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Abstract
It is shown that any algebraic curvature tensor on an n-dimensional

vector space can be represented by at most n(n + 1)/2 symmetric
bilinear forms.
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Let V be an n-dimensional vector space with an inner product (,). An
algebraic curvature tensor is an F' € @*(V*) satisfying the algebraic identities
of the curvature tensor of a Riemannian manifold:

F(x,y,z,w) = _F(yvxvzaw) :F(szvxay)
F(z,y,2,w) + F(y, z,7,w) + F(z,2,y,w) = 0.

The space of algebraic curvature tensors R(V) is a n?(n? — 1)/12-dimensional
vector space. Let S(V) and A(V) denote the spaces of symmetric and anti-
symmetric bilinear forms on V' and define

(1> F¢(.’E,y, sz) = ¢($, z)qj)(y,w) - (b(ya z)¢(m7w)
for any ¢ € S(V), and
(2)  F¥(a,y,2,0) = (@, 2)9(y, w) — ¥y, 2)9 (@, w) — 2¢(, )1 (2, w)

for any ¢» € A(V). Then it follows that Fy and F, are algebraic curvature
tensors. Further put

A(V) = span{F¢}¢eA(V) CR(V), SV)= span{Fw}wes(V) C R(V).

Then the space of algebraic curvature tensors coincides with S(V) and A(V)
(see also [1]):

Theorem 1 [3],[4] Let (V™,(,)) be an n-dimensional vector space with an in-
ner product {, ). Then,

Here, it is worth to emphasize that the proof of theorem above is constructive
and it relies on basic linear algebra (cf. [3, Thm. 1.8.2]). By following that
proof, one can obtain an estimate of the number of different symmetric tensor
fields needed to express a given algebraic curvature tensor as follows. Let F' be
an algebraic curvature tensor and decompose it as F = Y7 \;F ¢ where ¢;
belong to one of the following:

(i) For i < j define ¢;; = ¢j; = 1, ¢pap = 0 otherwise.
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(ii) For j # i # k,j < k define ¢;; = ¢ji = dir. = dri = 1, ¢pap = 0 otherwise.
Then we have:
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(iii) For 4,7, k,! different, define ¢, = ¢p; = ¢j1 = ¢y = 1, ¢ap = 0 otherwise.
Then in matrix representation:
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Therefore, the number of different symmetric tensors ¢ needed to express
any given algebraic curvature tensor is at most n(n — 1)(n? —n +2)/8. Our

purpose in this note is to provide an alternative proof of R(V) = S(V) which
gives a better (although not optimal) estimation.

Theorem 2 Let (V™ (,)) be an n-dimensional vector space with an inner prod-
uct (, ). Then, for any algebraic curvature tensor F € @*(V*) there eists at
most %n(n + 1) symmetric tensor ¢ on V such that F is a linear combination
of the associated algebraic curvature tensors F?.

Proof. First of all note that any algebraic curvature tensor F' is geometrically
realizable, i.e., there exists a smooth manifold M and a metric g on M such that
the curvature tensor of (M, g) at some point m € M is exactly F. We mean
that there is a linear isometry ® : (V, (, )) = (T1nM, gm) such that ' = ®*R,,,
where R is the curvature tensor of g. For example, by using the theory of normal
coordinates, define a metric in a neighborhood of the origin of R™ as follows:

. 1 n .
(6) gij(xl,...,a: ) = (Sij - g Z Fi(xjﬁx xﬁ
a,B=1



where Fjji = F(e;,ej,ex,€;) and {e1,...,e,} is an orthonormal basis of R™.
Then, we have at the origin R,, = F with the identification V = R" by means
of the previous basis.

Now, it follows from the Nash embedding theorem [6] that M is isometri-

cally embedded in R™** for some v = W Next, let {e1,...,e,} be an
orthonormal basis of the normal space T- M at m and let IT denote the second
fundamental form of the immersion. For each tangent vectors z, y € T;,, M one
has II(z,y) = >.._, ¢i(z,y)e;, where ¢;(z,y) = g(II(z,y),e;) is a symmetric
bilinear tensor for alli =1,...,v.

Now, it follows from the Gauss Equation that

F(z,y,v,w) = Rp(x,y,v,w)
= gI(z,v), (z,v)) — g I(z,w),(y,v))

= Z {bi(2,v)¢i(y, w) — di(w, w)di(y,v)}

= ZF¢1 (CL’,y,’U,’LU)
=1

which proves the result.

Finally note that a geometric realization of an algebraic curvature tensor
can be done locally in an analytic manifold, and thus the codimension in Nash’s
theorem can be reduced to n(n + 1)/2 as desired [5]. O

Remark 3 A tensor K € ®°(V*) is called an algebraic covariant derivative
curvature tensor if it satisfies

K(‘r7yvzavaw) = _K(xﬂz7yav7w) = K(xﬂv7w7y7z)
K($7 y? Z’ IZ)’ w) + K(':l:7 Z’ U’ y’ w) + K(z71}7y7 Z7w) = 0
K(z,y,z,v,w) + K(y, z,z,v,w) + K(z,z,y,v,w) = 0.

Systems of generators of the space of algebraic covariant derivative curvature
tensors have been investigated by Fiedler [2], where such generators are con-
structed from symmetric tensors of type 2 and 3. Next, consider

S(V)={ e (V"): ®(z,y,2) = ®(z,2,y)Vr,y,2 € V}
and define an algebraic covariant derivative curvature tensor K#® by

K¢7‘I>(x7yazavaw) = q>(m7y7v)¢(zﬁw) +¢(y,v)<1>(x,z,w)
_(I)($7 Y, w)¢)(z7 U) - ()b(yv U)(I’(Jf, 2, ’LU)

where ¢ is symmetric 2-tensor ¢ € S(V) and ® € S(V).



Now, let K be an algebraic covariant derivative curvature tensor and note
that it is geometrically realizable just extending (6) to

1 — 1 <&
gij(z",...,a") = by — 3 > Fiajpaa’ — 6 Y Kaigjyata’a?.
a,B=1 a,B,y=1

Now, proceeding in the same way as in Theorem 2 we get

(7) K(z,y,2,v,w) = > K**(x,y,20,w)
=1

where @,(x,y,2) = (Vz¢;i) (v, 2) in the notation of Theorem 2. This shows that

the K?®’s are a system of generators, and moreover an estimate for number of
n(n+1)

terms in (7) is obtained as v = =5

1 Examples and applications

First of all, observe that for any two-dimensional manifold, the curvature tensor
is expressed by the Ricci tensor and thus, any algebraic curvature tensor on a
two-dimensional vector space is completely determined by exactly one F'¢.

The situation is more complicated in dimension three but, since the curvature
tensor in that dimension is completely determined by the Ricci tensor, we still
have the following

Theorem 4 Let F' be an algebraic curvature tensor in a three-dimensional vec-
tor space. Then

(a) there exists exactly one symmetric (0,2)-tensor ¢ such that F = F¢ or,
otherwise

(b) there exists exactly two distinct symmetric (0,2)-tensors ¢1 and ¢ such
that
F = k1 F® + ko F?2

the second case occurs if and only if the Ricci tensor has eigenvalues \y # 0 #
A2, Az = A1+ Ao.

Proof. Let F' be an algebraic curvature tensor in a three-dimensional vector
space V with inner product (, ) = g(-,-). Let pf" denote the Ricci tensor and
7F the scalar curvature of F. Then, it is known that:

7_F

(8) Fwva =5 (nggyw - gmwgyv) - (pfugyw + pglngacv - pfwgyv - nggxw) .
2

Next, let {e1, ez, e3} be an orthonormal basis diagonalizing pf and put

M 00
pF=1 0 X 0
0 0 )3



Then, using (8) we have

PYIRED PIEDY
Fz‘jklZ(l 22 3—/\¢—)\j> Fifu

where Filj‘,id = 01051 — 0310;1. Define:

ap = Al —Ada—A3 = 2Fb303
as = =AM +Ad—A3 = 2Fi313
a3 = A —XA+A3 = 2F0

and consider the following cases:

(a.1) a1, ag and ag are different from zero.

Let ¢; = +1 denote the sign of a; and put

EQ1 (X3
€ = €1€2€3 and b= “T'

Now, define a symmetric tensor ¢ with respect to the basis above by

1
ar U0
p=p1 0 5 O
0o o0 =X
as
or, ¢ij = 0%(5” Then F = €F¢'.
(a.2) g #0 and ay = a3 =0.
Define
0 0 O
o= 01 0
0 0 %
It is straightforward to check that F' = F¢.

(a.3) If a3 = ag = a3 =0, then F = 0.
(b) a1,a2 # 0 and as = 0.

Next we will show that it is not possible to express the given algebraic
curvature tensor as F = yF?®. On the contrary, suppose this can be
achieved for certain v and ¢. Since a1,y # 0 we have F' # 0 and hence
v # 0. Then F = yF? is equivalent to solving the following system:

¢11¢22_¢%2 = 0

P11023 = 13012
P1ad23 = @130
Pr1¢3s — Piy = ;%
P12¢33 = Q13923
Goa3z = %
~



which is not hard to see that has no solution.

Nevertheless, it is possible to write F' = F'®1 + F%2. For example take
0
0
[e5)

1 0
p2=1 0 0
o 0 0

0 0
pr=10 1
0 0

w\goo

and the equality follows after a simple computation.

O

Remark 5 Note that, as an immediate application of Theorem 2, we obtain
a criteria for non existence of immersions of a given manifold into a space of
constant curvature. For instance, no Riemannian 3-manifold whose curvature
tensor is as in Theorem 4-(b) at some point can be isometrically immersed as a
hypersurface in a space of constant curvature.
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