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1 Introduction

An almost Hermitian structure on a smooth manifold M consists of an almost complex structure J
and a metric g satisfying the compatibility condition g(JX, JY ) = g(X, Y ). If the the almost complex
structure J is integrable (i.e. comes from a complex structure on M), the structure (g, J) is called
Hermitian. Any almost Hermitian structure (g, J) determines a non-degenerate 2-form Ω(X, Y ) =
g(JX, Y ). If Ω is closed (i.e., it is a symplectic form) the structure is said to be almost Kähler and
(g, J) is called Kähler if, in addition, the almost complex structure J is integrable.

A basic problem in almost Hermitian geometry is to relate properties of the structure (g, J) to
the curvature of (M, g). For example, the well-known Goldberg conjecture [14] claims that a compact
almost Kähler manifold is Kähler provided the metric g is Einstein. This conjecture was proved by
K. Sekigawa [26] in the case of non-negative scalar curvature but it is still far from being solved in the
negative case. We refer to the survey [2] for an update on the integrability of almost Kähler structures.
Another integrability result related to the curvature properties of a manifold is the Riemannian version
of the well-known Goldberg-Sacks theorem in General Relativity. It says that an oriented Einstein
4-manifold admits locally a compatible complex structure if and only if the spectrum of the positive
Weyl tensor is degenerate [23, 25]. We refer to [3] for generalizations of this result in the Riemannian
setting and to [1] for analogous results for arbitrary pseudo-Riemannian 4-manifolds.

One should note that some integrability results for almost Hermitian manifolds are not true in the
case of indefinite metrics. For example, it is shown in [8] that, in contrast to the Riemannian case,
there are local examples of flat non-Kähler almost Kähler metrics of signature (2, 2). Moreover, an
indefinite Ricci flat strictly almost Kähler metric on 8-dimensional torus has been recently reported
in [22].

The purpose of this paper is to provide a large family of non-Kähler isotropic Kähler Hermitian
structures having interesting curvature properties. To this end we consider Walker metrics [27] on
4-manifolds together with the so-called proper almost complex structure [21] and obtain a local de-
scription of those metrics which are Hermitian or locally conformally Kähler and self-dual, ∗-Einstein
or Einstein. We also construct examples of indefinite Einstein strictly almost Hermitian structures
showing that an integrability result in [19] does not hold for metrics of signature (2, 2).

2 Preliminaries

Throughout this paper we use the following convention for the curvature tensor R(X,Y ) = ∇[X,Y ] −
[∇X ,∇Y ], where ∇ denotes the Levi-Civita connection. ρ(X, Y ) = trace {U Ã R(X,U)Y } and
τ = trace ρ are the Ricci tensor and the scalar curvature, respectively. As usual, (M, g) is said to be
Einstein if ρ = τ

ng, n = dimM , in which case the scalar curvature is necessarily constant.
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Let M be an oriented 4-dimensional manifold with a neutral metric g, i.e. a metric of signature
(2, 2). The metric g induces an inner product on the bundle Λ2 of bivectors by

〈X1 ∧X2, X3 ∧X4〉 = g(X1, X3)g(X2, X4)− g(X1, X4)g(X2, X3),

X1, ..., X4 ∈ TM . Let e1, . . . , e4 be a local oriented orthonormal frame of TM with ||e1||2 = ||e2||2 = 1,
||e3||2 = ||e4||2 = −1. As in the Riemannian case, the Hodge star operator ∗ : Λ2 → Λ2 is an involution
given by

∗(e1 ∧ e2) = e3 ∧ e4, ∗(e1 ∧ e3) = e2 ∧ e4, ∗(e1 ∧ e4) = −e2 ∧ e3.

Denote by Λ± the subbundles of Λ2 determined by the eigenvalues ±1 of the Hodge star operator.
Set

s1 = 1√
2
(e1 ∧ e2 − e3 ∧ e4), s̄1 = 1√

2
(e1 ∧ e2 + e3 ∧ e4),

s2 = 1√
2
(e1 ∧ e3 − e2 ∧ e4), s̄2 = 1√

2
(e1 ∧ e3 + e2 ∧ e4),

s3 = 1√
2
(e1 ∧ e4 + e2 ∧ e3), s̄3 = 1√

2
(e1 ∧ e4 − e2 ∧ e3).

(1)

Then {s1, s2, s3} and {s̄1, s̄2, s̄3} are local oriented orthonormal frames of Λ− and Λ+, respectively,
with ||s1||2 = ||s̄1||2 = 1, ||s2||2 = ||s̄2||2 = ||s3||2 = ||s̄3||2 = −1.

Further we shall often identify Λ2 with the bundle of skew-symmetric endomorphisms of TM by
the correspondence that assigns to each σ ∈ Λ2 the endomorphism Kσ on TpM , p = π(σ), defined by

g(KσX, Y ) = g(σ,X ∧ Y ); X, Y ∈ TpM. (2)

Considering the Riemann curvature tensor as an endomorphism of Λ2, we have the following
SO(2, 2)-decomposition

R ≡ τ

12
IdΛ2 + ρ0 + W+ + W− : Λ2 → Λ2, (3)

where τ is the scalar curvature, ρ0 denotes the traceless Ricci tensor, W = W+ + W− is the Weyl
conformal curvature tensor and W± = 1

2 (W ± ∗W ). Recall that a pseudo-Riemannian 4-manifold is
called self-dual (resp., anti-self-dual) if W− = 0 (resp., W+ = 0).

A Walker manifold is a triple (M, g, D) where M is an n-dimensional manifold, g an indefinite
metric and D an r-dimensional parallel null distribution. Of special interest are those manifolds
admitting a field of null planes of maximal dimension (r = n

2 ). Since the dimension of a null plane is
r ≤ n

2 , the lowest possible case of a Walker metric is that of (+ +−−)-manifolds admitting a field of
parallel null two-planes.

The Walker metrics appear in several specific pseudo-Riemannian structures like 2-step nilpotent
Lie groups with degenerate center, para-Kähler and hyper-symplectic structures, hypersurfaces with
nilpotent shape operator and some four-dimensional Osserman manifolds. Indecomposable metrics of
neutral signature (playing a distinguished role in investigating holonomy of indefinite metrics) are also
equipped with a Walker structure. This clearly motivates the study of pseudo-Riemannian manifolds
carrying a parallel degenerate plane field (see [8] and the references therein for more information).

For our purposes it is convenient to use special coordinate systems associated to any Walker metric.
Recall that, by a result of Walker [27], for every Walker metric g on a 4-manifold M , there exist local
coordinates (x, y, z, t) around any point of M such that the matrix of g in these coordinates has the
following form

g(x,y,z,t) =




0 0 1 0
0 0 0 1
1 0 a c
0 1 c b


 (4)

for some functions a, b and c depending on the coordinates (x, y, z, t). As a matter of notation,
throughout this work we denote by ∂i the coordinate tangent vectors, i = x, . . . , t. Also, hi means
partial derivative ∂h

∂i , i = x, . . . , t, for any function h(x, y, z, t). Expressions for the Levi-Civita
connection, curvature tensor and Ricci tensor of a Walker metric (4) are available at [8, 9, 21]. We
omit the details for the sake of brevity.
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3 Proper almost hyper-parahermitian structures

An almost hyper-paracomplex structure on a 4n-dimensional manifold M is a triple (J1, J2, J3), where
J2, J3 are almost paracomplex structures (cf. [16]) and J1 is an almost complex structure, satisfying
the paraquaternionic identities

J2
1 = −J2

2 = −J2
3 = −1, J1J2 = −J2J1 = J3.

A hyper-parahermitian metric is a pseudo-Riemannian metric which is compatible with the (almost)
hyper-paracomplex structure in the sense that the metric g is skew-symmetric with respect to each
Ji, i = 1, 2, 3, i.e.

g(J1 · , J1 · ) = −g(J2 · , J2 · ) = −g(J3 · , J3 · ) = g( · , · ).
Such a structure is called hyper-parahermitian if all the structures Ji are integrable. If each Ji, i =
1, 2, 3, is parallel with respect to the Levi-Civita connection or, equivalently, the three Kähler forms
Ωi(X, Y ) = g(JiX, Y ) are closed, then the manifold is called hyper-symplectic [15] or hyper-parakähler-
ian. In this case J2 and J3 are parakähler structures and it follows that g is a Walker metric (see
[17, 18] for more information).

If (g, J1, J2, J3) is an almost hyper-parahermitian structure, then the bivectors corresponding
via the metric to the two-forms Ω1, Ω2, Ω3 define an orthonormal basis of Λ2

−, and conversely, any
orthonormal basis of Λ2

− defines an almost hyper-parahermitian structure.
Let g be a Walker metric on R4 having the form (4) Then an orthonormal frame of TR4 can be

specialized by using the canonical coordinates as follows:

e1 = 1−a
2 ∂x + ∂z, e2 = 1−b

2 ∂y + ∂t − c∂x,

e3 = − 1+a
2 ∂x + ∂z, e4 = − 1+b

2 ∂y + ∂t − c∂x.
(5)

Let {s1, s2, s3, s̄1, s̄2, s̄3} be the frame of Λ2 = Λ− ⊕ Λ+ defined by means of {e1, e2, e3, e4} via
(1). Then

s1 = 1√
2
(−a+b

2 ∂x ∧ ∂y + ∂x ∧ ∂t − ∂y ∧ ∂z),

s2 = 1√
2
(∂x ∧ ∂z − ∂y ∧ ∂t − c∂x ∧ ∂y),

s3 = 1√
2
(a−b

2 ∂x ∧ ∂y + ∂x ∧ ∂t + ∂y ∧ ∂z),

(6)

and

s̄1 = 1√
2
(1+ab

2 ∂x ∧ ∂y + 2c∂x ∧ ∂z − a∂x ∧ ∂t + b∂y ∧ ∂z + 2∂z ∧ ∂t),

s̄2 = 1√
2
(c∂x ∧ ∂y + ∂x ∧ ∂z + ∂y ∧ ∂t),

s̄3 = 1√
2
(ab−1

2 ∂x ∧ ∂y + 2c∂x ∧ ∂z − a∂x ∧ ∂t + b∂y ∧ ∂z + 2∂z ∧ ∂t).

(7)

The bivectors s1, s2, s3 define via (2) endomorphisms J1, J2, J3 of TR4 such that

J2
1 = −1, J2

2 = J2
3 = 1, J1J2 = −J2J1 = J3.

We shall say that the almost hyper-paracomplex structure J1, J2, J3 defined by means of s1, s2, s3

is proper. Note that J1 is an isometry of the Walker metric g while J2, J3 are anti-isometries, i.e.
J1, J2, J3 is an almost hyper-parahermitian structure.

Recall that an indefinite almost Hermitian (resp., almost parahermitian) structure (g, J) is said to
be isotropic Kähler (resp., parakähler) if ‖∇J‖2 = 0. Isotropic Kähler structures were first investigated
in [13] in dimension four and subsequently in [4] in dimension six. It has been shown by the authors in
[8] that any proper almost Hermitian structure is isotropic Kähler. Moreover, we have the following:

Theorem 1 Any proper almost hyper-parahermitian structure (g, J1, J2, J3) on a Walker 4-manifold
satisfies ‖∇Ji‖2 = 0, ‖dΩi‖2 = 0, ‖δΩi‖2 = 0 and ‖NJi‖2 = 0, where Ωi denotes the fundamental
2-form and NJi the Nijenhuis tensor of Ji, i = 1, 2, 3.
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Proof. From the expressions (4) and (6) one gets the description in local coordinates of the structures
Ji (i = 1, 2, 3) as follows:

J1 =




0 −1 −c a−b
2

1 0 a−b
2 c

0 0 0 −1
0 0 1 0


, J2 =




1 0 a 0
0 −1 0 −b
0 0 −1 0
0 0 0 1


, J3 =




0 1 c a+b
2

1 0 a+b
2 c

0 0 0 −1
0 0 −1 0


.

Now the result follows after some calculations as in [8]. ¤

Theorem 2 A proper almost hyper-parahermitian structure J1, J2, J3 is hyper-parahermitian (i.e.
J1, J2, J3 are integrable) if and only if the functions a, b and c in (4) have the forms

a = x2B(z, t) + xP (z, t) + ξ(z, t),

b = y2B(z, t) + yT (z, t) + η(z, t),

c = xyB(z, t) + 1
2xT (z, t) + 1

2yP (z, t) + γ(z, t),

(8)

where the capital, calligraphic and Greek letters stand for arbitrary smooth functions depending only
on the coordinates (z, t).

Proof. Let Ωi(X,Y ) = g(JiX, Y ) be the fundamental 2-form of (g, Ji), i = 1, 2, 3. Then we have

Ω1 = dx ∧ dt− dy ∧ dz + a+b
2 dz ∧ dt,

Ω2 = −dx ∧ dz + dy ∧ dt + cdz ∧ dt,

Ω3 = −dx ∧ dt− dy ∧ dz − a−b
2 dz ∧ dt.

The differential of Ωi has the form dΩi = ωi ∧ Ωi, i = 1, 2, 3, where the Lee forms ωi are given by

ω1 = − 1
2 (a + b)xdz − 1

2 (a + b)ydt,

ω2 = −cydz − cxdt,

ω3 = − 1
2 (a− b)xdz + 1

2 (a− b)ydt.

(9)

Now the result follows from (9) and the well-known theorem [5, 17] that an almost hyper-parahermitian
structure is hyper-parahermitian if and only if the three Lee forms coincide. ¤

Remark 1 Observe that all metrics (8) are self-dual (see (14)) and moreover, the Ricci operator has
a unique eigenvalue λ = 3

2B(z, t), which is a double root of its minimal polynomial.

Formulas (9) imply also the following

Theorem 3 A proper almost hyper-parahermitian structure J1, J2, J3 is hyper-parakählerian if and
only if the functions a, b and c do not depend on x and y.

It is well-known [18] that, as in the definite case [5], any hyper-parakählerian structure is Ricci
flat. Neutral Ricci flat non-flat metrics on complex tori and primary Kodaira surfaces have been
constructed in [24]. These metrics are induced by proper hyper-parakählerian Walker structures on
R4. Further observe that proper hyper-parakähler structures correspond to Walker metrics admitting
two orthogonal parallel null vector fields {∂x, ∂y}.

4 Proper Hermitian Walker structures

The existence of a metric of signature (+ + −−) with structure group SO0(2, 2) is equivalent to the
existence of a pair of commuting almost complex structures [20], and moreover, any such pseudo-
Riemannian metric may be viewed as an indefinite almost Hermitian metric for a suitable almost
complex structure. Such almost complex structures are not uniquely determined. One such structure
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associated with a four-dimensional Walker metric in the form (4) was given in [21] and called the
proper almost complex structure. Our purpose here is to investigate curvature properties of Walker
metrics by considering the associated proper structure. It turns out that this structure exhibits a very
rich behavior providing examples, as we mentioned above, of indefinite Ricci flat (non flat) Kähler
structures on tori and primary Kodaira surfaces [24] as well as flat non Kähler almost Kähler structures
[8]. This is in a sharp contrast to the Riemannian case and it is important to recognize that such
an exceptional behavior comes from the fact that any proper almost Hermitian structure is isotropic
Kähler but not necessarily Kähler.

The proper almost complex structure associated with the metric (4) coincides with the structure
J1 defined in Section 3 and is given by

J∂x = ∂y, J∂z = −c∂x + 1
2 (a− b)∂y + ∂t,

J∂y = −∂x, J∂t = 1
2 (a− b)∂x + c∂y − ∂z.

(10)

According to [21], the proper almost Hermitian structure (g, J) is :

• almost Kähler if and only if

ax + bx = 0, ay + by = 0. (11)

• Hermitian if and only if

ax − bx = 2cy, ay − by = −2cx. (12)

• Kähler if and only if
ax = −bx = cy, ay = −by = −cx. (13)

Self-dual Walker metrics have been previously investigated in [7, 9] where it has been shown that
a metric (4) is self-dual if and only if the functions a, b, c have the forms

a(x, y, z, t) = x3A + x2B + x2yC + xyD + xP + yQ + ξ,

b(x, y, z, t) = y3C + y2E + xy2A + xyF + xS + yT + η,

c(x, y, z, t) = 1
2x2F + 1

2y2D + x2yA + xy2C + 1
2xy(B + E) + xU + yV + γ,

(14)

where the capital, calligraphic and Greek letters stand for arbitrary smooth functions depending only
on the coordinates (z, t).

Now it follows from (14) using (12) and (13) that

Theorem 4 A proper Hermitian structure (g, J) on a Walker 4-manifold is self-dual if and only if

a = x2B + xyD + xP + yQ + ξ,

b = y2B− xyD + xS + yT + η,

c = 1
2 (y2 − x2)D + xyB− 1

2x(Q− T ) + 1
2y(P − S) + γ,

(15)

where all capital, calligraphic and Greek letters are arbitrary smooth functions depending only on the
coordinates (z, t).

Remark 2 Note that the Ricci operator of any Walker metric (15) has complex eigenvalues λ =
3
2B±√−1D of multiplicity two.

An indefinite Hermitian manifold (M, g, J) is called locally conformally Kähler if for any point
p ∈ M there exists an open neighborhood U and a function f : U → R such that (U, e−fg, J) is an
indefinite Kähler manifold [10].
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Theorem 5 The structure (g, J) is locally conformally Kähler if and only if the functions a, b and c
have the form

a = xP (z, t) + yQ(z, t) + A(x, y, z, t)

b = xP (z, t) + yQ(z, t) + η(z, t)−A(x, y, z, t)

c = B(x, y, z, t),

(16)

where P , Q and η are smooth functions depending only on the coordinates (z, t), the function A + iB
is holomorphic with respect to w = x + iy and Pt = Qz. Moreover, (g, J) is Kähler if and only if
P = Q = 0.

Proof. Recall that a Hermitian structure (g, J) is locally conformally Kähler if and only if the Lee
form ω defined by dΩ = ω∧Ω is a closed 1-form [11]. Now, observe that the Lee form ω of the proper
almost Hermitian structure (g, J) is given by

ω = −1
2
(a + b)x dz − 1

2
(a + b)y dt (17)

(see the first equation in (9)). Therefore, dω = 0 if and only if

(a + b)xx = (a + b)xy = (a + b)yy = 0, (a + b)xt = (a + b)yz. (18)

In particular, the function a + b is linear with respect to x and y, i.e., it has the form

a + b = 2xP (z, t) + 2yQ(z, t) + η(z, t), (19)

where P , Q and η are smooth functions. Moreover, since the almost complex structure J is integrable,
we have by (12) and (19) that

(a− xP (z, t)− yQ(z, t))x = cy, (a− xP (z, t)− yQ(z, t))y = −cx,

which are the Cauchy-Riemann equations for the functions A = a−xP (z, t)−yQ(z, t) and B = c with
respect to the variables x and y. Thus the function A + iB is holomorphic with respect to w = x + iy
and a, b, c have the form (16). Note also that the equation (a + b)xt = (a + b)yz implies Pt = Qz.
Finally, the Kähler condition follows from (13). ¤

Remark 3 The metrically equivalent vector field B of the Lee form ω is called the Lee vector field
and JB is usually named as the anti-Lee vector field. A special class of locally conformally Kähler
structures, the so-called Vaisman manifolds, corresponds to the case of parallel Lee form. Note that
although proper locally conformally Kähler structures are not necessarily Vaisman, the distribution
generated by B and JB is parallel since B = −P (z, t)∂x − Q(z, t)∂y. Further observe that many of
the striking differences between the positive definite locally conformally Kähler structures and the
indefinite counterpart lie on the fact that the distribution {B, JB} may be degenerate, which indeed
holds in the case under consideration (see [10]).

Theorem 6 Let (g, J) be a proper Hermitian structure with nowhere vanishing Lee form ω. Then ω
is parallel if and only if the functions a, b, c have the forms

a = −2x
PPz + QQz

P 2 + Q2
+ 2y

PQz −QPz

P 2 + Q2
+ ξ

b = 2x
QPt − PQt

P 2 + Q2
− 2y

PPt + QQt

P 2 + Q2
+ η

c = x
Q(Pz −Qt)− 2PQz

P 2 + Q2
− y

P (Pz −Qt) + 2QQz

P 2 + Q2
+ γ,

(20)

where P , Q, ξ, η, γ are smooth functions of (z, t) and

Pt −Qz = 0, Pz + Qt = −(P 2 + Q2). (21)
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Proof. The Levi-Civita connection of a Walker metric (4) is determined by (see for example [9]):

∇∂x
∂z = 1

2ax∂x + 1
2cx∂y, ∇∂x

∂t = 1
2cx∂x + 1

2bx∂y,

∇∂y
∂z = 1

2ay∂x + 1
2cy∂y, ∇∂y

∂t = 1
2cy∂x + 1

2by∂y,

∇∂z
∂z = 1

2 (aax + cay + az)∂x + 1
2 (cax + bay − at + 2cz)∂y − ax

2 ∂z − ay

2 ∂t,

∇∂z∂t = 1
2 (at + acx + ccy)∂x + 1

2 (bz + ccx + bcy)∂y − cx

2 ∂z − cy

2 ∂t,

∇∂t∂t = 1
2 (abx + cby − bz + 2ct)∂x + 1

2 (cbx + bby + bt)∂y − bx

2 ∂z − by

2 ∂t.

(22)

Straightforward computations making use of (17) and (22) show that the Lee form ω is parallel if and
only if the structure (g, J) is locally conformally Kähler and the functions a, b, c satisfy the following
equations

ax(a + b)x + ay(a + b)y = −2(a + b)xz, bx(a + b)x + by(a + b)y = −2(a + b)yt,

cx(a + b)x + cy(a + b)y = −2(a + b)yz = −2(a + b)xt.

In view of Theorem 5, the latter conditions are equivalent to the requirement that the functions A

and B have the form
A = αx + βy + ξ, B = −βx + αy + γ,

where α, β, ξ, γ are functions of (z, t),

α = −P (Pz −Qt) + 2QQz

P 2 + Q2
, β = −Q(Pz −Qt)− 2PQz

P 2 + Q2

and P , Q satisfy (21). Now the result follows from (16).

Example. A particular solution of (21) is given by

P =
p

pz + qt + r
and Q =

q

pz + qt + r
,

where p, q, r are constants and p2 + q2 6= 0. In this case

a =
2px

pz + qt + r
+ ξ, b =

2qy

pz + qt + r
+ η, c =

qx + py

pz + qt + r
+ γ.

For the particular case of self-dual Walker metrics one has the following:

Theorem 7 A proper Hermitian structure (g, J) on a Walker 4-manifold is locally conformally Kähler
self-dual if and only if

a = xyD + xP + yQ + ξ,

b = −xyD + xS + yT + η,

c = 1
2 (y2 − x2)D− 1

2x(Q− T ) + 1
2y(P − S) + γ,

(23)

where all calligraphic and Greek letters are arbitrary smooth functions depending only on the coordi-
nates (z, t) while capital letters depend only on the coordinates (z, t) and satisfy

(Q + T )z = (P + S)t. (24)

Proof. Considering the characterization (18), the result is easily obtained imposing (a + b)xx = 0
and (a + b)xt = (a + b)yz on (15). ¤

Corollary 8 A proper Hermitian structure (g, J) is Kähler self-dual if and only if

a = xyD + xP + yQ + ξ,

b = −xyD− xP − yQ + η,

c = 1
2 (y2 − x2)D− xQ + yP + γ.

(25)
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5 ∗-Einstein proper Hermitian structures

Associated to an almost Hermitian structure (g, J) we consider the ∗–Ricci tensor defined by ρ∗(X, Y )
= trace {U Ã − 1

2JR(X, JY )U} and the ∗-scalar curvature τ∗ = trace ρ∗. Note that both ρ and ρ∗

coincide in the Kähler setting but ρ∗ is not symmetric in general. An n-dimensional almost Hermitian
manifold (M, g, J) is called weakly ∗–Einstein if ρ∗ = τ∗

n g and is said to be ∗–Einstein if, in addition,
τ∗ is constant.

Theorem 9 The structure (g, J) is Hermitian and ∗-Einstein if and only if the functions a, b, c have
one of the following three forms:

a = κ(x2 − y2) + xP + yQ + ξ,

b = κ(y2 − x2)− xP − yQ− ξ +
1
κ

(Pz −Qt),

c = 2κxy − xQ + yP + γ,

(26)

or

a = κx2 + xP + yQ + ξ,

b = κy2 + xS + yT − ξ − 1
4κ
{4(3Sz − Pz + 3Qt − Tt)− (P + S)2 − (Q + T )2},

c = κxy − 1
2
x(Q− T ) +

1
2
y(P − S) + γ,

(27)

or

a = xP + yQ + ξ,

b = xS + yT + η,

c = −1
2
x(Q− T ) +

1
2
y(P − S) + γ,

(28)

where in the last case
4(3Sz − Pz + 3Qt − Tt) = (P + S)2 + (Q + T )2. (29)

Here κ is a non-zero constant and capital and Greek letters are smooth functions depending only
on (z, t). In the first case τ∗ = 8κ, in the second one τ∗ = 2κ and in the third case τ∗ = 0.

Proof. The ∗-Einstein equation (ρ∗0 = ρ∗ − τ∗
4 g = 0) for a proper almost Hermitian structure (g, J)

defined by (4) and (10) can be written as a system of PDEs as follows (we refer to [9], [21] for the
curvature formulas to determine the ∗-Ricci tensor):

(ρ∗0)xz = −(ρ∗0)yt = −(ρ∗0)zx = (ρ∗0)ty =
1
4

(ayy − bxx) = 0,

(ρ∗0)xt = −(ρ∗0)zy = −1
2

(axy − cxx) = 0,

(ρ∗0)yz = −(ρ∗0)tx = −1
2

(bxy − cyy) = 0,

(ρ∗0)zz =
1
4
{
axbx + ay(by − cx) + bycx + cy(ax − bx)− c2

x − c2
y + 2c(axy − cxx)

+ bayy − 2ayt + abxx − 2bxz − (a + b)cxy + 2cxt + 2cyz

}
= 0, (30)

(ρ∗0)zt = −1
4
{(a− b)(axy − cxx) + c(ayy − bxx)} = 0,

(ρ∗0)tz =
1
4
{(a− b)(bxy − cyy) + c(ayy − bxx)} = 0,

(ρ∗0)tt =
1
4
{
axbx + ay(by − cx) + bycx + cy(ax − bx)− c2

x − c2
y + 2c(bxy − cyy)

+ bayy − 2ayt + abxx − 2bxz − (a + b)cxy + 2cxt + 2cyz

}
= 0.
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Note that the ∗-scalar curvature is given by

τ∗ = −ayy − bxx + 2 cxy. (31)

If follows from (12) and (30) that (g, J) is Hermitian and weakly ∗-Einstein if and only if

ax − bx = 2cy, ay − by = −2cx, axy = cxx, bxy = cyy, ayy = bxx, (32)

and
axbx + ayby − aycx + bycx + axcy − bxcy − c2

x − c2
y

+ bayy − 2ayt + abxx − 2bxz − (a + b)cxy + 2cxt + 2cyz = 0.
(33)

As an immediate consequence from (32) we get axy = bxy = cxx = cyy = 0 and therefore

a = A(x, z, t) + Ā(y, z, t),

b = B(y, z, t) + B̄(x, z, t),

c = xyC(z, t) + xU(z, t) + yV (z, t) + γ(z, t).

(34)

Now, ayy = bxx in (32) means Āyy(y, z, t) = B̄xx(x, z, t). Hence

Ā(y, z, t) =
1
2
y2D(z, t) + yQ(z, t) + ξ̄(z, t), B̄(x, z, t) =

1
2
x2D(z, t) + xS(z, t) + η̄(z, t), (35)

and ax − bx = 2cy, ay − by = −2cx in (32) lead to

A(x, z, t) = 1
2x2(2C(z, t) + D(z, t)) + x(S(z, t) + 2V (z, t)) + ξ̃(z, t),

B(y, z, t) = 1
2y2(2C(z, t) + D(z, t)) + y(Q(z, t) + 2U(z, t)) + η̃(z, t).

(36)

Collecting together (34), (35), (36) and setting 2L = 2C + D, M = 1
2D, P = S + 2V , T = Q + 2U ,

ξ = ξ̄ + ξ̃, η = η̄ + η̃ we obtain

a = x2L + y2M + xP + yQ + ξ,

b = x2M + y2L + xS + yT + η,

c = xy(L−M)− 1
2x(Q− T ) + 1

2y(P − S) + γ.

(37)

Now, using (31), the (constant) ∗-scalar curvature is given by τ∗ = 2(L− 3M), from where

M =
1
6
(2L− τ∗).

Plugging a, b, c in (33) and differentiating twice by x we have

(τ∗)2 − 10τ∗L(z, t) + 16L(z, t)2 = 0.

Thus, L(z, t) = κ must be constant, and

a = x2κ + 1
6y2(2κ− τ∗) + xP + yQ + ξ,

b = 1
6x2(2κ− τ∗) + y2κ + xS + yT + η,

c = 1
6xy(4κ + τ∗)− 1

2x(Q− T ) + 1
2y(P − S) + γ,

(38)

where κ = τ∗
8 6= 0, κ = τ∗

2 6= 0 or κ = τ∗ = 0. The proof finishes analyzing each of these cases by
separate.

Starting with the case κ = τ∗
8 6= 0 and differentiating (33) by x and by y we have

τ∗(P + S) = 0, τ∗(Q + T ) = 0,

which implies S = −P and T = −Q. Thus, (33) reduces to τ∗(ξ + η)− 8(Pz −Qt) = 0, from where

η =
1
κ

(Pz −Qt)− ξ
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and (26) is obtained from (38). Now, if κ = τ∗
2 , (33) reduces to

2τ∗(ξ + η) + 4(3Sz − Pz + 3Qt − Tt) = (Q + T )2 + (P + S)2. (39)

Hence, for τ∗ 6= 0, this last equation lets determine η and (27) is obtained from (38). Otherwise, for
τ∗ = 0, (38) reduces to (28) and (39) to (29), finishing the proof. ¤

Remark 4 Metrics (28) can be viewed as Riemann extensions, i.e. they are locally isometric to the
cotangent bundle (T ∗Σ, gD + π∗φ) of a torsion-free affine surface (Σ, D) equipped with the metric
gD(XC , Y C) = −ι(DXY + DY X), where XC and Y C are complete lifts to the cotangent bundle,
ιZk∂k = xk′Z

k for any vector field Z = Zk∂k, π∗φ is the pull-back on T ∗Σ of a symmetric (0, 2)-
tensor field on Σ, and (xk, xk′) are natural coordinates on T ∗Σ induced by coordinates (xk) on Σ.
(See [6, 28] and the references therein for more information on the geometry of Riemann extensions).

Theorem 10 The structure (g, J) is strictly locally conformally Kähler and ∗-Einstein if and only if
the functions a, b and c have the form

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = xS(z, t) + yT (z, t) + η(z, t),

c = − 1
2x(Q(z, t)− T (z, t)) + 1

2y(P (z, t)− S(z, t)) + γ(z, t),

(40)

where at least one of P + S and Q + T does not vanish everywhere and

4(3Sz − Pz + 3Qt − Tt) = (P + S)2 + (Q + T )2, (Q + T )z = (P + S)t. (41)

Proof. We analyze the three families of metrics obtained in Theorem 9 using the characterization
(18). First note that metrics (26) are Kähler. For metrics (27), (a + b)xx = 2κ 6= 0, and therefore
the locally conformally Kähler condition does not hold. Finally, for metrics (28), one easily checks
that the locally conformally Kähler condition for this family of Hermitian ∗-Einstein Walker metrics is
equivalent to (Q+T )z = (P +S)t. Moreover, these metrics are Kähler if and only if P +S = Q+T = 0
(see (13)), from where the result follows. ¤

Remark 5 A proper almost Hermitian structure (g, J) is Hermitian, self-dual and ∗-Einstein if and
only if the functions a, b and c are given by (27) or (28) in Theorem 9.

Remark 6 If the function c depends only on (z, t), then the structure (g, J) is Hermitian and ∗-
Einstein if and only if the functions a and b have the forms

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = xP (z, t) + yQ(z, t) + η(z, t), (42)

where
2(Pz + Qt) = P 2 + Q2. (43)

A particular solution of (43) is given by

P = − 2
z + f(t)

, Q = − 2
t + g(z)

,

where f(t) and g(z) are smooth functions. According to Corollary 6 the structure (g, J) is Hermitian
and ∗-Einstein, but it is neither Einstein nor locally conformally Kähler in general.
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6 Einstein proper Hermitian structures

The Einstein equation (ρ0 = ρ− τ
4 g = 0) for a Walker metric (4) is a system of PDEs as follows (cf.

[21]):

(ρ0)xz = −(ρ0)yt = (ρ0)zx = −(ρ0)ty =
1
4

(axx − byy) = 0,

(ρ0)xt = (ρ0)tx =
1
2

(bxy + cxx) = 0,

(ρ0)yz = (ρ0)zy =
1
2

(axy + cyy) = 0,

(ρ0)zt = (ρ0)tz =
1
4

{− 2 ay bx + 2 cx cy − c axx + 2 axt − c byy

+ 2 byz + 2 a cxx + 2 c cxy − 2 cxz + 2 b cyy − 2 cyt

}
= 0, (44)

(ρ0)zz =
1
4

{
2 ax cy + 2 ay by − 2 ay cx − 2 c2

y + a axx + 4 c axy

+ 2 b ayy − 4 ayt − a byy − 2 a cxy + 4 cyz

}
= 0,

(ρ0)tt =
1
4

{
2 ax bx − 2 bx cy + 2 by cx − 2 c2

x − b axx + 2 a bxx

+ 4 c bxy − 4 bxz + b byy − 2 b cxy + 4 cxt

}
= 0.

Note that the scalar curvature is given by

τ = axx + byy + 2 cxy. (45)

Theorem 11 The structure (g, J) is Hermitian Einstein if and only if the functions a, b, c have one
of the following three forms:

a = κ(x2 − y2) + xP + yQ + ξ,

b = κ(y2 − x2)− xP − yQ− ξ +
1
κ

(Pz −Qt),

c = 2κxy − xQ + yP + γ,

(46)

or

a = κx2 + xP + yQ +
1
4κ
{4(P − S)z − 8Qt + 2Q(Q + T ) + (P 2 − S2)},

b = κy2 + xS + yT +
1
4κ
{−4(Q− T )t − 8Sz + 2S(P + S)− (Q2 − T 2)},

c = κxy − 1
2
x(Q− T ) +

1
2
y(P − S)

+
1
4κ
{2(P + S)t + 2(Q + T )z + T (P − S)−Q(P + 3S)},

(47)

or

a = xP + yQ + ξ,

b = xS + yT + η,

c = −1
2
x(Q− T ) +

1
2
y(P − S) + γ,

(48)

where in the last case

8Qt − 4(P − S)z = 2Q(Q + T ) + (P 2 − S2),

8Sz + 4(Q− T )t = 2S(P + S)− (Q2 − T 2),

2(P + S)t + 2(Q + T )z = Q(P + 3S)− T (P − S).

(49)
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Here κ is a non-zero constant and capital and Greek letters are smooth functions depending only
on (z, t). In the first case τ = 8κ, in the second one τ = 6κ and in the third case τ = 0.

Remark 7 Metrics (48)-(49) have received attention in the literature of Osserman manifolds. Since
any four-dimensional Riemann extension is self-dual [6], metrics (48)-(49) are Osserman with nilpotent
Jacobi operators and moreover they are realized as Riemann extensions of torsion free connections
with skew-symmetric Ricci tensor [9, 12].

Proof. If follows from (12) and the first three equations in (44) that (g, J) - Hermitian Einstein
implies

ax − bx = 2cy, ay − by = −2cx, axy = −cyy, bxy = −cxx, axx = byy. (50)

Hence, we get axy = bxy = cxx = cyy = 0 and therefore

a = A(y, z, t) + Ā(x, z, t),

b = B(x, z, t) + B̄(y, z, t),

c = xyC(z, t) + xU(z, t) + yV (z, t) + γ(z, t).

(51)

Now, axx = byy in (50) means Āxx(x, z, t) = B̄yy(y, z, t). Hence

Ā(x, z, t) =
1
2
x2D(z, t) + xP (z, t) + ξ̄(z, t), B̄(y, z, t) =

1
2
y2D(z, t) + yT (z, t) + η̄(z, t). (52)

Moreover, ax − bx = 2cy, ay − by = −2cx in (50) lead to

A(y, z, t) = 1
2y2(D(z, t)− 2C(z, t)) + y(T (z, t)− 2U(z, t)) + ξ̃(z, t),

B(x, z, t) = 1
2x2(D(z, t)− 2C(z, t)) + x(P (z, t)− 2V (z, t)) + η̃(z, t).

(53)

Collecting together (51), (52), (53) and setting 2M = D − 2C, L = 1
2D, Q = T − 2U , S = P − 2V ,

ξ = ξ̄ + ξ̃, η = η̄ + η̃ we obtain

a = x2L + y2M + xP + yQ + ξ,

b = x2M + y2L + xS + yT + η,

c = xy(L−M)− 1
2x(Q− T ) + 1

2y(P − S) + γ.

(54)

Now, the (constant) scalar curvature is given by τ = 2(3L−M), from where

M =
1
2
(6L− τ).

Then, plugging a, b, c in the fourth equation of (44) and differentiating twice by x, y we get

τ2 − 14τL(z, t) + 48L(z, t)2 = 0,

which implies that L(z, t) = κ must be constant and

a = x2κ + 1
2y2(6κ− τ) + xP + yQ + ξ,

b = 1
2x2(6κ− τ) + y2κ + xS + yT + η,

c = 1
2xy(τ − 4κ)− 1

2x(Q− T ) + 1
2y(P − S) + γ

(55)

where κ = τ
8 6= 0, κ = τ

6 6= 0 or κ = τ = 0. Next we analyze each of these cases by separate.
For κ = τ

8 6= 0, we differentiate the last equation in (44) by x and by y, and get

τ(P + S) = 0, τ(Q + T ) = 0,

and therefore S = −P and T = −Q. With these conditions, a further analysis shows that (44) holds
if and only if

η =
1
κ

(Pz −Qt)− ξ,
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from where (55) reduces to (46).
Now, if κ = τ

6 , the last three equations in (44) transform into

2τ
3 ξ = 4(P − S)z − 8Qt + 2Q(Q + T ) + (P 2 − S2),
2τ
3 η = −4(Q− T )t − 8Sz + 2S(P + S)− (Q2 − T 2),
2τ
3 γ = 2(P + S)t + 2(Q + T )z + T (P − S)−Q(P + 3S).

(56)

Hence, for τ 6= 0, these three equations determine ξ, η and γ and (47) is obtained from (55). Otherwise,
for τ = 0, (55) reduces to (48) and (56) to (49), showing the result. ¤

Corollary 12 Any proper Hermitian Einstein structure is ∗-Einstein.

Remark 8 A proper almost Hermitian structure (g, J) is Hermitian, self-dual and Einstein if and
only if the functions a, b and c are given by (47) or (48) in Theorem 11.

Remark 9 In the case when the function c depends only on (z, t), the structure (g, J) is Hermitian
and Einstein if and only if the functions a and b have the forms

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = xP (z, t) + yQ(z, t) + η(z, t), (57)

where
2Pz = P 2, 2Qt = Q2, Pt + Qz = PQ. (58)

Moreover, in a neighbourhood of a point where P 2 + Q2 6= 0 the solution of the system (58) is
given by

P = − 2p

pz + qt + r
, Q = − 2q

pz + qt + r
, (59)

where p, q, r are constants and p2 + q2 6= 0. Indeed, suppose that P 2 + Q2 6= 0 in a neighborhood of
a point (z0, t0). Then the first two equations in (58) imply

P (z, t) = − 2
z + f(t)

, Q(z, t) = − 2
t + g(z)

, (60)

where f(t) and g(z) are smooth functions, and the third equation in (58) takes the form

ft

(z + f(t))2
+

gz

(t + g(z))2
=

2
(z + f(t)(t + g(z)

. (61)

Setting F (t) =
1

z0 + f(t)
and α = g(z0), β = gz(z0), the latter equation implies that

Ft +
2F

t + α
=

β

(t + α)2
.

The solution of this linear ODE is given by

F (t) =
β

t + α
+

γ

(t + α)2
, γ = const.

Thus

f(t) =
(t + α)2

γ + β(t + α)
.

In the same way we see that the function g(z) has the form

g(z) =
(z + λ)2

µ + ν(z + λ)
.

Substituting these expressions of f and g into (61), clearing the denominators and comparing the
coefficients of the obtained polynomials of z and t, we see from (60) that P and Q have the form (59).

Note that if p · q 6= 0, then the structure (g, J) is strictly locally conformally Kähler, self-dual,
Ricci flat and ∗-Ricci flat, but the metric g is not flat.
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Theorem 13 The structure (g, J) is strictly locally conformally Kähler Einstein if and only if the
functions a, b and c have the forms

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = xS(z, t) + yT (z, t) + η(z, t),

c = − 1
2x(Q(z, t)− T (z, t)) + 1

2y(P (z, t)− S(z, t)) + γ(z, t),

(62)

where at least one of the functions P + S and Q + T does not vanish everywhere and

8Qt − 4(P − S)z = 2Q(Q + T ) + (P 2 − S2),

8Sz + 4(Q− T )t = 2S(P + S)− (Q2 − T 2),

4(P + S)t = 4(Q + T )z = Q(P + 3S)− T (P − S).

(63)

Proof. We analyze the three families of metrics obtained in Theorem 11 using the characterization
(18). First note that metrics of the type (46) are Kähler (see (13)). For metrics (47), (a+b)xx = τ

3 6= 0,
and therefore the locally conformally Kähler condition fails. Finally, for metrics (48), the locally
conformally Kähler condition is equivalent to (Q + T )z = (P + S)t. Moreover, these metrics are
Kähler if and only if P + S = Q + T = 0, from where the result follows. ¤

Using (13), we easily obtain from Theorem 11 the following

Corollary 14 The structure (g, J) is Kähler Einstein if and only if the functions a, b, c have one of
the following forms

a = κ(x2 − y2) + xP + yQ + ξ,

b = κ(y2 − x2)− xP − yQ− ξ + 1
κ (Pz −Qt),

c = 2κxy − xQ + yP + γ,

(64)

or

a = xP (z, t) + yQ(z, t) + ξ(z, t),

b = −xP (z, t)− yQ(z, t) + η(z, t),

c = −xQ(z, t) + yP (z, t) + γ(z, t),

(65)

where in the last case
Pz = Qt (66)

Here κ is a non-zero constant and capital and Greek letters are smooth functions depending only on
(z, t). In the first case τ = 8κ, in the second one τ = 0.

7 An example

It is proved in [19, Theorem 3.2] that an almost Hermitian 4-manifold (M, g, J) with positive definite
metric is Hermitian if the metric g is Einstein and its positive Weyl curvature tensor satisfies the

condition ||W+||2 =
1
24

(τ − 3τ∗)2 6= 0 at every point of M . We shall give an example showing that

the analog of this result is not true in the setting of signature (2, 2). For metrics of this signature
the role of W+ is played by W− since the almost complex structures compatible with the metric and
the orientation are parametrized by sections of Λ−. Note also that the metric on Λ2 in [19] is one
half of the metric used here. Thus, in our situation, the analog of the above condition for W+ is

||W−||2 =
1
96

(τ − 3τ∗)2 6= 0.

Let g be the Walker metric on R4 for which

a = x2 +
2
3
y2 +

2√
3
xy, b = y2, c = − 1√

3
y2.
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Then it follows from (44), (45) and (31) that the metric g is Einstein with τ = 4 and τ∗ = −4
3
.

Moreover, using the formula for the components of W− with respect to the basis (6) given in [9] we
get

W− =




−2
3

1√
3

1
3

− 1√
3

2
3

1√
3

−1
3

1√
3

0




.

Therefore ||W−||2 =
2
3

=
1
96

(τ − 3τ∗)2. On the other hand, it follows from (12) that the proper

almost complex structure J is not integrable. Note that W− has degenerate spectrum { 2
3 ,− 1

3 ,− 1
3}.

The eigenspace corresponding to the simple eigenvalue is time-like and determines an integrable almost
product structure.
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