multiplicities (3,4), (4,5), (6,9)
and (7,8). The methods used in both articles are different: while Cecil,
Chi and Jensen make use of the theory of moving frames and commutative
algebra, Immervoll uses the tool of isoparametric triple systems developed
by Dorfmeister and Neher [20]. In the last years, on the one hand, after
Chi’s investigation of the exceptional cases with g = 4, the classification in
this case seems not to be very far; see [13] for more details. On the other
hand, the approach used by Miyaoka in [32] to reprove the homogeneity of
the hypersurface with triple (6,1, 1) might be used to solve the case (6,2, 2),
although this question seems to be open as well. A solution to these two
particular cases would give a complete classification of isoparametric hyper-
surfaces in spheres, and hence, a solution to Problem 34 in Yau’s list of
important problems in geometry [50].

3 Isoparametric hypersurfaces vs. hypersurfaces
with constant principal curvatures

As shown by Cartan, in a space of constant curvature, an isoparametric hy-
persurface is the same as a hypersurface with constant principal curvatures.
However, this equivalence does not hold in general, as we will comment on
in this section.

The first counterexamples were found by Wang [48], who constructed
some isoparametric hypersurfaces with nonconstant principal curvatures in
the complex projective space CP™, by projecting some of the inhomogeneous
isoparametric hypersurfaces of FKM-type in odd-dimensional spheres S2"+1
to CP" via the Hopf map. Other inhomogeneous isoparametric hypersur-
faces with nonconstant principal curvatures in complex projective spaces
were constructed by Xiao [49] (cf. [23]); these examples are again related to
the isoparametric hypersurfaces in spheres.

Another large set of examples is given by small geodesic spheres in the
non-symmetric Damek-Ricci spaces. These are certain solvable Lie groups
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endowed with a left-invariant metric which are harmonic as Riemannian
manifolds; they were constructed by Damek and Ricci [14] in 1992. One
characterization of harmonicity is that sufficiently small geodesic spheres
have constant mean curvature, and hence, are isoparametric. The family of
Damek-Ricci spaces includes the Riemannian symmetric spaces of noncom-
pact type and rank one as particular cases (these are precisely real, complex
and quaternionic hyperbolic spaces RH™, CH" and HH", and the Cayley
hyperbolic plane QH?). However, for those non-symmetric Damek-Ricci
spaces, the small geodesic spheres have nonconstant principal curvatures, in
spite of being isoparametric (see [8, §4.5]).

Recently, Diaz-Ramos and the author have constructed many inhomo-
geneous isoparametric hypersurfaces with nonconstant principal curvatures
in the complex hyperbolic space [16] and, more generally, in Damek-Ricci
spaces [17]. In Section 5 we will recall the construction of the examples in
complex hyperbolic spaces.

In view of all these examples, two different properties of hypersurfaces
in ambient manifolds of nonconstant curvature generalize in a natural way
the property of being an isoparametric hypersurface in a real space form:
the original notion of isoparametric hypersurface, but also the notion of
hypersurface with constant principal curvatures. The study of hypersurfaces
with constant principal curvatures, particularly in complex space forms, has
been a fruitful area of research in the last decades. We refer the reader to
the surveys [3] and [19] for further information on this topic. In this work we
will focus on the study of isoparametric hypersurfaces in complex hyperbolic
spaces.

4 Real hypersurfaces in complex space forms

In this section we present some basic definitions and notation for the study
of real hypersurfaces in complex space forms. A thorough introduction to
this topic can be found in [35].

First of all, recall that a complex space form is a simply connected com-
plete Kéhler manifold with constant holomorphic sectional curvature. These
manifolds are classified in three families according to the value of their con-
stant holomorphic sectional curvature c¢: complex projective spaces CP" if
¢ > 0, complex Euclidean spaces C" if ¢ = 0 and complex hyperbolic spaces
CH™ if ¢ < 0. We will denote by J the almost complex structure of a com-
plex space form. In what follows we disregard the flat case, as well as CP?
(which is isometric to a 2-sphere) and CH! (which is isometric to RH?).
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The metric on CP™ (resp. on CH™) can be obtained by requiring that
the Hopf map S***! — CP" (resp. AdS**™! — CH™) is a Riemannian
submersion (resp. a semi-Riemannian submersion). By AdS™ we denote
the m-dimensional anti De Sitter space, i.e. the Lorentzian space form
of constant negative sectional curvature. The metrics on CP" and CH"
are called the Fubini-Study and the Bergman metric, respectively. The
curvature tensor of these spaces can be obtained easily and admit a rather
simple expression (see [35] for the complete construction).

As for any other Kéhler manifolds, one would have in principle two nat-
ural notions of hypersurface in a complex space form: either a complex
hypersurface or a real hypersurface. We are interested in the latter, which
refers to a submanifold with real codimension one (and not complex codi-
mension one).

Let M be a real hypersurface in a complex space form M, and let & be
a unit normal vector field on (an open part of) M. Then the vector field
JE& is tangent to M, and is called the Hopf vector field of the hypersurface
M (also the Reeb vector field or the structure vector field of M). We will
denote by g(p) the number of principal curvatures of the hypersurface M at
the point p € M; since we are not assuming that M has constant principal
curvatures, g may vary from point to point, whence the notation g(p).

Another notation that will be relevant later is the following. For each
point p € M we will write h(p) for the number of nontrivial projections of the
Hopf vector field J§ onto the distinct principal curvature spaces at p (that
is, onto the distinct eigenspaces of the shape operator of M at p). Again,
as well as g, h is an integer-valued function on M. Note that, obviously,
h(p) < g(p) for each p € M. When h = 1 along M, that is, when J¢ is an
eigenvector of the shape operator at every point, we say that M is a Hopf
hypersurface.

A related notion is that of curvature-adapted hypersurface, which refers
to a hypersurface whose shape operator and normal Jacobi operator com-
mute. Recall that the normal Jacobi operator of a hypersurface M in an
ambient manifold M is the self-adjoint (local) (1, 1)-tensor field on M de-
fined by R(-,€)¢, where R is the (1,3)-curvature tensor field of M. In real
space forms, every hypersurface is curvature-adapted, but in spaces of non-
constant curvature, the curvature-adaptedness imposes restrictions on the
geometry of a hypersurface. For instance, in nonflat complex space forms,
a hypersurface is curvature-adapted if and only if it is Hopf.

The curvature-adaptedness is quite a common condition in the research
on hypersurfaces in spaces of nonconstant curvature, because it simplifies
the Gauss and Codazzi equations of the hypersurface and, however, it still
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allows to obtain some interesting examples. See for example [29] and [2],
where Kimura and Berndt classify Hopf real hypersurfaces with constant
principal curvatures in CP"™ and CH", respectively. When one does not
assume curvature-adaptedness, calculations get harder, but one still obtains
examples. See for instance the recent work [15] by Diaz-Ramos and the au-
thor, where we classified non-Hopf real hypersurfaces with constant principal
curvatures satisfying h = 2 in CP™ and CH". This result can be seen as
the next natural step after Kimura’s and Berndt’s classifications of the case
h = 1. While in CP™ no new examples appear, the classification in CH"
includes some non-classical examples constructed by Berndt and Briick [4].
We will come back to these results and examples in the next section.

5 Isoparametric hypersurfaces in complex hyper-
bolic spaces

Our purpose in this section is to explain some recent advances in the study
of isoparametric real hypersurfaces in complex hyperbolic spaces. We will
state some partial results on the extrinsic geometry and classification of
these objects [18], and explain the construction of new examples [16].

5.1 On the extrinsic geometry of isoparametric hypersur-
faces in CH"

The nice behaviour of isoparametric hypersurfaces with respect to Rieman-
nian submersions under certain conditions is quite a well-known fact; see
[25, §3], which deals with the more general case of isoparametric submani-
folds. For the Hopf map 7: AdS?"*! — CH™, which is a semi-Riemannian
submersion, one can easily show that a hypersurface M in CH" is isopara-
metric if and only if its lift 7~'M is isoparametric in the anti De Sitter space
AdS?" ", Note that 7—'M is a Lorentzian hypersurface in AdS***!, since
it is foliated by Hopf circles, which are timelike. Although we have defined
isoparametric hypersurfaces only in the Riemannian context, it makes sense
[24] to consider the analogous notion in the semi-Riemannian setting, just
restricting oneself to nondegenerate hypersurfaces (that is, hypersurfaces
whose induced metric is nondegenerate). Since the anti De Sitter space has
constant sectional curvature, a hypersurface in AdS?"*! is isoparametric if
and only if it has constant principal curvatures (see [24] again). Therefore,
a hypersurface M in CH" is isoparametric if and only if its lift 7='M to
AdS?*! has constant principal curvatures.
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This fact is fundamental for the proof of the following result. Recall that
g denotes the number of principal curvatures of a hypersurface M in CH",
and A the number of nontrivial projections of the Hopf vector field onto the
different eigenspaces of the shape operator of M.

Theorem 5.1. [18] Let M be an isoparametric hypersurface in the complex
hyperbolic space and p € M. Then, the principal curvatures of M at p
and their multiplicities coincide pointwise with those of the homogeneous
hypersurfaces in complex hyperbolic spaces.

In particular, h(p) € {1,2,3}, g(p) € {2,3,4,5} and:

e If h(p) =1 then g(p) € {2,3}.

o If h(p) =2 then g(p) € {2,3,4}.
e If h(p) = 3 then g(p) € {3,4,5}.
Several observations are in order.

Remark 5.1. Theorem 5.1 is not a local result, but a pointwise result. The
principal curvatures and the values of g and h may vary from point to point.

Remark 5.2. The cases h(p) = g(p) = 2 and h(p) = g(p) = 3 do not arise
i the known isoparametric examples, but so far we could not prove that
these cases are not possible.

Remark 5.3. Homogeneous hypersurfaces in complex hyperbolic spaces have
been classified by Berndt and Tamaru [7]; the values of their principal cur-
vatures and multiplicities can be found in [6]. Apart from the “classi-
cal” examples that appeared already in the classification of Hopf real hy-
persurfaces with constant principal curvatures in CH™ (namely, geodesic
spheres, tubes around totally geodesic complex hyperbolic subspaces CH*
with k € {1,...,n — 1}, tubes around totally geodesic real hyperbolic sub-
spaces RH™, and horospheres), there are many more non-Hopf homogeneous
hypersurfaces. These “non-classical” examples were introduced by Lohnherr
in his thesis (see [31]) and generalized by Berndt and Brick in [4], and will
arise as particular cases of a more general construction that will be explained
later in this section.

According to Theorem 5.1 the value of h is always less or equal than 3
for every isoparametric hypersurface in CH™. Based on [2] and [15], we were
able to show the following classification result for isoparametric hypersur-
faces with h < 2.
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Theorem 5.2. [18] Let M be a connected isoparametric hypersurface in
CH™ with h < 2 nontrivial projections of the Hopf wvector field onto the
principal curvature spaces. Then h is constant and M is an open part of a
homogeneous hypersurface in CH™. Moreover:

e Ifh =1, then M is an open part of one of the following hypersurfaces:

— A tube around a totally geodesic (CH’“, 0<k<n-1.
— A tube around a totally geodesic RH™.
— A horosphere.

o Ifh =2, then M is an open part of one of the following hypersurfaces:

— A Lohnherr hypersurface W21,
— An equidistant hypersurface to W21,
— A tube around a Berndt-Briick submanifold W% 2 < k < n—1.

The only homogeneous hypersurfaces of CH™ not appearing in this par-
tial classification are tubes around the Berndt-Briick submanifolds Wg"*k ,
where k € {2,...,n—1} is even and ¢ € (0,7/2). These hypersurfaces have
h = 3. We will describe these examples below in this section.

In view of Theorems 5.1 and 5.2 it would seem reasonable to suspect that
(complete) isoparametric hypersurfaces in CH™ are homogeneous, as hap-
pened in RH™. However, this is not true. In the rest of this section we aim to
present a large collection of counterexamples: inhomogeneous isoparametric
hypersurfaces with nonconstant principal curvatures in complex hyperbolic
spaces CH™, n > 3.

5.2 CH" as a solvable Lie group

In order to introduce the new examples, we will recall first the construction
of a model of the complex hyperbolic space CH™ as a solvable Lie group AN
equipped with a left-invariant metric. This model is not exclusive to CH™:
every symmetric space of noncompact type is a solvable Lie group and its
metric is left-invariant with respect to the Lie group structure. The proof
of this general fact, which is based on the Iwasawa decomposition of the
noncompact symmetric space, follows along the same lines as for CH™. We
will use certain basic notions of semisimple Lie groups and symmetric spaces;
good references on these subjects are [21, Ch. 1-2] and [26, Ch. III-VI].
The complex hyperbolic space CH” is a rank one Hermitian symmetric
space of noncompact type and, as such, admits the representation as a coset
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space G/ K, where G = SU(1,n) is the identity connected component of the
isometry group of CH™, and K = S(U(1)U(n)) is the isotropy group at some
point 0 € CH" (i.e. the elements of K are those in G that fix 0). Denote by
g =su(l,n) and € = s(u(1)@u(n)) the Lie algebras of G and K, respectively,
and denote by ad: g — gl(g) the adjoint map, where ad(X) = [X, -] for
X € g. Let B be the Killing form of g, that is, B: (X,Y) € g x g —
B(X,Y) = tr(ad(X) cad(Y)) € R, which is a nondegenerate bilinear form
by virtue of Cartan’s criterion for semisimple Lie algebras (g is actually
a simple Lie algebra). Then g = ¢ @ p is the Cartan decomposition of g
with respect to o € CH™, where p is the orthogonal complement of £ in g
with respect to B. This means that we have the bracket relations [¢, €] C &,
[e,p] C p and [p,p] C ¢, and B is negative definite on ¢ and positive definite
on p. The Cartan involution 6 corresponding to the Cartan decomposition
above is the automorphism of the Lie algebra g defined by (X ) = X for all
X etand 0(X) = —X for all X € p. Then the bilinear form By, defined by
Bo(X,Y)=—-B(X,0Y) for all X,Y € g, is a positive definite inner product
on g.

We take now a maximal abelian subspace a of p. It can be easily proved
that the dimension of a is 1, which means that the rank of the symmetric
space G/K = CH™ (or of the real simple Lie algebra g) is precisely one.
The set {ad(H) : H € a} is a family of commuting self-adjoint (with respect
to By) endomorphisms of g, and hence simultaneously diagonalizable. By
definition, their common eigenspaces are the root spaces of the simple Lie
algebra g, and their nonzero eigenvalues (which do depend on H € a) are
the roots of g. Denoting by a* the dual vector space of a, if we define for
each A € a*

o ={X€eg:[H, X]|=XNH)X, forall H € a},
then the root space decomposition of g with respect to a has the form

9=0-20 P ga D 90D 9o ® 920

for a certain covector o € a*. These five mutually Bg-orthogonal subspaces
are precisely the root spaces, while —2a, —a, a and 2« are the roots of g.
Moreover, a C go, and for every A, € a*, we have that [gx,g,] C gxrip-
If one writes down the matrices of g = su(1,n) that belong to each root
space, one can show that dimgs, = dimg_s, = dima = 1 and dimg, =
dimg_, =2(n—1).

Now we fix a criterion of positivity in the set of roots; in our case, let
us say that « is a positive root. Define n = g, @ gan as the sum of the root
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spaces corresponding to all positive roots. Due to the properties of the root
space decomposition, n is a nilpotent Lie subalgebra of g with center gon; in
fact n is isomorphic to the (2n — 1)-dimensional Heisenberg algebra (see |8,
Ch. 3]). Then a@®n is a solvable Lie subalgebra of g, since [a®n,a®n| = n,
which is nilpotent.

The direct sum decomposition g = €@ acdn is called the Iwasawa decom-
position of the semisimple Lie algebra g. It is important to mention that,
even though €, a and n are Lie subalgebras of g, the previous decomposition
of g is just a decomposition in a direct sum of vector subspaces, but neither
an orthogonal decomposition, nor a direct sum of Lie algebras.

Let A, N and AN be the connected subgroups of G with Lie algebras
a, n and a & n, respectively. The Iwasawa decomposition theorem at the
Lie group level ensures that the product map (k,a,m) € K x A X N —
kam € G is a diffeomorphism. Again, we just mean that G and K x A x N
are diffeomorphic as manifolds, but not that G is isomorphic to the direct
product of the groups K, A and N.

Let us show that the group AN acts simply transitively on CH™. Recall
first that the elements in G are isometries of CH™. Let p € CH™ be arbitrary,
and let k € K and h € AN be such that kh(p) = o (they exist since
G = KAN acts transitively on CH"), but since k! fixes o, then h(p) = o.
This implies that AN acts transitively on CH™. Let now h € AN be such
that h(o) = o; then h € K N AN, and the Iwasawa decomposition implies
that h is the identity element of G. Thus AN also acts freely on CH™.

Consider now the differentiable map ¢: h € G — h(o) € CH™. Since
AN acts simply transitively on CH", the map ¢|an: AN — CH" is a
diffeomorphism, and one can identify a & n with the tangent space T,CH™.
The Bergman metric g of the complex hyperbolic space CH™ induces a
metric ¢*g on AN. The Riemannian manifolds (AN, ¢*g) and (CH™, g) are
then trivially isometric. Let us denote by Ly, the left translation in G by the
element h € G. As the metric g on CH" is invariant under isometries (and
then under elements of G), it follows that

Li(¢*g) = Li¢*(h H*g=(h ' opoLy)g=o*g, forallhed,

because (h™! o ¢ o L) (W) = h™1(hh (0)) = W (o) = ¢(K') for all B € G.
Therefore the metric ¢*g on AN is left-invariant. Thus, we have obtained
that CH™ can be seen as a solvable Lie group AN endowed with a left-
invariant metric.

By means of ¢|an we can also equip AN with the Ké&hler structure
induced by the one in CH"”, and we obtain the corresponding almost complex
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structure J on AN, and also on a®n. Some calculations with matrices would
show that the almost complex structure J on a @& n leaves g, invariant and
Ja = gaq-

Thus, we have obtained a model for the complex hyperbolic space CH™
as a solvable Lie group AN with left-invariant Riemannian metric whose Lie
algebra a®n = a® g, D gon can be identified with the tangent space T,CH™,
and such that g, can be seen as a complex vector space C*~!. This model
will be fundamental in the construction we describe below.

5.3 The new examples

We proceed now with the construction of the inhomogeneous isoparametric
hypersurfaces in CH™.

Take any proper subspace t of g, and denote by o+ the orthogonal
complement of v in g,. Define s, = a @ w0 @ go,. Using the properties of
the root space decomposition of g, it is easy to check that s, is a solvable
Lie subalgebra of a @ n. Let Sy, be the connected subgroup of AN with Lie
algebra sy, and let W, = Sy - 0 be the orbit of the action of Sy, on CH"
through the base point 0. Then Wy, is a homogeneous submanifold of CH™.
Wie turns out to be also a minimal submanifold of CH™.

The new isoparametric hypersurfaces are the tubes around these homo-
geneous minimal submanifolds Wy, of CH™. That these tubes are indeed
isoparametric is guaranteed by the following result.

Theorem 5.3. [16] Let g = ¢ @ p be the Cartan decomposition of the Lie
algebra of the isometry group G = SU(1,n) of CH™ with respect to a point
o€ CH™. Assume a Cp is a mazimal abelian subspace and let g = g_2q O
I-aDgo D ga Dg2q be the root space decomposition with respect to a. Let Wy,
be the orbit through o of the connected subgroup Sy of G whose Lie algebra
1S Sy = A D 10 D goo, where 0 is any proper subspace of gq -

Then, the tubes around the submanifold Wy, are isoparametric hypersur-
faces of CH™. Moreover, the following conditions are equivalent:

o The tubes around Wy, are homogeneous.
o The tubes around Wy, have constant principal curvatures.
e wo has constant Kihler angle as a subspace of gq.

Therefore, the submanifold Wy, and the tubes around it form an isopara-
metric family of hypersurfaces in CH". Theorem 5.3 also gives us a charac-
terization of those isoparametric hypersurfaces in our construction that have
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constant principal curvatures by means of the notion of constant Kéhler an-
gle. We recall what this concept means.

Given the subspace o' of g, and a nonzero vector £ € ', we say that
the Kdihler angle of w with respect to ¢ is ¢ € [0, 7/2] if the angle between
J¢& and rot is ¢ (remember that g, is a complex vector space with complex
structure J and with a certain inner product); this is equivalent to saying
that the projection of J¢ onto to has length ||¢]| cos(¢). When the Kihler
angles of o with respect to any nonzero vector ¢ € o coincide, we say
that o has constant Kdhler angle. For example, totally real subspaces of a
complex vector space are exactly those subspaces with constant Kéhler angle
7 /2, whereas complex subspaces are those with constant Kéhler angle 0.
Subspaces with constant Kéhler angle of a complex vector space have been
classified (see [4, Prop. 7]): a subspace V of C™ has constant Kéhler angle
¢ € (0,7/2) if and only if there exist 2k C-orthonormal vectors ey, ..., eq
in C™ such that

e1,cos(p)Jer +sin(p)Jes, ..., eap_1,cos(p)Jesr_1 + sin(p)Jeoy

is an orthonormal basis of V. In particular, for each ¢ € (0,7/2) there exist
subspaces of C™ with constant Kéhler angle ¢, whenever m > 2.

However, a generic subspace of C'™ does not need to have constant Kéhler
angle. Sums of C-orthogonal subspaces with different constant Kéhler angles
have nonconstant Kahler angle; for example, if V,, and V,;, are C-orthogonal
subspaces of C™ (i.e. V, L Vi, and V,, L JV;;) with constant Kéhler angles
¢ and v respectively, then V,, © Vy, is a subspace of C™ whose Kahler angles
vary from ¢ to 1.

Theorem 5.3 asserts that tubes around the submanifold W;, are orbits
of a cohomogeneity one isometric action on CH"™ (that is, are homogeneous
hypersurfaces) if and only if to has constant Kihler angle. In this situation,
define k = dim ", which coincides with the codimension of Wy, let ¢ be
the constant Kihler angle of o, and set Wgn_k = We. If ¢ = 7/2 we
write W27~ % instead of Wg”*k. The submanifolds Wg”*k are the Berndt-
Briick submanifolds that we mentioned in Remark 5.3 and Theorem 5.2,
and W21 is the Lohnherr hypersurface. Tubes around the submanifolds
W27k have g € {3,4} constant principal curvatures and h = 2 nontrivial
projections of their Hopf vector field onto the principal curvature spaces.
Tubes around the submanifolds Wg"_k with ¢ € (0,7/2) have g € {4,5}
and h = 3. The proof of these facts can be consulted in [6].

If the subspace w™ of g, does not have constant Kihler angle, tubes
around Wy, are inhomogeneous isoparametric hypersurfaces with noncon-
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stant principal curvatures. For these inhomogeneous examples, the func-
tions g and h may be nonconstant as well, and they satisfy h(p) € {1,2,3}
and g(p) € {3,4,5} for each point p in the hypersurface (see [16] for de-
tails). Since for n = 2, every subspace of g, = C has constant Ké&hler
angle, our construction does not provide any inhomogeneous isoparamet-
ric hypersurface in the complex hyperbolic plane CH?. However, for every
n > 3, the complex hyperbolic space CH™ admits inhomogeneous isopara-
metric hypersurfaces with nonconstant principal curvatures. Notice that
our construction provides uncountably many noncongruent inhomogeneous
isoparametric families of hypersurfaces in complex hyperbolic spaces; this
should be compared with what happens in spheres, where the hypersurfaces
of FKM-type are infinite, but only countably many.

6 Open problems

We conclude this work proposing some open problems around the topic
of isoparametric hypersurfaces and hypersurfaces with constant principal
curvatures in complex space forms.

(1) Classify isoparametric hypersurfaces in complex projective spaces CP".
Since the property of being an isoparametric hypersurface is preserved
under the Hopf map S?**! — CP", this classification would in prin-
ciple follow from a classification of isoparametric hypersurfaces in
spheres (which is still open).

(2) Classify isoparametric hypersurfaces in complex hyperbolic spaces. It
would also be interesting to answer the following questions, thus pro-
viding some partial results. Does any inhomogeneous isoparametric
hypersurface in CH"™ have nonconstant principal curvatures? (The
answer is known to be yes in the projective case, see [48]). Are there
isoparametric hypersurfaces M in CH™ that satisfy h(p) = g(p) €
{2,3} at some point p € M? Is every isoparametric hypersurface in
CH? homogeneous?

(3) Classify hypersurfaces with constant principal curvatures in nonflat
complex space forms CP™ and CH". A bound on g, and even better
on h, would be very interesting. A classification of the case h = 3 might
already give insight into the main difficulties of the problem. The exis-
tence of an inhomogeneous non-isoparametric hypersurface with con-
stant principal curvatures (even in any other Riemannian symmetric
space) would point out a very strange but appealing phenomenon.
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