
Riemannian Geometry
RiemannianGeometry is a name space for a series of packages developed in the Department of Geometry and Topol-

ogy of the University of Santiago de Compostela by Miguel Brozos Vázquez, José Carlos Díaz Ramos, Eduardo García 

Río and Ramón Vázquez Lorenzo.

These are the packages included:

RiemannianGeometry`Curvature`:  a  basic  package  for  calculating certain  curvature  objects  in  a  pseudo-Riemannian

manifold.

RiemannianGeometry`DifferentialOperators`: an extension of the basic package that calculates certain differential

operators.

RiemannianGeometry`CurvatureOperators`:  an  extension of  the  previous  package  that  calculates  curvature  related

objects.

RiemannianGeometry`ExponentialMap`:  a  package  to  numerically  evaluate  the  exponential  map  of  a  Riemannian

manifold and plot geodesics and geodesic spheres.

RiemannianGeometry`CelestialSpheres`:  a  package  to  plot  geodesic  celestial  spheres  and  related  objects  in  a

Lorentzian manifold.

RiemannianGeometry`GeodesicSpheres`: a package to calculate power series expansion of geometric objects associ-

ated with geodesic spheres.

Apart from these packages, we also include:

RiemannianGeometry`GeometricObjects`:  a  package  containing  all  the  previous  packages  and  some  additional

functions often used in Riemannian manifolds. This package should be used to introduce new functions by a user trying

to extend functionality.

RiemannianGeometry`Notation`:  a  notational  package  whose  employment  is  potential  unsafe,  but  that  introduces

convenient shortcuts in most situations.
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The basic Curvature package
A theorem of Whitney states that every differentiable manifold can be embedded in an Euclidean space of sufficiently 

large dimension. So, we can consider a manifold, at least locally, as the image of a smooth map, f:U Ø n, where U is 

an open set in certain Euclidean space.

This  package  provides  functionality  to  compute  objects  associated  with  the  curvature  of  a  general  semi-Riemannian

manifold defined as the image of a parametrization in an Euclidean space. It is also the basic package for many other

packages that calculate more complicated objects.

CoordinateVector[i][M][m] computes the ith coordinate vector
field of the manifold M at the point m

CoordinateVectorsMm computes the coordinate vector
fields of the manifold M at the point m

MetricMm computes the metric of the manifold
M at m. The result is given as a list

ChristoffelSymbolsMm computes the Christoffel symbols of
M at m. The result is given as a nested list

ScalarCurvatureMm calculates the scalar curvature of M at m

Basic geometric objects in a manifold. 

All manifolds have to be defined previously as a function or be given as a pure function. In this case it does not matter

whether the manifold evaluates its arguments to a number or not.

This loads the package.

In[1]:= Needs"RiemannianGeometry`Curvature`";

Here it is the definition of a torus.

In[2]:= torusR_, r_u_, v_  R  r Cosu Cosv, R  r Cosu Sinv, r Sinu;

Evaluate the following cell to see the coordinate vector fields, the metric induced on the torus, its Christoffel symbols and its scalar 
curvature (which is essentially its Gaussian curvature).

In[3]:= CoordinateVector1torusR, ru, v
CoordinateVector2torusR, ru, v
CoordinateVectorstorusR, ru, v
MetrictorusR, ru, v  Simplify  MatrixForm
ChristoffelSymbolstorusR, ru, v  Simplify
ScalarCurvaturetorusR, ru, v  Simplify

Out[3]= r Cosv Sinu, r Sinu Sinv, r Cosu

Out[4]= R  r Cosu Sinv, R  r Cosu Cosv, 0

Out[5]= r Cosv Sinu, r Sinu Sinv, r Cosu, R  r Cosu Sinv, R  r Cosu Cosv, 0

Out[6]//MatrixForm=
r2 0

0 R  r Cosu2

Out[7]= 0, 0, 0, 
r Sinu

R  r Cosu
, 0, 

r Sinu
R  r Cosu

,  R  r Cosu Sinu
r

, 0

Out[8]=
2 Cosu

r R  r2 Cosu
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One can also calculate these geometric objects in a more interactive way using functions such as Manipulate:

In[9]:= ManipulatesimplftorusR, ru, v,
Style"Geometric objects of a torus", "Section",
simpl, Simplify, "Simplify", Checkbox, Identity, Simplify &,
f, Metric, "", SetterBar, CoordinateVector1, CoordinateVector2,

Metric, ChristoffelSymbols, ScalarCurvature, Appearance  "Vertical" &,
ControlPlacement  Top, Top, Left

Out[9]=

Geometric objects of a torus
Simplify

CoordinateVector1

CoordinateVector2

Metric

ChristoffelSymbols

ScalarCurvature

2 Cosu
r R  r2 Cosu

Evaluate the following lines to plot the torus colored by its scalar (Gaussian) curvature. This time the parameters must be numbers. In the 
first example we color the torus with a gradient of red when curvature is positive and of blue when it is negative (after rescaling the 
curvature with ArcTan function). In the second case we use the built-in "TemperatureMap" gradient to achieve a similar effect.

In[10]:= Withsc  EvaluateSimplifyScalarCurvaturetorus2, 11, 2 &,
ParametricPlot3Dtorus2, 1u, v, u, 0, 2 Pi, v, 0, 2 Pi,

ColorFunction  GlowBlend1, RGBColor0, 0, 1, 0, RGBColor1, 1, 1, 1, RGBColor1, 0, 0,
2.` ArcTan2.` sc4, 5NPi &,

ColorFunctionScaling  False, SphericalRegion  True, Ticks  None

Out[10]=
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In[11]:= Withsc  EvaluateSimplifyScalarCurvaturetorus2, 11, 2 &,
ParametricPlot3Dtorus2, 1u, v, u, 0, 2 Pi, v, 0, 2 Pi,

ColorFunction  GlowColorData"TemperatureMap"0.5  ArcTan2.` sc4, 5NPi &,
ColorFunctionScaling  False, SphericalRegion  True, Ticks  None

Out[11]=

Below,  we  will  discuss  the  definitions  and  sign  conventions  that  we  will  use  in  this  package,  but  first  we  discuss  an

important topic.

MetricMm computes the metric of the manifold M at m when the manifold is
given as an embedded submanifold of n . The metric
can also be provided by user as an up -value of Metric

MetricM^Function  coords,

g11coords,...,g1ncoords,...,

g1ncoords,...,gnncoords

uses an up-value to define a metric for the manifold M when
the usual Euclidean metric is not assumed. Then,

the user must provide an nän matrix g
depending on the coordinates

Two ways of setting up a metric for a manifold. 

If the submanifold is assumed to be (locally) embedded in n  by means of a differentiable parametrisation f:U Ø n,

where U is an open set of k, then Metric calculates the metric of the manifold M assuming that it is the one induced

by  the  usual  Euclidean product  of  n.  That  is,  by  default  the  metric  tensor  is  computed  as  the  inner  product  of  the

coordinate vector fields.

Nonetheless, one might be interested in considering more general semi-Riemannian manifolds: manifolds embedded in

n but with a metric different from that induced by the usual Euclidean inner product. Hence, one might be tempted to

override  the  definition  of  Metric.  Note,  however,  that  the  symbol  Metric  has  the  attribute  Protected,  so  a  down-

value cannot be defined directly to it. You should not unprotect this symbol as this could lead to a malfunction of the

package. Instead, if you need to define a particular metric for a manifold use an up-value.

Evaluate this cell to define the metric of a pp-wave. We do not need to define the coordinates as they are the usual ones in 4. The 
definition is given as an up-value of the symbol ppW to avoid associating it with Metric.

In[12]:= MetricppW ^ Functionu, v, x, y,

2 Hu, x, y 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

;
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We can calculate the usual geometric objects:

In[13]:= ChristoffelSymbolsppWu, v, x, y
ScalarCurvatureppWu, v, x, y

Out[13]= 0, H1,0,0u, x, y, H0,1,0u, x, y, H0,0,1u, x, y, 0, 0, 0, 0, 0, H0,1,0u, x, y, 0, 0, 0, H0,0,1

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,1,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Out[14]= 0

It is important to point out that when defining a metric in this way it is the responsibility of the user to verify that the

matrix provided is indeed a semi-Riemannian metric. This means that the matrix must be symmetric and non-degener-

ate. If these requirements fail to be met then the subsequent results are unpredictable and most likely wrong.

Here is another example: the Poincaré half plane is the set x, y œ 2 :y > 0 with the Riemannian metric gx, y =
1

y2
g0x, y, being g0 the 

usual metric of the 2-dimensional Euclidean space. Here, the definition of the metric is given as a pure function.

In[15]:= poincareu_, v_  u, v;
Metricpoincare ^ IdentityMatrix22^ 2 &;

This gives one of the Christoffel symbols of the Poincaré half plane.

In[17]:= ChristoffelSymbolspoincareu, v1, 1, 2

Out[17]=
1

v

Of course, the Poincaré half plane has constant negative curvature.

In[18]:= ScalarCurvaturepoincareu, v  Simplify

Out[18]= 2

In a surface, most of the intrinsic geometry is explained by the Gaussian curvature which is up to a constant the scalar

curvature. Moreover,  the curvature tensor of  a  surface is determined by the scalar curvature. In manifolds of  higher

dimension  the  curvature  tensor  turns  out  to  be  very  complicated.  As  a  consequence,  other  geometric  objects  are

calculated to provide geometric information.

CurvatureTensor [M][m] computes the 1,3 curvature tensor of M at m,
giving the result as a nested list

CovariantCurvatureTensorMm computes the 0,4 curvature tensor of M at m,
giving the result as a nested list

RicciTensorMm computes the Ricci tensor of M at m,
giving the result as a nested list

ScalarCurvatureMm calculates the scalar curvature of M at m
WeylTensorMm calculates the 0,4 Weyl tensor of M at m,

giving the result as a nested list

Basic curvature objects in a manifold. 

In  what  follows  we will  describe briefly  the definitions of  the previously  defined geometric  objects  to  clarify  the  sign

conventions. Then, we will provide an example of use.

Let M be a manifold and suppose that the coordinates are given by x1, …, xn. Let us call g its metric tensor. The Levi-

Civita connection, õ, is the unique connection on M that is torsion-free and makes the metric parallel. It is given by the

Koszul formula:

gõX Y , Z =
1

2
X gY , Z + Y gX , Z - Z gX , Y  - gX , Y , Z + gY , Z, X  + gZ, X , Y .
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where X, Y and Z are vector fields on M and ä , ä is the Lie bracket, that is, X, Y f = XY f -Y X  f , for a function f .

From now on we denote the coordinate vector fields by ∑

∑x1 , …, ∑

∑xn . The Christoffel symbols, G, are then defined by

“ ∑

∑xi

∑

∑ x j
= 

k=1

n

Gij
k

∑

∑ xk
.

The curvature tensor, R, is the covariant tensor whose coordinates are defined by the following formula

Ri jkl = g “ ∑

∑xi
,

∑

∑x j

∑

∑ xk
-“ ∑

∑xi

“ ∑

∑x j

∑

∑ xk
+“ ∑

∑x j

“ ∑

∑xi

∑

∑ xk
,

∑

∑ xl
.

Then, the Ricci tensor, r, is the contraction of the curvature tensor in its first and third index and the scalar curvature,

t is the contraction of the Ricci tensor. The Weyl tensor, W, is defined by the formula in coordinates:

Wi jkl = Ri jkl +
1

n - 2
ril g jk + r jk gik - r jl gik - rik g jl -

t

n - 1 n - 2 gil g jk - gik g jl.

This is the curvature tensor of a pp-Wave:

In[19]:= CurvatureTensorppWu, v, x, y
Out[19]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, 0, H0,1,1u, x, y, 0, 0, 0, H0,0,2u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, 0, H0,1,1u, x, y, 0, 0, 0, H0,0,2u, x, y
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

We can also calculate the (0,4) metric equivalent of this tensor:

In[20]:= CovariantCurvatureTensorppWu, v, x, y
Out[20]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, H0,1,1u, x, y, 0, 0, 0, H0,0,2u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, H0,1,1u, x, y, 0, 0, 0, H0,0,2u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

This is the Ricci tensor

In[21]:= RicciTensorppWu, v, x, y
Out[21]= H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

The metric contraction of this tensor is the scalar curvature

In[22]:= ScalarCurvatureppWu, v, x, y
Out[22]= 0
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Finally, we calculate the (0,4) Weyl curvature tensor of a pp-Wave

In[23]:= WeylTensorppWu, v, x, y
Out[23]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,
1

2
H0,0,2u, x, y  H0,2,0u, x, y  H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, H0,2,0u

0, 0, H0,1,1u, x, y, H0,0,2u, x, y  1

2
H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, H0,1,1u

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y 
1

2
H0,0,2u, x, y  H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 

1

2
H0,0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y 
1

2
H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, H0,1,1u,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

The following command creates a tab viw with the geometric information of the manifolds we have just defined. Note that the Weyl tensor 
does not make sense for two dimensional manifolds.

In[24]:= TabView
"Torus"  ManipulateColumn

Withf  f, StyleHoldFormftorusR, ru, v, Bold, 16, , simplftorusR, ru, v,
Style"Geometric objects of the torus", "Section",
simpl, Simplify, "Simplify", Checkbox, Identity, Simplify &,
f, Metric, "", SetterBar, Metric, ChristoffelSymbols, CurvatureTensor,

CovariantCurvatureTensor, RicciTensor, ScalarCurvature, Appearance  "Vertical" &,
ControlPlacement  Top, Top, Left,

"Poincaré half plane"  Manipulate
ColumnWithf  f, StyleHoldFormfpoincareu, v, Bold, 16, , simplfpoincareu, v,
Style"Geometric objects of the Poincaré half plane", "Section",
simpl, Simplify, "Simplify", Checkbox, Identity, Simplify &,
f, Metric, "", SetterBar, Metric, ChristoffelSymbols, CurvatureTensor,

CovariantCurvatureTensor, RicciTensor, ScalarCurvature, Appearance  "Vertical" &,
ControlPlacement  Top, Top, Left,

"ppwave"  Manipulate
ColumnWithf  f, StyleHoldFormfppWu, v, x, y, Bold, 16, , simplfppWu, v, x, y,
Style"Geometric objects of a ppwave", "Section",
simpl, Simplify, "Simplify", Checkbox, Identity, Simplify &,
f, Metric, "",

SetterBar, Metric, ChristoffelSymbols, CurvatureTensor, CovariantCurvatureTensor,
RicciTensor, ScalarCurvature, WeylTensor, Appearance  "Vertical" &,

ControlPlacement  Top, Top, Left

Out[24]=

Geometric objects of a pp-wave
Simplify

Metric

ChristoffelSymbols

CurvatureTensor

CovariantCurvatureTensor

RicciTensor

ScalarCurvature

WeylTensor

CurvatureTensorppWu, v, x, y
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 0, H0,2,0u, x, y, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, 0, H0,1,1u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,2,0u, x,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0, 0, 0, 0, 0, H0,1,1u, x, y,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Torus Poincaré half plane pp-wave
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Differential operators
The  Levi-Civita  connection  or  covariant  derivation  of  a  manifold  M  defines  a  derivation  on  vector  fiels  by  the  well-

known Koszul formula:

g“X Y , Z =
1

2
X gY , Z + Y gX , Z - Z gX , Y  - gX , Y , Z + gY , Z, X  + gZ, X , Y .

This covariant derivative can be extended to other geometric objects and is also used to define more difficult opera-

tors. This package loads the basic package RiemmanianGeometry`Curvature` and extends its functionallity introducing

several differntial operators constructed from the Levi-Civita connection.

CovariantGradientM f m calculates the gradient of a function f in a semi-
Riemannian manifold M at a point m.

CovariantHessianM f m calculates the Hessian of a function f in a semi-
Riemannian manifold M at a point m.

TensorLaplacianM f m calculates the Laplacian of a function f in a semi-
Riemannian manifold M at a point m.

Differential operators on functions.

The gradient of a function is the vector field which is dual to the differential of the function, that is, ggrad f , v = df v
for any vector v, where as usual g stands for the metric of the manifold M. 

The  Hessian  of  a  function  is  the  second  covariant  derivative  with  respect  to  the  Levi-Civita  connection,  namely,

õX,Y
2

f =õX õY f . Hence, the Hessian of a function is a (0,2) tensor.

The Laplacian of a function is the divergence of its gradient, or equivalently, the metric contraction of the Hessian.

If f  is a function defined on a manifold M, then CovariantGradient, CovariantHessian and TensorLaplacian calcu-

late  its  gradient,  Hessian  and  Laplacian,  respectively.  The  function  f  can  be  defined  previously  as  a  function  of  the

coordinates in M or it can be given as a pure function.

First, we load the package

In[1]:= Needs"RiemannianGeometry`DifferentialOperators`";

We consider a pp-wave. As usual we usual an up-value to define the metric.

In[2]:= MetricppW ^ Functionu, v, x, y,

2 Hu, x, y 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

;

This defines a function:

In[3]:= fu_, v_, x_, y_  u  v2;

This is its gradient:

In[4]:= CovariantGradientppWfu, v, x, y
Out[4]= 2 v, 1  4 v Hu, x, y, 0, 0

This is its Hessian

In[5]:= CovariantHessianppWfu, v, x, y
Out[5]= 2 v H1,0,0u, x, y, 0, 2 v H0,1,0u, x, y, 2 v H0,0,1u, x, y, 0, 2, 0, 0, 2 v H0,1,0u, x, y, 0, 0,
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This is the Laplacian

In[6]:= TensorLaplacianppWfu, v, x, y
Out[6]= 4 Hu, x, y

The covariant derivative can be extended to act not only on functions but also on tensors. Since the metric tensor can

be used to rise and lower indexes we will only consider here covariant tensors.

TensorCovariantDerivativeMTm calculates the covariant derivative
of the covariant tensor T at the point m .

TensorCovariantDerivativeMT, km calculates the kth covariant derivative
of the covariant tensor T at the point m.

TensorLaplacianMTm calculates the covariant Laplacian
of the covariant tensor T at the point m.

Differential operators on covariant tensors.

The extension of the covariant derivative to a derivation of a covariant tensor, w, of order k is defined as follows:

“X w
Y1,…,Yk

= X w Y1 …Yk - 
i=1

k

w
Y1…“X Yi …Yk

,

where X, Y1, …, Yk  are vector  fields on M.  It  can be proved  that this gives a covariant  tensor of  order  k +1, which is

denoted by “w. As a consequence it can be derived to get covariant derivatives of higher order. As in mathematical

notation, in our package, the first index of the corresponding tensor corresponds to the last derivative.

In the case of a general covariant tensor field the Laplacian consists of contracting the indexes of the second covariant

derivative of that tensor. The Laplacian of a tensor is another tensor of the same order. As it was stated above, if T  is

a function we retrieve its usual Laplacian, which is another function.

Again, note that the tensor T  can be given as a pure function or it can be defined previously (which is usually more

comfortable).

This is the covariant derivative of the Ricci tensor

In[7]:= TensorCovariantDerivativeppWRicciTensorppWu, v, x, y
Out[7]= H1,0,2u, x, y  H1,2,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

H0,1,2u, x, y  H0,3,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,0,3u, x, y  H

This is the second covariant derivative of the Ricci tensor. Note here that TensorCovariantDerivative[ppW][RicciTensor[pp-

W],2][u,v,x,y][[i,j,k,l]] corresponds in mathematical notation with “i j
2 r

kl
.

In[8]:= TensorCovariantDerivativeppWRicciTensorppW, 2u, v, x, y
Out[8]= H0,0,1u, x, y H0,0,3u, x, y  H0,2,1u, x, y  H0,1,0u, x, y H0,1,2u, x, y  H0,3,0u, x, y 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H1,1,2u, x, y  H1,3,0u, x, y, 0, 0, 0, 0, 0

H1,0,3u, x, y  H1,2,1u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
H1,1,2u, x, y  H1,3,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

H0,2,2u, x, y  H0,4,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,1,3u, x, y  H

H1,0,3u, x, y  H1,2,1u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

H0,1,3u, x, y  H0,3,1u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,0,4u, x, y  H

We can also calculate the Laplacian of the Ricci tensor.

In[9]:= TensorLaplacianppWRicciTensorppWu, v, x, y
Out[9]= H0,0,4u, x, y  2 H0,2,2u, x, y  H0,4,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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Although vector fields can be consider as contravariant tensors and hence, by lowering indexes one can calculate the

corresponding  metric  duals  of  their  differential  operators,  it  is  handy  to  have  explicit  functions for  them as  they  are

very commonly used in Riemannian geometry.

CovariantDivergence[M][V][m] calculates the divergence of V at the point m.
VectorCovariantDerivativeMVm calculates the total covariant derivative of V at the point m.

VectorCovariantDerivativeMV1, V2
m

calculates the covariant derivative of V2 with respect to V1.

Differential operators on vector fields.

The divergence of  a vector field is the contraction of the total covariant derivative. Namely, div X = C “X. The result is

therefore a function.

The covariant derivative of a vector field is defined by the Koszul formula. The function VectorCovariantDerivative

can be used in two different ways. The first one, VectorCovariantDerivative[M][V][m] calculates the total covariant

derivative of V, which in mathematical notation is usually represented by õX. Hence, õX  is a (1,1)-tensor. As usual,

the first entry stands for the derivative (with respect to the coordinate vector fields).

The second form of VectorCovariantDerivative[M][V1,V2][m] is the most common one. It calculates the covariant

derivative of V2 with respect to V1, that is, “V1
V2. Hence, the result is another vector field.

As usual, the vector fields can be given as pure functions.

This is the divergence of the gradient of the above function

In[10]:= CovariantDivergenceppWCovariantGradientppWfu, v, x, y
Out[10]= 4 Hu, x, y

Of course, the divergence of the gradient is the Laplacian.

In[11]:= TensorLaplacianppWfu, v, x, y
Out[11]= 4 Hu, x, y

The vector field 
∑

∑v
 is parallel as the following calculation shows. Note that this vector field is given as a pure function.

In[12]:= VectorCovariantDerivativeppW0, 1, 0, 0 &u, v, x, y
Out[12]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

We define two vector fields:

In[13]:= Uu_, v_, x_, y_  1, 0, 0, 0;
Au_, v_, x_, y_  0, 0, y, x;

This is the covariant derivative of A with respect to U.

In[15]:= VectorCovariantDerivativeppWU, Au, v, x, y
Out[15]= 0, x H0,0,1u, x, y  y H0,1,0u, x, y, 0, 0

Although the functions provided in this section use the fact that M is (pseudo)-Riemannian manifold, we are now going

to introduce three functions that do not use this underlying structure. These are the exterior derivative of forms, the

Lie  bracket  and  the  Lie  derivatives  of  tensors.  These  three  operators  use  the  differential  structure  of  the  manifold

(which is essentially the coordinate representation of M) but not its metric, so in what follows, the manifold M  is not

passed as an argument.
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ExteriorDerivativeFm calculates the exterior derivative of the form F.
LieBracketV1, V2m calculates the Lie bracket of the tensor fields V1 and V2.

TensorLieDerivativeV, Tm calculates the Lie derivative of the covariant
tensor field T with respect to the vector field V.

The exterior derivative and the Lie derivatives.

Let F  be a p-form, that is, a covariant tensor of order p, which is skew-symmetric. This implies that if s is a permuta-

tion of the set 1, …, p, then FXs1, …, Xsp = sgns FX1, …, Xp, for all vector fields X1, …, Xp  and where sgns is the

signature of s. The exterior derivative of F is thus defined as

dF X0, ..., Xp = 
i=0

p

-1i-1 Xi F X0, ..., Xi
`

, ..., Xp + 
i< j

-1i+ j F Xi, Xj, X0, ..., Xi
`

, ..., Xj
`

, ..., Xp.

As  it  has  already  been  seen,  the  Lie  bracket  of  two  tensor  fields  X  and  Y  is  defined  by  the  formula

X, Y  f = XY f -Y X  f . Then X, Y is again a vector filed on the manifold.

The Lie derivative, L, is also a derivation that extends the Lie braket. It can be defined as

LX wY1…Yk
= X w Y1…Yk - 

i=1

k

w Y1…X ,Yi…Yk
.

for X, Y1, …, Yk  vector fields on M. Unfortunately, Lw, is not a tensor as it is not linear in the first variable. That is why

in our package the direction of derivation must be explicitly given.

This is the exterior derivative of the function f defined above.

In[16]:= ExteriorDerivativefu, v, x, y
Out[16]= 1, 2 v, 0, 0

Of course d2 = 0.

In[17]:= ExteriorDerivativeExteriorDerivativefu, v, x, y
Out[17]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Also, the covariant derivative of function coincides with the covarint derivative, although this is no longer true for forms.

In[18]:= TensorCovariantDerivativeppWfu, v, x, y
Out[18]= 1, 2 v, 0, 0

This is the covariant derivative of A with respect to U.

In[19]:= LieBracketU, Au, v, x, y
Out[19]= 0, 0, 0, 0

The following line must be zero because the Levi-Civita connection is torsion-free

In[20]:= VectorCovariantDerivativeppWA, Uu, v, x, y 
VectorCovariantDerivativeppWU, Au, v, x, y  LieBracketA, Uu, v, x, y

Out[20]= 0, 0, 0, 0

Printed from: Wolfram Mathematica - Complete Documentation 4

©1988–2008 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com



The vector field 
∑

∑u
 is not in general  a Killing vector field, because L ∑

∑u

g ∫ 0.

In[21]:= TensorLieDerivativeU, MetricppWu, v, x, y
Out[21]= 2 H1,0,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Again, the Lie derivative of a function coincides with its differential.

In[22]:= TensorLieDerivativeU, fu, v, x, y
Out[22]= 1

In[23]:= Uu, v, x, y.ExteriorDerivativefu, v, x, y
Out[23]= 1
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Curvature operators
The  curvature  of  a  pseudo-Riemannian  manifold  is  one  the  most  important  objects  in  psedo-Riemannian  geometry.

However, it is a very complicated object and is usually the case that other objects, instead of the curvature operator

itself  are studied. One of  the most famous of  these objects is  the sectional curvature,  which essentially contains the

same information as the curvature tensor but presented in a different form.

SectionalCurvatureMmx, y calculates the sectional curvature of the manifold M at the
point m with respect to the plane expanded by x and y.

The sectional curvature of a psedo-Riemannian manifold.

With our sign convention for the curvature tensor, the sectional curvature K of a plane p is defined by

K p =
RX Y X Y

g X , X  g Y , Y  - g X , Y 2
,

where X, Y  is a basis of p. Note that in the general psedo-Riemannian setting the plane p must be nondegenerate so

that  this defintion makes sense. Also  take note that  this package does not  check whether the basis  provided by  the

user is actually a suitable basis (that is, the package does not check whether X, Y  expands a nondegenerate plane).

First, we load the package

In[1]:= Needs"RiemannianGeometry`CurvatureOperators`";

This metric defines a Lorentzian manifold of constant sectional curvature c.

In[2]:= Metricconstc_ ^ Functiont, x, y,

1

1 
c

4
t2  x2  y22

1 , 0, 0, 0, 1, 0, 0, 0, 1;

We check that the curvature depends neither on the base point nor on the tangent plane.

In[3]:= SectionalCurvatureconstct, x, yArrayu, 3, Arrayv, 3  Simplify

Out[3]= c

Now, we introduce other curvature operators that are usually studied in pseudo-Riemannian geometry. These operator

are somehow employed to study the "eigenvalue structure" of the curvature tensor.

JacobiOperator[M][m][v] calculates the Jacobi operator of
M at m with respect to the direction v.

RicciOperatorMm calculates the Ricci operator at the point m.
SkewSymmetricCurvatureOperatorM

mv1, v2
calculates the skew-symmetric operator of M at the point m

with respect to the plane spanned by v1 and v2.
SzaboOperatorMmv calculates the Szabo operator of M at

the point m with respect to the direction v.

Some curvature operators of a Riemannian manifold.

Given a vector field X the Jacobi operator, J, associated with X is the endomorphism defined as

JX Y  = RXY X = “X ,Y  X - “X “Y X + “Y “X X .
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Because  of  the  identities  of  the  curvature  tensor  one  usually  restricts  it  as  JX :X¦ Ø X¦.  However,  for  computational

reasons we do not do this here.

The  Ricci  operator  Q  is  by  defintion  the  operator  which  is  metrically  equivalent  to  the  Ricci  tensor,  that  is,

gQX, Y  = rX, Y , where r is the Ricci tensor.

The skew-symmetric curvature operator Rp of an oriented plane p is defined by gRp X, Y  = RE1 E2 XY , where E1, E2 is
an oriented orthonormal  basis  of  p.  As usual,  this package does not  check whether the vectors supplied by the user

actually form an oriented orthonormal basis.

Finally, the Szabo operator is defined as the endomorphism SX such that SX Y  = õX RXY X.

This is the Jacobi operator o a manifold of constant sectional curvature with rspect to an arbitrary vector a1, a2, a3.
In[4]:= JacobiOperatorconstct, x, y  Array, 3  Simplify

Out[4]= 
16 c 22  32

4  c t2  x2  y22
, 

16 c 1 2
4  c t2  x2  y22

, 
16 c 1 3

4  c t2  x2  y22
,


16 c 1 2

4  c t2  x2  y22
,

16 c 12  32

4  c t2  x2  y22
, 

16 c 2 3
4  c t2  x2  y22

,  16 c 1 3
4  c t2  x2  y22

, 
16 c 2

4  c t2 

Of course, a manifold of constant sectional curvature is Osserman:

In[5]:= EigenvaluesJacobiOperatorconstct, x, y  Array, 3
Array, 3.Metricconstct, x, y.Array, 3  Simplify

Out[5]= 0, c, c

The Ricci operator is then a multiple of the identity.

In[6]:= RicciOperatorconstct, x, y  Simplify

Out[6]= 2 c, 0, 0, 0, 2 c, 0, 0, 0, 2 c

The vectors 1+ 1

4
c -t2 +x2 +y2 ∑1 and 1+ 1

4
c -t2 +x2+y2 ∑3 are orthonormal:

In[7]:= 1 
1

4
c t2  x2  y2, 0, 0.Metricconstct, x, y.1 

1

4
c t2  x2  y2, 0, 0  Simplify

Out[7]= 1

In[8]:= 0, 0, 1 
1

4
c t2  x2  y2.Metricconstct, x, y.0, 0, 1 

1

4
c t2  x2  y2  Simplify

Out[8]= 1

In[9]:= 1 
1

4
c t2  x2  y2, 0, 0.Metricconstct, x, y.0, 0, 1 

1

4
c t2  x2  y2  Simplify

Out[9]= 0

This is the skew-symmetric curvature operator with respect to the previous vectors.

In[10]:= SkewSymmetricCurvatureOperatorconstct, x, y

1 
1

4
c t2  x2  y2, 0, 0, 0, 0, 1 

1

4
c t2  x2  y2  Simplify

Out[10]= 0, 0, c, 0, 0, 0, c, 0, 0
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Manifolds of constant sectional curvature are symmetric, so their Szabo operator must vanish

In[11]:= SzaboOperatorconstct, x, y  Array, 3  Simplify

Out[11]= 0, 0, 0, 0, 0, 0, 0, 0, 0

We now consider a pp-wave metric.

In[12]:= MetricppW ^ Functionu, v, x, y,

2 Hu, x, y 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

;

This is the Jacobi operator of a pp-wave metric with respect to an arbitrary vector a1, a2, a3, a4.
In[13]:= JacobiOperatorppWu, v, x, y  Array, 4
Out[13]= 0, 0, 0, 0, 4 4 H0,0,2u, x, y  3 H0,1,1u, x, y  3 4 H0,1,1u, x, y  3 H0,2,0u

0, 1 4 H0,1,1u, x, y  1 3 H0,2,0u, x, y, 1 4 H0,0,2u, x, y  1 3 H0,1,1u, x, y
1 4 H0,1,1u, x, y  3 H0,2,0u, x, y, 0, 12 H0,2,0u, x, y, 12 H0,1,1u, x, y, 1 

This is the Ricci operator of a pp-wave.

In[14]:= RicciOperatorppWu, v, x, y  Simplify

Out[14]= 0, 0, 0, 0, H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

The vectors ∑3 and ∑4 are orthonormal:

In[15]:= 0, 0, 1, 0.MetricppWu, v, x, y.0, 0, 1, 0  Simplify

Out[15]= 1

In[16]:= 0, 0, 0, 1.MetricppWu, v, x, y.0, 0, 0, 1  Simplify

Out[16]= 1

In[17]:= 0, 0, 1, 0.MetricppWu, v, x, y.0, 0, 0, 1  Simplify

Out[17]= 0

This is the skew-symmetric curvature operator with respect to the previous vectors.

In[18]:= SkewSymmetricCurvatureOperatorppWu, v, x, y0, 0, 1, 0, 0, 0, 1, 0  Simplify

Out[18]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Manifolds of constant sectional curvature are symmetric, so their Szabo operator must vanish

In[19]:= SzaboOperatorppWu, v, x, y  Array, 4  Simplify

Out[19]= 0, 0, 0, 0,

43 H0,0,3u, x, y  3 3 42 H0,1,2u, x, y  3 32 4 H0,2,1u, x, y  33 H0,3,0u, x, y  1

0, 1 42 H0,1,2u, x, y  2 3 4 H0,2,1u, x, y  32 H0,3,0u, x, y  1 4 H1,1,1u, x, y
1 42 H0,0,3u, x, y  2 3 4 H0,1,2u, x, y  32 H0,2,1u, x, y  1 4 H1,0,2u, x, y  

1 42 H0,1,2u, x, y  2 3 4 H0,2,1u, x, y  32 H0,3,0u, x, y  1 4 H1,1,1u, x, y 
12 4 H0,2,1u, x, y  3 H0,3,0u, x, y  1 H1,2,0u, x, y, 12 4 H0,1,2u, x, y  3 H

1 42 H0,0,3u, x, y  2 3 4 H0,1,2u, x, y  32 H0,2,1u, x, y  1 4 H1,0,2u, x, y 
12 4 H0,1,2u, x, y  3 H0,2,1u, x, y  1 H1,1,1u, x, y, 12 4 H0,0,3u, x, y  3 H
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Geometric objects in a Riemannian manifold

This package is an extension of the previous packages: RiemannianGeometry`Curvature`, RiemannianGeometry`Dif-

ferentialOperators` and CurvatureOperators`CurvatureOperators`.

The purpose of this package is to include these other packages to allow the user to handle all the functionally provided

them,  as  well  as  to  extend  these  packages  by  introducing  new  functions  here.  RiemannianGeometry`GeometricOb-

jects` is intended to be a starting point for those user trying to write more functions for handling pseudo-Riemannian

manifolds.  Those  new  functions  must  be  included  here  and  tested  thoroughly  before  being  included  in  the  other

packages. This will ensure a clean structure, a trustful behaviour and the possibility to use write other functions for the

set  of  packages  RiemannianGeometry`  without  having  to  pay  attention  to  malfunction  due  to  the  use  of  different

versions.

New functions must be added and documented properly using the standards of Mathematica packages to GeometricOb-

jects.nb in the root directory of this set of packages. The functons must be documented as well in this file, located at

Documentation/English/GeometricObjects.nb.

Please, include your new functons in what follows.

SuperRicciTensorMm calculates the super Ricci tensor of the manifold M at m.

The super Ricci tensor.

GaussianCurvature[S][x, y] calculates the Gaussian curvature of the surface S at x,y.
GaussMapSx, y calculates the Gaussian map of the surface S at x,y.

MeanCurvatureSx, y calculates the mean curvature of the surface S at x,y.

Some objects on surfaces.

Please, include here an example of use.

First, we load the package

In[1]:= Needs"RiemannianGeometry`GeometricObjects`";

Here it is the definition of a torus.

In[2]:= torusR_, r_u_, v_  R  r Cosu Cosv, R  r Cosu Sinv, r Sinu;

The super-Ricci tensor of a surface is always a multiple of the metric:

In[3]:= SuperRicciTensortorusR, ru, v  Simplify

Out[3]=  2 Cosu2

R  r Cosu2
, 0, 0,

2 Cosu2

r2


The Gaussian curvature is essentially the scalar curvature

In[4]:= GaussianCurvaturetorusR, ru, v  Simplify

Out[4]=
Cosu

r R  r2 Cosu
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This plots a torus and colours it by its Gaussian curvature (using the "TemperatureMap" colour gradient).

In[5]:= Withsc  EvaluateSimplifyGaussianCurvaturetorus2, 11, 2 &,
ParametricPlot3Dtorus2, 1u, v, u, 0, 2 Pi, v, 0, 2 Pi, ColorFunction 

GlowColorData"TemperatureMap"0.5  ArcTan2.` sc4, 5Pi &, ColorFunctionScaling  False

Out[5]=

This is the mean curvature of a torus

In[6]:= MeanCurvaturetorusR, ru, v  Simplify  PowerExpand

Out[6]=
R  2 r Cosu

2 r R  r Cosu

This plots a torus and colours it by its mean curvature (using the "TemperatureMap" colour gradient).

In[7]:= Withsc  EvaluateSimplifyMeanCurvaturetorus2, 11, 2 &,
ParametricPlot3Dtorus2, 1u, v, u, 0, 2 Pi, v, 0, 2 Pi, ColorFunction 

GlowColorData"TemperatureMap"0.5  ArcTan2.` sc4, 5Pi &, ColorFunctionScaling  False

Out[7]=

This is the Gauss map of a torus

In[8]:= GaussMaptorusR, ru, v  Simplify  PowerExpand

Out[8]= Cosu Cosv, Cosu Sinv, Sinu

This is a graphic proof that the Moebius strip is non-orientable:

In[9]:= moebiusStripa_u_, v_  a Cosu  v Cosu2 Cosu, Sinu  v Cosu2 Sinu, v Sinu2;
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In[10]:= ShowGraphics3DThick, LineTableNmoebiusStrip3u, 0,

NmoebiusStrip3u, 0  GaussMapmoebiusStrip3u, 0, u, 0, 2 ,
2 

24
,

ParametricPlot3DmoebiusStrip3u, v, u, 0, 2 , v, 0.3`, 0.3`, PlotPoints  25, 7,

Boxed  False, Axes  False

Out[10]=
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Notation of geometric objects in a Riemannian manifold

This is a package that introduces some notation for the geometric objects described so far. It should be used with care

since  the  symbols  introduced  here  are  quite  common  and  thus  they  are  very  like  to  produce  clashes  with  other

packages.

Notation Name of function
 ChristoffelSymbols

Rc CovariantCurvatureTensor
R CurvatureTensor
 RicciTensor

 ScalarCurvature
K SectionalCurvature
W WeylTensor

ı TensorCovariantDerivative
Û TensorLaplacian

grad CovariantGradient

div CovariantDivergence

d ExteriorDerivative
L TensorLieDerivative

List of symbols used for the usual geometric objects in a pseudo-Riemannian manifold.

This packages includes the functionallity provided by RiemannianGeometry`Curvature`, RiemannianGeometry`Differen-

tialOperators`,  RiemannianGeometry`CurvatureOperators`  and  RiemannianGeometry`GeometricObjects`.  Its  imple-

mentation is very simple: it just associates the symbols on left-hand side of the above table with the functions on the

right-hand  side.  The  user  of  this  set  of  packages  may  modify  this  file  at  convenience  to  provide  shortcuts  to  any

function.

The standard version of this package also contains a palette to use the above notation. This palette is opened automati-

cally when loaded. You can also obtain it by clicking here.

First, we load the package

In[1]:= Needs"RiemannianGeometry`Notation`";

We consider a pp-wave:

In[2]:= MetricppW ^ Functionu, v, x, y,

2 Hu, x, y 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

;

These are the Christoffel symbols:

In[3]:= ppWu, v, x, y
Out[3]= 0, H1,0,0u, x, y, H0,1,0u, x, y, H0,0,1u, x, y, 0, 0, 0, 0, 0, H0,1,0u, x, y, 0, 0, 0, H0,0,1

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,1,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

This is the (0,4) curvature tensor.

In[4]:= RcppWu, v, x, y
Out[4]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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This is the (1,3) curvature tensor.

In[5]:= RppWu, v, x, y
Out[5]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, 0, H0,2,0u, x, y, 0, 0, 0, H0,1,1u, x, y
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,1,1u, x, y, H0,0,2u, x, y, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

The Ricci tensor.

In[6]:= ppWu, v, x, y
Out[6]= H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

The scalar curvature.

In[7]:= ppWu, v, x, y
Out[7]= 0

The sectional curvature with respect to an arbitrary plane is rather complicated in thsi case.

In[8]:= KppWu, v, x, yArray, 4, Array, 4
Out[8]= 4 1 4 1 H0,0,2u, x, y  3 1 H0,1,1u, x, y  1 4 H0,0,2u, x, y  3 H0,1,1u, x

1 4 4 1 H0,0,2u, x, y  3 1 H0,1,1u, x, y  1 4 H0,0,2u, x, y  3 H0,1,1u

2 Hu, x, y 1  2 1  1 2  3 3  4 42  1 2 Hu, x, y 1  2  1

This is the (0,4) Weyl tensor.

In[9]:= WppWu, v, x, y
Out[9]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,
1

2
H0,0,2u, x, y  H0,2,0u, x, y  H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0, H0,2,0u

0, 0, H0,1,1u, x, y, H0,0,2u, x, y  1

2
H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, H0,1,1u

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,2,0u, x, y  1

2
H0,0,2u, x, y  H0,2,0u, x, y, H0,1,1u, x, y, 0, 0, 0, 0,  1

2
H0,0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, H0,1,1u, x, y, H0,0,2u, x, y 
1

2
H0,0,2u, x, y  H0,2,0u, x, y, 0, 0, 0, 0, H0,1,1u,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

This the covariant derivative of the Ricci tensor.

In[10]:= ıppWppWu, v, x, y
Out[10]= H1,0,2u, x, y  H1,2,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

H0,1,2u, x, y  H0,3,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H0,0,3u, x, y  H

And this is the covariant Laplacian of the Ricci tensor.

In[11]:= ÛppWppWu, v, x, y
Out[11]= H0,0,4u, x, y  2 H0,2,2u, x, y  H0,4,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

We define a function for the following calculations.

In[12]:= fu_, v_, x_, y_  u  v2;
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This is its gradient:

In[13]:= gradppWfu, v, x, y
Out[13]= 2 v, 1  4 v Hu, x, y, 0, 0

This is the Laplacian

In[14]:= ÛppWfu, v, x, y
Out[14]= 4 Hu, x, y

The divergence of the gradient is the Laplacian

In[15]:= divppWgradppWfu, v, x, y
Out[15]= 4 Hu, x, y

This is the exterior derivative of the function f defined above.

In[16]:= dfu, v, x, y
Out[16]= 1, 2 v, 0, 0

Of course d2 = 0.

In[17]:= ddfu, v, x, y
Out[17]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

This is the Lie derivative of the metric with respect to the vector field ∑1:

In[18]:= L1, 0, 0, 0 &, MetricppWu, v, x, y
Out[18]= 2 H1,0,0u, x, y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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