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Abstract. By lifting hypersurfaces in complex hyperbolic spaces to anti-De Sitter spacetimes,

we prove that an isoparametric hypersurface in the complex hyperbolic space has the same

principal curvatures as a homogeneous one.

1. Introduction

One of the final aims of the research of the authors of this paper is guided by the following
question: to what extent do the symmetries of an object determine its shape? It is intuitively clear
that the existence of symmetries reduces the number of degrees of freedom in the description of a
geometric object and imposes constraints on how the different parameters defining it are related.
The more symmetries an object has, the more likely it is that this object is uniquely determined.
Somewhat more complicated is to address the following converse problem: if the shape of an object
A is the same as that of an object B with symmetries, can we assert that object A is the same
as B?

In order to make this broad question more concrete, we introduce the mathematical context into
which we will tackle the problem. Our area of research is submanifold geometry of Riemannian
manifolds. Our “symmetric objects” will be the so-called homogeneous submanifolds. Let M̄ be a
Riemannian manifold, and M a submanifold of M̄ . We say that M is extrinsically homogeneous,
henceforth simply homogeneous, if for any two points p, q ∈ M there exists an isometry g of M̄
such that g(M) = M and g(p) = q. Equivalently, M is homogeneous if it is an orbit of a subgroup
G of the isometry group of M̄ , that is, M = G · p, for some p ∈ M̄ . In this paper we will actually
be interested in homogeneous hypersurfaces, that is, homogeneous submanifolds of codimension
one.

A homogeneous hypersurface has a great deal of symmetries, namely, the isometries of G. It is
thus conceivable that homogeneous hypersurfaces can be classified in a broad class of Riemannian
manifolds with large isometry groups. (If isometry groups are small, homogeneous hypersurfaces
might not exist at all.) This is true for example in Euclidean spaces [17], spheres [11], real
hyperbolic spaces [4], complex projective spaces [18], irreducible symmetric spaces of compact
type [12], complex hyperbolic spaces, and the Cayley hyperbolic plane [3]. Remarkably, no such
classification is known for quaternionic hyperbolic spaces.

Homogeneous hypersurfaces have two interesting properties related to their shape: they are
isoparametric and have constant principal curvatures. A hypersurface is called isoparametric if
its nearby parallel hypersurfaces have constant mean curvature. A hypersurface has constant
principal curvatures if the eigenvalues of its shape operator are constant. These two concepts are
equivalent for spaces of constant curvature. Indeed, this property of their shape is characteris-
tic of homogeneous hypersurfaces in Euclidean and real hyperbolic spaces: Segre, for Euclidean
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spaces [17], and Cartan, for real hyperbolic spaces [4], proved that isoparametric hypersurfaces
are homogeneous and derived their classification. Surprisingly, this is not true of spheres, as the
examples in [9] show. The classification of isoparametric hypersurfaces in spheres has been the
aim of several recent and important works (see for example [5] and [14]).

In complex space forms, isoparametric hypersurfaces do not necessarily have constant principal
curvatures. A classification of isoparametric hypersurfaces in complex projective spaces CPn, n 6=
15, has been obtained by the second author in [8] as a consequence of the available classifications
in spheres. As a consequence, there exist inhomogeneous isoparametric hypersurfaces in complex
projective spaces.

In this paper we are interested in isoparametric hypersurfaces in complex hyperbolic spaces.
Their classification has recently been obtained by the authors in [7]:

Theorem 1.1. Let M be a connected real hypersurface in the complex hyperbolic space CHn,
n ≥ 2. Then, M is isoparametric if and only if M is congruent to an open part of:

(i) a tube around a totally geodesic complex hyperbolic space CHk, k ∈ {0, . . . , n− 1}, or
(ii) a tube around a totally geodesic real hyperbolic space RHn, or
(iii) a horosphere, or
(iv) a ruled homogeneous minimal Lohnherr hypersurface W 2n−1, or some of its equidistant hy-

persurfaces, or
(v) a tube around a ruled homogeneous minimal Berndt-Brück submanifold W 2n−k

ϕ , for k ∈
{2, . . . , n− 1}, ϕ ∈ (0, π/2], where k is even if ϕ 6= π/2, or

(vi) a tube around a ruled homogeneous minimal submanifold Ww, for some proper real subspace
w of gα ∼= Cn−1 such that w⊥, the orthogonal complement of w in gα, has nonconstant
Kähler angle.

We give a brief description of the examples (iv) through (vi); see [6] or [7] for more details. Let g
denote the Lie algebra of SU(1, n), the isometry group of CHn, and let g = g−2α⊕g−α⊕g0⊕gα⊕
g2α be a restricted root space decomposition of g with respect to some point o ∈ CHn and some
point at infinity x ∈ CHn(∞). The point x determines a maximal flat a ⊂ g0. It turns out that a
and g2α are 1-dimensional, and gα is a complex vector space of complex dimension n − 1, whose
complex structure we denote by J . If w is a real subspace of gα, we define sw = a⊕w⊕g2α. Then,
sw is a Lie subalgebra of g, and the connected subgroup Sw of SU(1, n) whose Lie algebra is sw
acts isometrically on CHn. We define Ww = Sw ·o. Then, the tubes around Ww are isoparametric
hypersurfaces of CHn. If w is a hyperplane, then Ww is denoted by W 2n−1 and we obtain the
examples in (iv) (see also [13]). If w⊥, the orthogonal complement of w in gα, has constant Kähler
angle ϕ ∈ (0, π/2] and codimension k, then Ww is denoted by W 2n−k

ϕ and we get (v) (see [1]).

Recall that w⊥ has constant Kähler angle ϕ if for any nonzero ξ ∈ w⊥ the angle between Jξ and
w⊥ is always ϕ. If w⊥ does not have constant Kähler angle, then we obtain the examples in (vi).

Theorem 1.1 implies the classification of homogeneous hypersurfaces in complex hyperbolic
spaces. In fact,

Corollary 1.2. [3, 7] A real hypersurface in CHn is homogeneous if and only if it belongs to one
of the families (i)-(v) in Theorem 1.1.

Thus, if n ≥ 3, there are uncountably many families of inhomogeneous isoparametric hypersur-
faces in complex hyperbolic spaces.

The aim of this paper is to prove the following result.

Theorem 1.3. Let M be an isoparametric hypersurface in CHn. Then, the principal curvatures
of M are pointwise the same as the principal curvatures of a homogeneous hypersurface of CHn.

It is clear that, by working out the principal curvatures of the examples appearing in Theo-
rem 1.1, the conclusion of Theorem 1.3 follows from the classification of isoparametric hypersur-
faces in CHn. The purpose of this paper is to prove Theorem 1.3 by a more direct approach,
which avoids several intricate arguments needed for the proof of Theorem 1.1.

The complex hyperbolic space CHn is the quotient of the anti-De Sitter spacetimeH2n+1
1 ⊂ C1,n

by S1. Let us call π : H2n+1
1 → CHn the projection map, the so-called Hopf map. See Section 2.
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Recall that CHn is a Kähler manifold of constant holomorphic sectional curvature. We denote
its Kähler structure by J . The anti-De Sitter space is, in turn, a Lorentzian manifold of constant
negative curvature. It can be shown that, if a hypersurface M of CHn is isoparametric, then
π−1(M) has constant principal curvatures. A generalization of a result by Cartan [4] implies that
the number of real principal curvatures of π−1(M) is bounded by two. This allows us to deduce
many interesting properties of M just by using the fundamental equations of a submersion and
some algebraic calculations. It is remarkable, for example, that the principal curvatures of M
at a point coincide with the principal curvatures of some homogeneous hypersurface in CHn. In
particular, if g(p) denotes the number of principal curvatures of M at p, and h(p) denotes the
number of nontrivial projections of Jξp onto the principal curvature spaces, where ξp is a normal
vector of M at p, we have

Proposition 1.4. If M is an isoparametric hypersurface of CHn, then h ≤ 3 and g ≤ 5.

The results obtained by the authors in this paper precede those of [7]. Although the principal
curvatures of isoparametric hypersurfaces in CHn are the same as in the homogeneous examples,
we found inhomogeneous examples of isoparametric hypersurfaces in CHn. These examples, cor-
responding to case (vi) of Theorem 1.1, were first constructed in [6]. It was surprising at the
moment to notice that, pointwise, the principal curvatures of these examples are the same as
those of a homogeneous hypersurface. Nonetheless, the principal curvatures of these examples are
nonconstant, so they are not homogeneous.

A major disadvantage of working with π−1(M) instead of M is that the shape operator of
the former is not necessarily diagonalizable. There are exactly four different types of Jordan
canonical forms for this shape operator, described in Section 3. Using the algebraic approach that
we describe in this paper we can get Theorem 1.3. However, we will only deal with Type III
points. There are two reasons for this. Firstly, Type III is considerably more involved than the
other types. Once Type III is sorted out, the other types can be handled with similar arguments.
Secondly, Types I, II and IV are tackled in [7] by this very same method. The arguments in [7]
diverge considerably from our approach here for Type III points. In this paper we get a weaker
result, but the argument is much shorter. The core of this paper is the proof of Theorem 3.4 from
where Theorem 1.3 and Proposition 1.4 follow.

2. Anti-De Sitter spacetime and complex hyperbolic space

In Cn+1 we define the flat semi-Riemannian metric

〈z, w〉 = Re
(
−z0w̄0 +

n∑
k=1

zkw̄k

)
.

It is customary to denote by C1,n the vector space Cn+1 endowed with the previous scalar product.
The anti-De Sitter spacetime of radius r > 0 is defined as

H2n+1
1 (r) =

{
z ∈ C1,n : 〈z, z〉 = −r2

}
.

This hypersurface of C1,n is a Lorentzian manifold of constant negative curvature c = −4/r2 and
dimension 2n + 1. The map S1 × H2n+1

1 (r) → H2n+1
1 (r), (λ, z) 7→ λz defines an S1-action on

H2n+1
1 (r). The quotient space CHn(c) = H2n+1

1 (r)/S1 turns out to be a Kähler manifold of
real dimension 2n with constant holomorphic sectional curvature c. The natural projection map
π : H2n+1

1 (r) → CHn(c) is called the Hopf map. The complex hyperbolic space CHn(c) inherits
its metric by requiring the Hopf map to be a semi-Riemannian submersion with timelike totally
geodesic fibers. We denote by ∇̃ and ∇̄ the Levi-Civita connections of H2n+1

1 (r) and CHn(c),
respectively. From now on, we will drop r and c in the notations of the anti-De Sitter spacetime
and the complex hyperbolic space.

Let V denote the vector field on H2n+1
1 defined by Vz = i

√
−c z/2 for each z ∈ H2n+1

1 . This is
a unit timelike vector field that is tangent to the S1-flow. Now, we have the isomorphism

TzH
2n+1
1

∼= Tπ(z)CHn ⊕ RVz,
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and kerπ∗z = RVz. Vectors in kerπ∗ are called vertical, and vectors orthogonal to kerπ∗ are called
horizontal. The subspace of horizontal vectors of TzH

2n+1
1 is a spacelike complex vector subspace

of C1,n; this induces a Kähler structure on CHn which we denote by J . Note that, for a vector
field X ∈ Γ(TCHn) there is a unique horizontal vector field XL ∈ Γ(TH2n+1

1 ), the horizontal lift
of X, such that π∗X

L = X.
Since π is a semi-Riemannian submersion, the fundamental equations of a semi-Riemannian

submersion [15] relate the Levi-Civita connections of H2n+1
1 and CHn as

(1)
∇̃XLY L = (∇̄XY )L +

√
−c
2
〈JXL, Y L〉V,

∇̃VXL = ∇̃XLV =

√
−c
2

(JX)L =

√
−c
2

JXL,

for all X, Y ∈ Γ(TCHn).

Now let M be a real hypersurface in CHn and denote by ξ a (local) unit normal vector field to

M . Then, M̃ = π−1(M) is a hypersurface in H2n+1
1 that is invariant under the S1-action, and ξL

is a (local) spacelike normal unit vector field to M̃ . We denote by ∇ the Levi-Civita connection

on M or M̃ , as there will not be a chance for confusion. We also denote by S and S̃ the shape
operators of M and M̃ , respectively. Since M is Riemannian, Sp is diagonalizable for each p. The
eigenvalues of Sp are called the principal curvatures of M at p. The sum of the eigenvalues of Sp,
which is also the trace of Sp, is called the mean curvature at p. We denote by g(p) the number of
principal curvatures of M at p.

Recall that M is said to be Hopf at p ∈M if Jξp is an eigenvector of Sp; M is said to be Hopf,
if it is Hopf at all points p ∈ M . We also denote by h(p) the number of nontrivial projections of
Jξp onto the principal curvature spaces. Thus, M is Hopf at p if and only if h(p) = 1.

The Gauss and Weingarten formulas for M̃ are

∇̃XY = ∇XY + 〈S̃X, Y 〉ξL, ∇̃XξL = −S̃X.

Thus, (1) implies

(2) S̃XL = (SX)L +

√
−c
2
〈JξL, XL〉V, S̃V = −

√
−c
2

JξL.

Hence, if λ1, . . . , λ2n−1 are the principal curvatures of M , then (2) implies that, with respect to a

suitable basis of TH2n+1
1 , the endomorphism S̃ can be represented by the matrix

(3)


λ1 0 − b1

√
−c

2
. . .

...

0 λ2n−1 − b2n−1

√
−c

2
b1
√
−c

2 · · · b2n−1

√
−c

2 0

 ,

where bi = 〈Jξ,Xi〉 ◦ π, i ∈ {1, . . . , 2n− 1}, are S1-invariant functions on (an open set of) M̃ . In

particular, it follows that M and M̃ have the same mean curvature.

3. Isoparametric hypersurfaces

We say that a hypersurface M of CHn is isoparametric if all sufficiently close parallel hypersur-
faces have constant mean curvature. We take M̃ = π−1(M), which is a Lorentzian hypersurface of
anti-De Sitter spacetime, and note that, since it is a semi-Riemannian submersion, π maps parallel
hypersurfaces of M̃ to parallel hypersurfaces of M . As we have seen above, a hypersurface and
its lift have the same mean curvature, and thus, if M is isoparametric, parallel hypersurfaces to
M̃ have constant mean curvature. It follows from the work of Hahn [10] that M̃ has constant
principal curvatures with constant algebraic multiplicities. However, it is important to point out
that M does not necessarily have constant principal curvatures. Even more, the functions g and
h do not have to be constant.

The rest of this paper is devoted to proving Theorem 1.3.
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The shape operator S̃q at a point q ∈ M̃ is a self-adjoint endomorphism of TqM̃ . Since M̃ is

Lorentzian, S̃ is not necessarily diagonalizable, but it is known to have one of the following Jordan
canonical forms (see for example [16, Chapter 9]):

I.

λ1 0
. . .

0 λ2n

 II.


λ1 0
ε λ1

λ2

. . .

λ2n−1

 , ε = ±1

III.



λ1 0 1
0 λ1 0
0 1 λ1

λ2

. . .

λ2n−2


IV.


a −b
b a

λ3

. . .

λ2n


The eigenvalues λi ∈ R can be repeated and, in case IV we have λ1 = a+ ib, λ2 = a− ib (b 6= 0).

In cases I and IV, the basis with respect to which S̃q is represented is orthonormal, and the first
vector of this basis is timelike. In cases II and III the basis is semi-null. A basis {u, v, e1, . . . , em−2}
is semi-null if all inner products are zero except 〈u, v〉 = 〈ei, ei〉 = 1, for each i ∈ {1, . . . ,m − 2}.
A point q ∈ M̃ is said to be of type I, II, III or IV according to the type of the Jordan canonical
form of S̃q.

In his work on isoparametric hypersurfaces in spaces of constant curvature [4], Cartan proved a
fundamental formula relating the curvature of the ambient manifold and the principal curvatures.
A similar argument works for the anti-De Sitter spacetime. In particular, the following consequence
can be derived from this fundamental formula [7, Lemma 3.4]:

Lemma 3.1. Let q ∈ M̃ be a point of type I, II or III. Then the number g̃(q) of constant principal
curvatures at q satisfies g̃(q) ∈ {1, 2}. Moreover, if g̃(q) = 2 and the principal curvatures are λ
and µ, then c+ 4λµ = 0.

The objective of this paper is to analyze the eigenvalue structure of the shape operator of
an isoparametric hypersurface in CHn and obtain, as a consequence of this study, Theorem 1.3.
As a corollary, we derive a bound for h and g (Proposition 1.4). The proof of these facts will
be mostly algebraic, and is carried out by analyzing the possible Jordan canonical forms for the
shape operator of M̃ at a point q as described above.

As stated in the introduction, we only deal with Type III points. For points of Types I, II
and IV the proof is very similar and can be found in [7, Section 3].

Proposition 3.2. Let M̃ be the lift of an isoparametric hypersurface in CHn to the anti-De Sitter
spacetime, and let q ∈ M̃ and p = π(q). Then:

(i) If q is of type I, then M is Hopf at p, and g(p) ∈ {2, 3}. The principal curvatures of M at p
are:

λ ∈
(
−
√
−c
2

,

√
−c
2

)
, λ 6= 0, µ = − c

4λ
∈
(
−∞,−

√
−c
2

)
∪
(√−c

2
,∞
)
, λ+ µ.

The last principal curvature has multiplicity one and corresponds to the Hopf vector.
(ii) If q is of type II, then M is Hopf at p, and g(p) = 2. Moreover, M̃ has one principal

curvature λ = ±
√
−c/2, and the principal curvatures of M at p are λ and 2λ. The second

one has multiplicity one and corresponds to the Hopf vector.
(iii) If q is of type IV, then M is Hopf at p. Let λ and µ = −c/(4λ) be the real principal curvatures

of M̃ at q (µ might not exist). Then the principal curvatures of M at p are

λ, µ, and 2a =
4cλ

c− 4λ2
∈
(
−
√
−c,
√
−c
)
,

where 2a is the principal curvature associated with the Hopf vector.
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Remark 3.3. Proposition 3.2 implies Theorem 1.3 for types I, II and IV.
Indeed, the values given in part (i) correspond to the principal curvatures of a tube of radius r

around a totally geodesic CHk in CHn, where

(4) λ =

√
−c
2

tanh
(r√−c

2

)
,

and 2(n− k) is the multiplicity of µ.
The values obtained in (ii) correspond to the principal curvatures of a horosphere in CHn.
Finally, the values obtained in (iii) correspond to the principal curvatures of a tube of radius r

around a totally geodesic RHn in CHn, where r is given by the same formula as in (4).

In the rest of the paper we deal with Type III points. The arguments that follow are not
contained in [7]. Thus, let M be an isoparametric hypersurface of CHn, whose lift to the anti-De

Sitter spacetime is denoted by M̃ . We fix a point q ∈ M̃ and assume that q is of Type III. We
analyze the possible principal curvatures of M at the point p = π(q).

Theorem 3.4. Let λ be the principal curvature of M̃ at q whose algebraic and geometric multi-
plicities do not coincide. Then h(p) ∈ {2, 3} and λ ∈

(
−
√
−c/2,

√
−c/2

)
.

There exists a number ϕ ∈ (0, π/2] such that the zeroes of the polynomial

fλ,ϕ(x) = −x3 +
(
− c

4λ
+ 3λ

)
x2 +

1

2

(
c− 6λ2

)
x+
−c2 − 16cλ2 + 16λ4 + (c+ 4λ2)2 cos(2ϕ)

32λ
,

are principal curvatures of M at p. If ϕ = π/2, then h(p) = 2 and g(p) ∈ {2, 3, 4}. Moreover, we
have the following possibilities:

(i) If ϕ = π/2 and g = 4, then 0 6= λ 6= ±
√
−c/(2

√
3), and the principal curvatures of M at p

are:

1

2

(
3λ±

√
−c− 3λ2

)
, λ, µ = − c

4λ
.

The principal curvature spaces corresponding to the first two principal curvatures are one
dimensional and the Hopf vector has nontrivial projection onto both of them.

(ii) If ϕ = π/2 and g ∈ {2, 3} then we have two cases:

(a) If λ = ±
√
−c/(2

√
3) then the principal curvatures of M at p are

0, µ = − c

4λ
= ±
√
−3c

2
, λ = ±

√
−c

2
√

3
.

The principal curvature space associated with 0 is one dimensional, and the Hopf vector
has nontrivial projection onto the principal curvature spaces corresponding to the first
two principal curvatures. The value λ might not appear as a principal curvature.

(b) If 0 6= λ 6= ±
√
−c/(2

√
3), then the principal curvatures of M at p are

1

2

(
3λ±

√
−c− 3λ2

)
, λ or µ = − c

4λ
.

The principal curvature spaces corresponding to the first two principal curvatures are one
dimensional and the Hopf vector has nontrivial projection onto both of them.

(iii) If ϕ ∈
(
0, π/2

)
, then λ 6= 0 and the three zeros of the polynomial fλ,ϕ are different, and also

different from λ and −c/(4λ). Therefore, M has g(p) ∈ {3, 4, 5} principal curvatures at p:

the zeroes of fλ,ϕ, λ, µ = − c

4λ
.

The principal curvature spaces corresponding to the first three principal curvatures are one
dimensional and the Hopf vector has nontrivial projection onto all of them. The values λ
and/or µ might not appear as principal curvatures.

Proof. For the sake of readability we will shorten the notation and write v = Vq. We also write

Jξ instead of Jξp, S̃ instead of S̃q and so on.
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Assume that the shape operator S̃ has a type III matrix expression at q with respect to a
semi-null basis {e1, e2, e3 . . . , e2n}, where

(5)
〈e1, e1〉 = 〈e2, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, 〈e1, e2〉 = 〈e3, e3〉 = 1,

S̃e1 = λe1, S̃e2 = λe2 + e3, S̃e3 = e1 + λe3.

We denote by Tλ(q) and Tµ(q) the eigenspaces of λ and µ at q. Then Tλ(q)	 Re2 and Tµ(q) are
spacelike. As a matter of caution, e2 6∈ Tλ(q), and Tλ(q)	 Re2 denotes the vectors of Tλ(q) that
are orthogonal to e2. For example, e1 6∈ Tλ(q)	 Re2 because e1 and e2 are not orthogonal.

Assume first that there are two distinct principal curvatures λ, µ. By Lemma 3.1 we have
c+ 4λµ = 0 and thus, λ, µ 6= 0. We can write v = r1e1 + r2e2 + r3e3 +u+w, where u ∈ Tλ	Re2,
and w ∈ Tµ(q). Changing the orientation of {e1, e2, e3} if necessary, we can also assume r2 ≥ 0.
We have

−1 = 〈v, v〉 = 2r1r2 + r2
3 + 〈u, u〉+ 〈w,w〉.

Thus, r2 > 0 and r1 < 0. If u 6= 0 we define

e′1 = e1, e′2 = −〈u, u〉
2r2

2

e1 + e2 +
1

r2
u, e′3 = e3.

Then, the vectors in {e′1, e′2, e′3} satisfy the same equations as in (5), and v = (r1+〈u, u〉/(2r2))e′1+
r2e
′
2 + r3e

′
3 +w. This shows that we can assume, swapping to {e′1, e′2, e′3} if necessary, that u = 0.

Thus, we have

−1 = 〈v, v〉 = 2r1r2 + r2
3 + 〈w,w〉,

S̃v = (r1λ+ r3)e1 + r2λe2 + (r2 + r3λ)e3 + µw.

Using (2) we get

JξL = − 2√
−c

S̃v = − 2√
−c

(
(r1λ+ r3)e1 + r2λe2 + (r2 + r3λ)e3 + µw

)
,

and since 2r1r2 = −1− r2
3 − 〈w,w〉 we obtain

1 = 〈JξL, JξL〉 = −4

c

(
2r1r2λ

2 + 4r2r3λ+ r2
2 + r2

3λ
2 + 〈w,w〉µ2

)
= −4

c

(
4r2r3λ+ r2

2 − λ2 + (µ2 − λ2)〈w,w〉
)
,

0 = 〈S̃v, v〉 = 2r1r2λ+ 2r2r3 + r2
3λ+ µ〈w,w〉 = 2r2r3 − λ+ (µ− λ)〈w,w〉.

Hence, we get

r2
2 + (µ− λ)2〈w,w〉 = − c

4
− λ2, or equivalently,

(
2r2√
−c− 4λ2

)2

+

(
2(µ− λ)‖w‖√
−c− 4λ2

)2

= 1.

Since r2 > 0 we obtain λ ∈
(
−
√
−c/2,

√
−c/2

)
\ {0}. Note that, since c + 4λµ = 0 we have

−c− 4λ2 = 4λ(µ− λ). Solving the previous equations yields

r2 = sin(ϕ)

√
−c− 4λ2

2
, ‖w‖ = cos(ϕ)

2λ√
−c− 4λ2

, r3 =
λ√

−c− 4λ2
sin(ϕ),(6)

for a suitable ϕ ∈
(
0, π/2

]
. The proof now diverges from the one that can be found in [7].

Assume ϕ 6= π/2, that is, w 6= 0. We have that the vectors in Tλ(q)	Re2 and in Tµ(q)	Rw are
orthogonal to v and JξL. These vectors project bijectively, via the Hopf map π∗q, to eigenvectors
of the principal curvatures λ and µ respectively, and they are all orthogonal to Jξ. Let L =
TqM̃ 	

(
(Tλ(q) 	 Re2) ⊕ (Tµ(q) 	 Rw) ⊕ Rv

)
. Then, L is a 3-dimensional space, and thus,

h(p) ≤ 3. Furthermore, by (3) we see that h(p) 6= 1; otherwise S̃ would contain at most a 2 × 2
nondiagonal block, and so q would not be of type III. In fact, L is spanned by the following basis:
l1 = r1e1−r2e2, l2 = r3e1−r2e3 and l3 = −〈w,w〉e1 +r2w. We have span{e1, e2, e3, w} = L⊕Rv.
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After some long calculations, and using (2) and π∗qv = 0, we get that the matrix expression of
the shape operator of M at p restricted to π∗qL, with respect to the basis {π∗l1, π∗l2, π∗l3} isλ+ r2r3 r2

2 r2(λ− µ)〈w,w〉
1 + r2

3 λ+ r2r3 r3(λ− µ)〈w,w〉
−r3 −r2 µ− (λ− µ)〈w,w〉

 .

Using the expressions we got for r2, r3, and 〈w,w〉, together with 4λµ + c = 0, we can calculate
the characteristic polynomial of the previous matrix. This polynomial turns out to be precisely
fλ,ϕ, as defined in the statement of Theorem 3.4. This is the same characteristic polynomial
as that of the nontrivial part of the shape operator of a tube around the submanifolds Ww in
Theorem 1.1 (vi) (see also [6]). We have

fλ,ϕ(λ) = − (c+ 4λ2)2 sin2(ϕ)

16λ
> 0, fλ,ϕ(µ) =

(c+ 4λ2)2 cos2(ϕ)

16λ
> 0.

Therefore, neither λ nor µ are eigenvalues of the matrix above. Moreover, the same argument
as in [2, p. 146] proves that the three zeroes of fλ,ϕ are different. Hence, if ϕ ∈ (0, π/2), M has
g(p) ∈ {3, 4, 5} principal curvatures at p: the zeroes of fλ,ϕ, possibly λ, and possibly µ. Indeed,
g(p) = 3 if Tλ(q) 	 Re2 = Tµ(q) 	 Rw = 0, g(p) = 4 if either Tλ(q) = Re1 or Tµ(q) = Rw, and
g(p) = 5 otherwise.

We now prove that, in this case (ϕ 6= π/2), we have h(p) = 3. The characteristic polynomial

of the shape operator S̃ restricted to L ⊕ Rv is (x − λ)3(x − µ). Define x1, x2, x3 to be unit
eigenvectors of Sp whose corresponding eigenvalues are the three different zeroes λ1, λ2, λ3 of the
polynomial fλ,ϕ, respectively. Set bi = 〈Jξ, xi〉, for i = 1, 2, 3. Then, according to (3), the shape

operator S̃ of M̃ at q restricted to L⊕ Rv with respect to the basis {xL1 , xL2 , xL3 , v} is given by
λ1 0 0 −b1

√
−c
2

0 λ2 0 −b2
√
−c
2

0 0 λ3 −b3
√
−c
2

b1
√
−c
2 b2

√
−c
2 b3

√
−c
2 0

 .

Using b21 + b22 + b23 = 1, we get the characteristic polynomial of this matrix:

x4 + (−λ1 − λ2 − λ3)x3

+
1

4
(−c+ 4λ1λ2 + 4λ1λ3 + 4λ2λ3)x2

+
1

4

(
b21cλ2 + b21cλ3 + b22cλ1 + b23cλ1 + b23cλ2 + b22cλ3 − 4λ1λ2λ3

)
x

− c

4

(
b21λ2λ3 + b23λ1λ2 + b22λ1λ3

)
.

Both the previous polynomial and (x−λ)3(x−µ) must coincide, as they come from the same endo-
morphism of L⊕Rv. Thus, by comparing the linear and independent terms of these polynomials,
we obtain the following linear system in the variables b21, b22, b23:

c

4

(
(λ2 + λ3)b21 + (λ1 + λ3)b22 + (λ1 + λ2)b23

)
− λ1λ2λ3 = −λ2(λ+ 3µ),

− c
4

(
b21λ2λ3 + b23λ1λ2 + b22λ1λ3

)
= λ3µ,

b21 + b22 + b23 = 1.

The determinant of the matrix of this linear system is c2(λ1 − λ2)(λ3 − λ1)(λ2 − λ3)/16 6= 0, so
the system has a unique solution. Using the relations among λ, µ, λ1, λ2 and λ3 that the equality
of the characteristic polynomials imposes for the quadratic and cubic terms, namely,

λ1 + λ2 + λ3 = 3λ+ µ,

− c
4

+ λ1λ2 + λ1λ3 + λ2λ3 = 3λ(λ+ µ),
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one can check, after some elementary but long calculations, that the solution to the linear system
above is given by:

b2i = − 4(λ− λi)3(λi − µ)

c(λi+1 − λi)(λi − λi+2)
, i = 1, 2, 3, (indices modulo 3).

Since µ and λ are different from any λi, i ∈ {1, 2, 3}, we conclude that bi 6= 0 for all i ∈ {1, 2, 3},
whence h(p) = 3. This finishes the proof of Theorem 3.4 (iii).

Now assume ϕ = π/2, that is, w = 0 (recall that we are still assuming that S̃ has two distinct
eigenvalues λ, µ 6= 0 at q). In this case, (6) yields

r2 =

√
−c− 4λ2

2
, w = 0, r3 =

λ√
−c− 4λ2

.

Then, the vectors of Tλ(q)	Re2 and Tµ(q) are orthogonal to v and JξL, project via π∗q onto the
principal curvature spaces of λ and µ respectively, and these projections are orthogonal to Jξ. So,
in this case, we have h(p) = 2. Defining l1 and l2 as above, the shape operator of M at p restricted
to span{π∗l1, π∗l2}, with respect to the basis {π∗l1, π∗l2}, turns out to be(

λ+ r2r3 r2
2

1 + r2
3 λ+ r2r3

)
=

(
3λ
2 − c

4 − λ
2

c+3λ2

c+4λ2
3λ
2

)
.

Thus, the eigenvalues of the shape operator of M at p restricted to span{π∗l1, π∗l2} are

1

2

(
3λ±

√
−c− 3λ2

)
.

These eigenvalues are different and also different from λ.
For λ =

√
−c/(2

√
3) we have µ =

(
3λ +

√
−c− 3λ2

)
/2 =

√
−3c/2, hence g(p) ∈ {2, 3}, and

the principal curvatures are 0 (with multiplicity one),
√
−3c/2, and possibly

√
−c/(2

√
3). The

possibility g(p) = 2 arises if Tλ(q) = Re1, and in this case λ is not a principal curvature of M
at p. We have g(p) = 3 otherwise. The Hopf vector has nontrivial projections onto the principal
curvature spaces corresponding to 0 and µ. This corresponds to Theorem 3.4 (iia).

For λ 6=
√
−c/(2

√
3) we get g(p) ∈ {3, 4}. We have g(p) = 3 if Tλ(q) = Re1, that is, if

λ is not a principal curvature of M at p, and g(p) = 4 otherwise. The principal curvatures

(3λ ±
√
−c− 3λ2)/2 have both multiplicity one, and the Hopf vector has nontrivial projection

onto their corresponding principal curvature spaces. This corresponds to case (i) if g(p) = 4 and

to case (iib) if g(p) = 3. This finishes the proof if S̃ has two distinct principal curvatures λ and µ.

Finally, assume that M̃ has just one principal curvature λ ≥ 0 at q. In this case, calculations
are very similar to what we have just obtained if w = 0. Thus, we get

λ ∈
(
−
√
−c
2

,

√
−c
2

)
, r2 =

√
−c− 4λ2

2
, r3 =

λ√
−c− 4λ2

.

Arguing as in the case ϕ = π/2 above, we obtain h(p) = 2 and g(p) = 3 (for dimension reasons

Tλ(q) = Re1 cannot happen now). The principal curvatures of M at p are
(
3λ ±

√
−c− 3λ2

)
/2

and λ. The first two have multiplicity one and the Hopf vector has nontrivial projection onto
their corresponding principal curvature spaces. Now we can have λ = 0, and then, the other
principal curvatures would be ±

√
−c/2. If λ 6=

√
−c/(2

√
3), this corresponds to case (iib) again.

If λ =
√
−c/(2

√
3), then we also get case (iia), although now

√
−3c/2 has multiplicity one and

λ =
√
−c/(2

√
3) is definitely a principal curvature of M at p. �

Remark 3.5. Theorem 3.4 implies that, for points of Type III, the principal curvatures of isopara-
metric hypersurfaces in CHn and their multiplicities must coincide (at that precise point) with
those of the homogeneous examples in cases (iv) and (v) in Theorem 1.1, except for some partic-
ular cases which we would like to point out here (we assume the notation given in the proof of
Theorem 3.4):

A. Theorem 3.4(iia) for g(p) = h(p) = 2: this happens if Tλ(p) = Re1.
B. Theorem 3.4(iib) if λ is not a principal curvature of M at p, that is, if Tλ(q) = Re1.
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C. Theorem 3.4(iii) for g(p) = h(p) = 3 (this happens whenever Tλ(q)	 Re2 = Tµ(q)	 Rw = 0)
or if g(p) = 4 and λ is not a principal curvature of M at p (equivalently, if Tλ(q) = Re1).

The three cases in Remark 3.5 are ruled out by a different method in [7]. Here we content
ourselves with Theorem 3.4 which, together with Proposition 3.2, implies Theorem 1.3. The
multiplicities of these principal curvatures are the same as in the homogeneous examples except
for the three possibilities above. This stronger result is a consequence of Theorem 1.1 but cannot
be proved with the method used in this paper. Proposition 1.4 is also obtained from Theorem 3.4.
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