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CODIMENSION TWO POLAR HOMOGENEOUS FOLIATIONS ON
SYMMETRIC SPACES OF NONCOMPACT TYPE

JOSE CARLOS DiAZ-RAMOS AND JUAN MANUEL LORENZO-NAVEIRO

ABSTRACT. We classify homogeneous polar foliations of codimension two on irre-
ducible symmetric spaces of noncompact type up to orbit equivalence. Any such foli-
ation is either hyperpolar or the canonical extension of a polar homogeneous foliation
on a rank one symmetric space.

1. INTRODUCTION

A proper isometric action of a Lie group G on a Riemannian manifold M is said to
be polar if there exists a connected and complete submanifold ¥ that intersects every
orbit orthogonally. The action is hyperpolar if it admits a flat section (with the induced
metric). Many results in Algebra and Geometry can be thought of in terms of polar
actions. For instance, the system of polar coordinates in the Euclidean plane R? is
connected to the polarity of the standard representation of the orthogonal group O(2)
in the plane. In a similar fashion, the spectral theorem for hermitian matrices can be
restated as follows: the action of the unitary group U(n) on the vector space of n x n
hermitian matrices by conjugation is hyperpolar; a section is given by the subspace of
diagonal matrices. Based on this last example, we usually refer to the points of a section
as canonical forms of the elements of the ambient space (see [21] for more details). A
final example with a more Lie-theoretic flavor can be seen in the adjoint action of a
compact Lie group, whose sections are the maximal tori.

Broadly speaking, we should not expect a generic Riemannian manifold to admit a
nontrivial polar action. Indeed, sections are known to be totally geodesic submanifolds
of the ambient space, so the existence of polar actions implies the existence of (suffi-
ciently large) families of globally defined Killing fields and totally geodesic submanifolds
orthogonal to each other; both objects are rare in a space with no restrictions [20, The-
orem AJ. Thus, it should not come as a surprise that polar actions can only be possible
in Riemannian spaces with a certain degree of symmetry. Some structural results con-
cerning spaces that do admit polar actions can be seen for example in [I1], Theorem A],
and [I7, Theorem 1], and its subsequent generalization in [22] Theorem 1.1]. Con-
sequently, the most natural classes of Riemannian manifolds where we can develop a
fruitful study of these actions are those of homogeneous and symmetric spaces.
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Our main interest in this paper concerns the classification of polar actions (up to
orbit equivalence) on manifolds with symmetries. Dadok [7] proved that any polar
representation on a FEuclidean space is orbit equivalent to the isotropy representation of
a symmetric space, thus solving the problem in the round sphere S™. The classification
in Euclidean spaces follows easily from Dadok’s result. The corresponding classification
of polar actions in the real hyperbolic space RH" was given by Wu in [25].

As for symmetric spaces, while the problem is nearing its full conclusion in the com-
pact setting (see [16] and the references therein), little is known about polar actions on
noncompact symmetric spaces, our main interest for this article. Nevertheless, there
are already complete classifications in real and complex hyperbolic spaces [8]. For the
special case of cohomogeneity one actions, we have the works of Berndt and Tamaru
(see [4] and the references in it) as well as a more recent structural result given by the
first author, Dominguez-Vézquez and Otero [9].

We say that the orbits of a proper action form a homogeneous foliation if they all
have the same orbit type. Cohomogeneity one foliations have been classified up to orbit
equivalence in irreducible noncompact symmetric spaces by Berndt and Tamaru in [3].
This result has been extended by Solonenko [23] for the reducible case. In addition,
Berndt, Tamaru and the first author give in [2] a procedure to construct all possible
hyperpolar homogeneous foliations on any symmetric space of noncompact type; it is
also shown that there are polar foliations on noncompact irreducible symmetric spaces
of higher rank that are not hyperpolar. The results presented in these two papers make
extensive use of tools from the theory of real semisimple Lie algebras, especially the
root space and Iwasawa decompositions for these objects. At any rate, we are yet to
obtain general results concerning polar homogeneous foliations that are not hyperpolar.

The aim of this paper is to start the study of polar nonhyperpolar homogeneous
foliations on symmetric spaces of noncompact type. We determine all of these that
have the hyperbolic plane RH? as a section. As a consequence, combining this work
with [2], we obtain a list of all polar homogeneous foliations of codimension two in any
such space. In order to state the main result of this paper we need to introduce some
concepts. See Section [l for further details.

A Riemannian symmetric space of noncompact type can be written as a quotient
M = G /K, where G is a semisimple Lie group and K is the isotropy group at a point
o € M. The Lie algebra g of G has a Cartan decomposition g = €@ p, where p = T, M is
the orthogonal complement of £ in g with respect to the Killing form. We normalize the
metric on M so that its restriction to p coincides with the Killing form of g restricted
to p. We choose a maximal abelian subspace a of p. This determines a root space
decomposition g = gg ® (@)\ez gA), where Y is the set of roots with respect to a. We
choose a positivity criterion on X and denote by Xt the set of positive roots. Let
A C X7 be the corresponding set of simple roots. We define n = @, 5.+ g». Then we
have an Iwasawa decomposition g =€ a d n.

Let ® C A be a subset of simple roots. Then ® determines a so-called parabolic
subgroup Q¢ with Langlands decomposition Q¢ = Mg AeNg, where Mg is reductive,
Ag is abelian, and Ng is nilpotent. The totally geodesic submanifold By = Mg - 0 is a
symmetric space of noncompact type of rank |®| that is called the boundary component
associated with ®. If Hg is a subgroup of the isometry group of Bg, then HgAgpNo
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induces an isometric action on M. We call this action the canonical extension of the
isometric action on the boundary component Bg to the symmetric space M. See [4] for
further details.

The main result of this paper is the following:

Theorem A. FEvery codimension two polar nonhyperpolar homogeneous foliation on M
15 orbit equivalent to the canonical extension of a codimension two polar nonhyperpolar
homogeneous foliation on a boundary component of rank one in M.

More explicitly, we prove:

Theorem B. Let M = G/K be a connected Riemannian symmetric space of noncom-
pact type. Then, a codimension two homogeneous polar nonhyperpolar foliation on M
s orbit equivalent to the orbit foliation of the closed connected Lie group whose Lie
algebra is given by one of the following possibilities:
(i) (kerav) & (n©&4,), where a € A is a simple root, and L, is a line in g,, or
(ii) a ®d (n© v,), where a € A is a simple root, and v, is a 2-dimensional abelian
subspace of gq.

We will show in Section[3that different choices of ¢, or v, above give rise to congruent
foliations. We also determine the mean curvature of their leaves. A direct consequence
of this computation is that

Corollary 1.1. If F is a codimension two polar nonhyperpolar homogeneous foliation
on M, then F is harmonic if and only if F is orbit equivalent to the canonical extension
of the trivial action on a boundary component homothetic to the hyperbolic plane RH?.

We say that a foliation F is harmonic if all of its leaves are minimal submanifolds of
M. Equivalently, F is harmonic when the canonical projection from M to the space of
leaves of F is a harmonic map.

As a result of combining Theorem [B] with [2], Corollary states the complete
classification of homogeneous polar foliations of codimension two. Recall that two
roots a, € A are said to be disconnected if o 4 /3 is not a root (equivalently, if they
are orthogonal).

Corollary 1.2. A codimension two homogeneous polar foliation on M s orbit equiva-
lent to the orbit foliation of a closed connected Lie group whose Lie algebra is:

(a) (a©v) @ n, where v is a 2-dimensional subspace of a, or

(b) (acl)® (nSL,), where v € A is a simple root, L, is a line in g, and £ is a line
i ker i, or

(c) a® (n© €y ®L3)), where a, B € A are orthogonal simple roots, and €y is a line in
g, A €{a, B}, or

(d) (kera) & (ne©{,), where a € A is a simple root, and L, is a line in go, or

(e) a® (nev,), where a € A is a simple root, and v, is a 2-dimensional abelian
subspace of gq.

Examples (@) to (@) of Corollary [.2] are hyperpolar.

Remark 1.3. Recall that there is an implicit assumption on the metric imposed on
M so that it coincides with the Killing form at o. In the case that M is irreducible,



4 J. C. DIAZ-RAMOS AND J. M. LORENZO-NAVEIRO

Schur’s lemma implies that all symmetric metrics on M differ by a scalar, and thus
the classification remains true independently of the chosen metric. If M is reducible,
the symmetric metrics are given by rescaling each De Rham factor of M by (possibly
different) positive constants. As a consequence, an isometric action that is polar and
of cohomogeneity greater than one may not admit a section upon alterations of the
metric.

The trivial action is always polar and the whole space is a section of this action.
On the other hand, cohomogeneity one polar actions are automatically hyperpolar. An
easy consequence of Theorem [Blis that the action corresponding to case (fl) exists and
is nontrivial unless ¥ = {a} and dim g, = 1. Thus,

Corollary 1.4. If M is an irreducible symmetric space of noncompact type where all
polar actions are hyperpolar, then M is the real hyperbolic space RH?.

This contrasts sharply with the situation in the compact setting: polar actions on
irreducible symmetric spaces of compact type and higher rank are always hyperpolar.
This follows from a series of papers by Kollross that concluded in the paper [16] by
Kollross and Lytchak.

We now describe the structure of this paper. In Section 2] we review the basic theory
of real semisimple Lie algebras and symmetric spaces that is needed for our purposes.
In Section [3 we present the list of codimension two polar nonhyperpolar homogeneous
foliations that appear in Theorem [Bl We also determine the curvature of their sections,
the extrinsic geometry of their orbits, and prove Theorem [Al Finally, Section [ contains
the proof of Theorem [Bl

2. PRELIMINARIES

In this section we introduce the concepts, notations, and preliminary results that are
used throughout this paper. We follow [13] for the theory on symmetric spaces, and [15]
for semisimple Lie algebras. Since symmetric spaces of noncompact type are Hadamard
manifolds, another interesting source of information is [10].

2.1. Semisimple Lie algebras and symmetric spaces.

A connected Riemannian symmetric space of noncompact type can be represented
as a quotient M = G /K, where (G, K) is a symmetric pair. The group G acts almost
effectively on M, and K is taken to be the isotropy group of G at a point o € M that
we fix from now on. Thus, the group G is semisimple and K is a maximal compact
subgroup of G. The Lie algebra of G is denoted by g. The Killing form B of g is
nondegenerate because g is a real semisimple Lie algebra; B is known to be negative
definite on ¢, the Lie algebra of K. Let p denote the orthogonal complement of £ in g
with respect to the Killing form. Then, g = £ @ p is a Cartan decomposition of g, and
p can be identified with the tangent space T, M. The Killing form B restricted to p is
positive definite. Let 6 be the Cartan involution associated with the previous Cartan
decomposition, that is, 6| = ide, and 6], = —id,. The equation (X,Y) = —B(X,0Y),
X, Y € g, defines a positive definite inner product on g that will be used extensively
from now on. We normalize the metric on M so that its restriction to p X p is precisely
the inner product defined above.
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As a matter of notation, if v and to are subspaces of g we denote the orthogonal
complement of tv in v as

pormw={Xecv:(X,Y)=0, forall Y € mo}.

We also denote by v, the orthogonal projection of v onto tv. The norm of X € g is
denoted by | X]|.

If F: g — gis a linear map, its adjoint is the map F*: g — g satisfying (F(X),Y) =
(X, F*(Y)) for any X, Y € g. Recall that, for g € GG, conjugation by g is denoted by
I, G = G, h — ghg™*. The map Ad: G — GL(g), g — Ad(g) = I,., is called the
adjoint representation of g, and the differential of Ad is the adjoint map ad: g — gl(g)
given by ad(X)(Y) = [X,Y]. Since Ad is a homomorphism of Lie groups and ad is its
differential, they are related by the Lie exponential map Exp: g — G and the matrix
exponential map of GL(g) as Ad(Exp(X)) = ¢ X € g. Then, it follows that

ad(X)* = —ad(6X), Ad(Exp(X))* = e~ 2400,

Note that ad(X) is skew-adjoint if X € ¢ and self-adjoint if X € p.

We choose a maximal abelian subspace a of p. Any two maximal abelian subspaces
of p are conjugate by an element of K; in particular they have the same dimension,
which is called the rank of M, denoted by r = dima. If a* denotes the dual vector
space of a, for each \ € a* we define

g ={Xeg:ad(H)X =\H)X, forall H € a}.

If A # 0 and g, # {0} then X is called a restricted root (or simply root). We denote
by ¥ the set of restricted roots. Since a is abelian, ad(a) is a commuting family of
self-adjoint operators. The corresponding simultaneous diagonalization

g=060D (@9)\)7

AEX

is called the restricted root space decomposition of g determined by a. Here, we have
go = € @ a, where £y = go N € = Z;(a) is the centralizer of a in €. Moreover, 0g, = g_»
and [gy, 9,] C gay, for any A, p € 3.

We also use the following notation: for A € ¥ we denote by H, € a the metric dual
of A, which is defined as (Hy, H) = AM(H), H € a. The inner product on g induces an
inner product on a by restriction, and on a* by duality as (A, pu) = (Hx, H,), A, p € 3.

The set X is a (nonreduced) root system. We choose a subset X1 of positive roots,
and A the corresponding set of simple roots. Then, the cardinality of A is equal to the
rank of g, and A is a basis of the vector space a. We define n = @, .+ g, which is a
nilpotent subalgebra of g. Then, g = £ ® a @ n is a direct sum of vector spaces called
the Iwasawa decomposition of g. The Lie algebra a ¢ n is solvable and its derived Lie
algebra is n. If A and N denote the connected subgroups of G whose Lie algebras are a
and n, respectively, the map K x Ax N — G, (k,a,n) — kan, is a diffeomorphism. The
corresponding decomposition G = K AN is called the Iwasawa decomposition of GG. The
connected subgroup AN whose Lie algebra is a @ n is simply connected, solvable, and
acts simply transitively on M. Therefore, M is isometric to the Lie group AN endowed
with a left-invariant Riemannian metric. Moreover, the tangent space T,M can be
identified with a @ n. The Lie exponential map Exp: a®n — AN is a diffeomorphism.
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Since AN acts simply transitively on M, we may endow AN with a left invariant
metric (-,-)an such that M and AN are isometric via the map g € AN +— g - 0. The
differential of this map at e is precisely the orthogonal projection of a & n onto p, and
the metric in AN satisfies (X,Y)an = (X, Ya) + 3(X,,, Y,) for every X, Y € a®n.
Furthermore, the Levi-Civita connection of AN is given in terms of left invariant vector
fields as 4(VxY, Z)any = ((X, Y]+ (1 = 0)[0X,Y], Z), where XY, Z € a®n.

Note that for any X € g we have 2X = (1 +60)X + (1 — 0)X, where (14+6)X € ¢
and (1 —0)X € p. We use the following notation in what follows:

B=(1+0)gr=(1+0)g_x=EN(grDg_x),
pr=1-0)grx=(1—-0)gr=pN(gr D g_n)

Obviously &y, = €_, pr = p_», and &, Dpy = g, D g_» for each A € . For X, Y € gy,
we also use the equality (1 —0)[0X,Y] =2(X,Y)H,.

Let A = {ay,...,a,} be the set of simple roots, and {H*,..., H"} C a its dual basis,
that is, a;(H7) = &/ is the Kronecker delta. We define H* = $7_ H'. If A € %, then
A =)', ¢y, where the ¢; are integers and ¢; > 0 for all 4 € {1,...,r} if X is positive,
or ¢; < 0 for all i if X is negative. The integer A(H*) = >"7_, ¢; is called the level of the
root \. This determines a gradation of g as

g= @gk, where g~ = @ 13\

kez AEY
MNHM=k

Then, 0g* = g% k € Z, and ¢g° = go. According to [14], we have g"*! = [g}, g"],
g1 =[g7l, g%, k > 1. We also set n* = g k > 1. Thus, n is generated by
nt. We also define p* = p N (g @ g7%). Finally, there is a highest root of the root
space decomposition of g. Let m denote its level. In reality we have g = @~ g",
n=@, nf,andp=a® (EBkm:l pk).

We define the element .

0= > (dimgy)A.
xext
If so: a* — a* is the root reflection with respect to a simple root a € A, it follows
from [I5, Theorem 6.57] that s, is induced by an element of Nk (a), the normalizer of
a in K. In particular, dim g, (») = dim gy for every A € 3. On the other hand, by [15]
Lemma 2.61] s, permutes all positive roots linearly independent from «, while sending
a to —a. As a consequence, s,(0) = 6 — (dim g,)o — 2(dim ga, ). Taking the inner
product with « yields

(1) 2(5, ) = [af*(dim g + 2 dim gaa).

2.2. Parabolic subalgebras and canonical extensions.

Let ® be a subset of simple roots. We denote by ¥4 the subset of 3 spanned by
®, and by 2} the corresponding set of positive roots inside Yg. Then g is a root
subsystem of ¥ and ® is a simple system for Y¢. We define

acp:ﬂkera, Lngo@@gA, Ne = @ O

acd PYSIIN )\gg-k\zg
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Then, ag is abelian, [ is reductive, and ng is nilpotent. Moreover, [l3, ne] C ng.

By definition, q¢ = lp & ng is called the parabolic subalgebra of g determined by
® [6]. Let mg = [$ S ag and go = [ls, lo] = [Ms, Ms|. It is known that ge is semisimple,
and that mge normalizes ag @ ng. The decomposition qe = me D ae D ng is called the
Langlands decomposition of qg.

We denote by Q¢, My, Go, As, and Ng the connected subgroups of G whose Lie
algebras are q¢, Mg, g, 0p, and ng, respectively. The subgroup Q¢ is the parabolic
subgroup of G associated with ®, and Q¢ = Mg AgNg is the corresponding Langlands
decomposition of Q¢ at Lie group level.

We define B = Mg - 0 = Gg - 0. Then, Bg is a totally geodesic submanifold of M,
and since Gg is semisimple, it is a symmetric space of noncompact type and of rank
|®|. This submanifold is called the boundary component associated with ®.

Let Hg be a subgroup of the isometry group of Bg. Since Gg contains the isometry
group of Bg, it follows that Hg C G C Mg. As Mg normalizes Ag Ny, H = Hpo A Nog
is a subgroup of G acting isometrically on M, and its Lie algebra is he @ age ® ng. The
action of H on M is called the canonical extension to M of the action of Hg on Bg [2].

2.3. Maximal solvable subalgebras.

We say that a subalgebra b C g is a Borel subalgebra if it is a maximal solvable
subalgebra of g. On the other hand, a subalgebra h C g is a Cartan subalgebra if its
complexification h @ C is a Cartan subalgebra of the complex semisimple Lie algebra
g ® C. In particular, b is abelian [I5] Proposition 2.10]. Note, however, that Cartan
subalgebras of real semisimple Lie algebras are not necessarily conjugate.

Any Cartan subalgebra b of g is conjugate to a f-stable subalgebra [15, Proposi-
tion 6.59]. Thus, we can assume that 0h = b, which means that b splits as a direct sum
t@a, where t C £ and a C p. Both t and a are abelian subspaces of g. In this case, dim t
is called the compact dimension of f, and dima is called the noncompact dimension
of h. The subalgebra t is called the torus part of b, and a is called the vector part of
h. We have that a induces a root space decomposition on g. Note that, in principle,
a does not have to be a maximal abelian subspace of p in this case. Root spaces are
defined analogously: for each \ € a, let

g5 = {X € g: ad(H)X = \H)X for all H € a},

and define ¥ to be the set of all A € @ such that A # 0 and g5; 7 0. Since the
family ad(a) consists again of commuting self-adjoint endomorphisms, it follows that
g=0g0D (@Xei Q;\). Observe that t C gy N € since b is abelian.

We now relate the previous decomposition to the root space decomposition induced
by a maximal abelian subspace a C p containing a. Let ¥’ C 3 be the subset of roots
that annihilate a. We then have the following equalities:

a= mker)\, QOZQOEB(@QA), ﬂ,\IEBQA-

ey ey A€X
Ala=A
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Since Y is an abstract root system in (a © a)*, we may give a notion of positivity on X
that is compatible with that of X" and ¥, that is, A € ¥ is positive if and only if A € ¥/
is positive or A € ¥\ ¥/ and A\|; € T,

Remark 2.1. For the sake of completeness we explain here how these notions of positivity
can be made compatible. One can define a notion of positivity on % by fixing a regular
element Hy € a (that is, A(Hy) # 0 for all A\ € ¥) and declaring A € & to be positive if
A(Hp) > 0. We also take a regular element H' € a © a and define A € ¥ to be positive
whenever A(H') > 0. We now define Hy = Hy 4+ cH’, where ¢ is a positive constant.
Note that for every A\ € ¥, A(Hy) = eA(H'), so \(Hp) and A(H') have the same sign.
Furthermore, if A € X\ ¥/, we have A(Hy) = Aa(Hp) 4+ e\(H’). Since the set of roots is
finite, we can choose ¢ > 0 sufficiently small so that A(Hy) and A|s(Hy) have the same
sign for all A € ¥\ ¥

By [19, Theorem 4.1], any Borel subalgebra b of g is of the form b = t@® a @ a for an
adequate choice of a Cartan subalgebra h = @ @, a set of positive elements ¥t C ¥,
and where nn = @5 5+ g5 We aim to restate this description of b directly in terms of
the root system induced by a.

We consider the subset ® C Y of simple roots associated with the positivity criterion
in ¥'. Note that ® C A. Indeed, by the construction of our set of positive roots in X,
we have ® C X*. Suppose a € ® is not simple, so that o = S+~ for two positive roots
B, v € 3T, Since « is simple in ', we have that 3 and 7 cannot be simultaneously in
¥, and combining this with the equation 0 = a(Hy) = B(Hy) + v(Ho), we deduce that
neither 8 nor ~ are in ', and either 3 or v is negative, a contradiction.

To summarize, we have found a subset ® C A of simple roots for which ¥’ = X4 is
the root system generated by ® and the following identities hold: a = ag, go = lp and
n= Ne.

We have thus arrived at the following result.

Theorem 2.2. Let g be a real semisimple Lie algebra and b a Borel subalgebra of g.
Then b contains a Cartan subalgebra §y. Furthermore, there exists a Cartan decomposi-
tion g = €@ p, a mazimal abelian subspace a C p, a choice of simple roots A C X,

and a set ® C A such that b = € @ ag @ ng, where t is an abelian subspace of

to=tNls =€ @ (Dyexz &)

We say that a Cartan subalgebra b (resp. Borel subalgebra b) is maximally compact
if its compact dimension is maximal, and maximally noncompact if its noncompact
dimension is maximal. Since a is abelian in p, we have that h (resp. b) is maximally
noncompact if and only if a is a maximal abelian subspace of p [15, Proposition 6.47].

If a Borel subalgebra corresponds to a maximally noncompact Cartan subalgebra,
then ® = () is the empty set, d = ayp = a is a maximal abelian subspace of p, and t = { is
a maximal abelian subspace of €, [15, Proposition 6.47 and Lemma 6.62]. This implies
ng =n, and thus, b=t® adn.

2.4. Polar actions.
Let M be a Riemannian manifold and H a connected Lie group acting on M isomet-
rically. Given any point p € M, we denote by H, the isotropy subgroup at p, and by
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H - p the H-orbit through p. We assume that the action of H on M is proper, that is,
the map H x M — M x M, (g,p) — (p, g-p) is proper. In this case, isotropy groups are
compact, the orbit space is Hausdorff, and the orbits of the action are closed and embed-
ded submanifolds. If the action is also effective, that is, the only element of the group
acting trivially is the identity element, then H can be assumed to be a closed subgroup
of the isometry group of M acting on M in the natural way. If p € M is any point, we
define the isotropy representation of H at p as the map g € H, — g., € O(T,M), and
the slice representation of H at p as its restriction to O(v,(H - p)). Here, the notation
vp,N refers to the normal subspace of the submanifold N C M at p.

Two isometric actions on M are said to be orbit equivalent if there is an isometry of
M that maps the orbits of one action to the orbits of the other action. They are said
to be conjugate if there is an isometry of M that is equivariant with respect to both
actions.

We start by mentioning the following result, which is a refinement of [8, Lemma 2.5].

Lemma 2.3. Let M be a complete Riemannian manifold and H and H be connected,
not necessarily closed, subgroups of the isometry group of M such that H C H. Suppose
that there exists o € M such that H -0 = H - 0 is a closed subset of M, and the slice
representation of H at o is trivial. Then H and H act with the same orbits.

Proof. Let p € M be arbitrary. Since H -o is closed in M, we may find a point ¢ € H -0
such that the distance from ¢ to p is minimum among all points of H - 0. The first
variation formula implies that the minimizing geodesic joining ¢ and p must leave H - o
perpendicularly. Thus, by homogeneity we may assume that ¢ = o and p = exp,(&,),
with &, € v,(H - 0). Let & € T(v(H - 0)) be the unique H-equivariant vector field whose
value at o is &, (which exists because &, is fixed by the slice representation of H ). Since
H C H, ¢ is also the unique H-equivariant normal vector field along H - o generated by
&,. Due to [I, Section 2.1.8], we obtain H - p = {exp,(&,): 2 € H-0} = H - p. O

If H is a closed subgroup of the isometry group of M, we say that the action of H
on M is polar if there exists a submanifold ¥ in M such that:

(i) ¥ intersects all the orbits of H, and
(ii) if p € 3, then T,¥ and T,(H - p) are orthogonal.

The submanifold ¥ is called a section. Sections are known to be totally geodesic (see for
example [I8]). If the section of a polar action is flat, then the action is called hyperpolar.

In this paper we assume that the action of H on M induces a foliation. We say that
M is a Hadamard manifold if it is a simply connected complete Riemannian manifold
with nonpositive sectional curvature. Riemannian symmetric spaces of noncompact
type are examples of Hadamard manifolds. If follows from [2, Proposition 2.1] that all
the orbits of H are principal, that is, all isotropy groups are conjugate in H.

From [2, Theorem 4.1] we have the following criterion of polarity:

Proposition 2.4. Let M = G/K be a Riemannian symmetric space of noncompact
type with Cartan decomposition g = €@ p. Let H C G be a closed subgroup acting on
M in such a way that its orbits form a foliation on M. We define

by ={¢€p:((,X)=0, forall X € b}.
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Then:
(i) The group H acts polarly on M if and only if l‘)pl 1s a Lie triple system in p and
[0, by is orthogonal to .
(ii) The group H acts hyperpolarly on M if and only if l‘)pl 15 an abelian subspace of p.

Moreover, if le denotes the subgroup of G whose Lie algebra is [l‘)pl, l‘)pl] P []pL, then
HpL -0 1s a section of the action of H on M.

The first criterion of polarity is credited to Gorodski [12].

Recall that a subspace v of p is called a Lie triple system if [, [p, b]] C v. In this case
[0,0] @ v is a f-stable subalgebra of g and the orbit through o € M of the connected
subgroup of G whose Lie algebra is [b, b] & v is a totally geodesic submanifold of M.

3. EXAMPLES OF HOMOGENEOUS POLAR FOLIATIONS

We now introduce the two families of polar homogeneous foliations on M = G/K
whose section is homothetic to the hyperbolic plane, and describe their extrinsic geom-
etry. We assume the notation used in Section 2L

Theorem 3.1. Let M = G/K be a symmetric space of noncompact type and choose
an Twasawa decomposition g =€Dadn of g. Let a € A be a simple root, and consider
the following subspaces of a @ n:

(i) s5¢ = (a©RH,) ® (n S RE), where £ € g, is a nonzero vector.

(i) s, =a® (nSv), where v C g, is an abelian plane inside gq.

The subspaces s¢ and s, are Lie subalgebras of a ® n. The corresponding connected
subgroups Se, Sy act polarly on M inducing a codimension two foliation whose section
is a totally geodesic RH? with constant curvature —|al?.

Proof. It is clear that s¢ and s, are subalgebras of a @ n, so we can consider the con-
nected Lie subgroups Se, S, associated with these subalgebras. Since AN acts simply
transitively on M and Exp: a @ n — AN is a diffeomorphism, it follows that S and
Sy are closed subgroups inducing a homogeneous foliation on M of codimension 2. It
remains to show that both subgroups act polarly.

Firstly, if S = S¢, we see that s, = span{H,, (1 — 0)¢}. Now, a direct computation

shows that [s;,s,] = R(1 + 0)¢ is orthogonal to s, and [s;,[s,,s,]] is spanned by
[Hom (]- + e)g] = |a|2(1 - 0)5 and [(1 - 6)57 (1 + e)g] = _(1 - 9)[9§a§] = _2|§|2Ha-
We therefore obtain [s;, [s,,5,]] = s, which means that s, is a Lie triple system.

By applying Proposition 2.4] we deduce that S¢ acts polarly, as desired. Note that if
Spl -0 is the section through o, then SpL -0 is a closed, simply connected, totally geodesic
surface whose tangent space is 5#. Its sectional curvature can be calculated using for
example [13] Chapter IV, Theorem 4.2], which yields

—([Ha, (1 = 0)¢], (1 = 0)¢], Ha)

el 0) = T T eI
o (L= O _ -0+ 0P
QPP FePlap D

s0 Sy - 0 is a real space form of constant curvature —|o|.
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In the case S = S,, the normal space is SPL = (1—6)v. Choose two orthogonal vectors

¢, n € v with norm 1/v/2. Since [(1 — 0)¢, (1 — 0)n] = —2[¢,0n] € &, it follows that
5L, s1] = R[¢, On] is perpendicular to s. Furthermore, [, 0n)] = [€, On)] yields

pp
[(1=0)¢, [€, 0n]] = (1 = 0)[&, [6€,m]] = —(1 = 0)[n, €, 6¢]]
= (1= 0)[n, € Ho] = —I€Plal*(1 - 0)n € 5,

and a similar calculation gives [(1 — )1, [£,0n] = |af*|n|*(1 — 0)¢ € s, and thus
s, [, 8,]] = s, Proposition 2.4 readily implies that the action of S, is polar with
section Sl o. The same argument given in the previous paragraph allows us to de-
termine the section by computing its curvature. In this case, taking into account our

previous calculations,
1—-0)¢, (1 —0)n], (1 —O)n], (1 —0))
sec(S: - 0) = —<H(
5w A= 0PI~ )P
which finishes the proof. O

= _|a|27

The previous theorem shows that the examples that appear in Theorem [Bl give rise
to homogeneous polar foliations. Furthermore, it follows from the next lemma that
different choices of £ in case (i) or of v in (i) given orbit equivalent actions.

Lemma 3.2. Let o € A and k > 1. Then, the group Ky acts transitively on the set of
abelian subspaces of dimension k of gq.

Proof. Following [13, Chapter IX, §2], we consider the Lie subalgebra g* generated by
go and g_,. This Lie algebra is snnple and its Cartan decomposition is g* = £ @ p°,
with € = £Ng®, p® = pNg“. It turns out that RH, is a maximal abelian subspace of p*,
and the root space decomposition of g% is g% = g2, B gD (£§ BRH,) B go B g2, Where
() is the centralizer of RH,, in £, and &} = €, N g®. Let G*, K*, K{ be the connected
subgroups of G whose Lie algebras are g, €%, and ¢§. Then, by [I3, Chapter IX,
Lemma 2.3, we have K* = K NG and K§ = Ky N G*. Therefore, in order to prove
this lemma, it suffices to show that K acts transitively on the set of abelian subspaces
of g,.

Obviously, G*/K® is a Riemannian symmetric space of noncompact type and rank
one, that is, a hyperbolic space FH", where F € {R,C,H,O} and n > 2 (n = 2 if
F = 0). Note that g, = F*! and dimgy, = dimgF — 1. If F = R, then g, is
abelian and K§ = SO(n — 1) acts in the standard way on g,; this action is transitive
on the Grassmannian of k-planes of R*!. If F = O, then the only nonzero abelian
subspaces of g, = O are 1-dimensional, and K§ = Spin(7) acts on @ by its irreducible
8-dimensional spin representation, which is transitive in S7 [5]. Finally, if F € {C,H},
recall that abelian subspaces of g, are precisely totally real subspaces of g, = F*~!. In
these cases we have the standard action of S(U(n — 1)U(1)) on C" ! if F = C, and the
standard action of Sp(n — 1)Sp(1) on H*! if F = H. Thus, if v; and vy are two totally
real subspaces of g, of dimension £, choose an orthogonal basis of v; and an orthogonal
basis of v,. Since v; and v, are totally real, these two bases are not only orthogonal,
but F-orthogonal. By definition of U(n — 1) or Sp(n — 1) it is then clear that there is
an element of K§ that maps one basis to the other. This finishes the proof. U
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We now exhibit examples () and (iil) of Theorem [Bl as canonical extensions of actions
on a rank one boundary component. Let o € A be a simple root, £ € g, a unit vector
and v C g, an abelian plane. We consider the set ® = {a} C A. Then, the subalgebras
constructed in Section take the form

lp6 =90 P F-204 D F—a D Fo D 920,
ap = ker a,
e =10 (ga D G2a),
me = Eo ©® RHa S¥) g-2a S J—a S Ja D 92a;

and Be = Mg - 0 is a rank one noncompact symmetric space whose tangent space at
01is T,Bs = RH, @ po P pan. Consider the subalgebras s = (g, © RE) & ga, and
Sy, = RH, P (go ©0) B g of go = [mg, mg]. The corresponding connected subgroups
5} and S, act polarly on Bg inducing a foliation, due to Theorem [B.Il Recall that the
canonical extensions of the actions of 5} and S, are the actions of the subgroups S§A¢ Ny
and SUACDN@, respectively. Observe that 5 @ ag @ ng = s¢, while 5, ® ap ® ng = 5,
and this readily implies that these canonical extensions are precisely the actions of Se
and S,. We deduce that Theorem [Blimplies Theorem [Al

The remaining part of this section will be devoted to computing the mean curvature
of the orbits in each example. To this end, we consider the solvable model M = AN
discussed in Section 2.1l If s C a @ n, we refer to its orthogonal complement in a ® n
with respect to (-,-)any as s-. Note that if S C AN is a Lie subgroup, the isometry
g € AN +— g -0 € M induces an orbit equivalence between the action of S on M and
the action of S on AN by left multiplication.

Recall that if M C M is a submanifold of a Riemannian manifold with second fun-
damental form II, we define the mean curvature vector of M at p as H, = >, Il(e;, €;),
where {e;}; is an orthonormal basis of T,M. In other words, #H is the trace of the
second fundamental form. If S C AN is a connected subgroup of AN, it is easy to see
from the formula for the Levi-Civita connection that the second fundamental form of
S C AN at e satisfies the identity

) (X, X), m)aw = (01— 66X, X], )

for each X € s and n € s*.
Let us start by discussing foliations of type ().

Proposition 3.3. Let o € A and £ € g, a vector such that (£,&) = 1. All the orbits
of Se are isometrically congruent. Furthermore, the mean curvature vector of S¢ at e
1s given by the following expression:

He = (dim g, + 2dim g, — 1) H,.

Proof. Observe that s; = kera @ (n © RE) is an ideal of a @ n. As a consequence, if
g € AN is an arbitrary point, we have S¢ - g = g9~ 'S¢g = ¢Se, because S¢ is a normal
subgroup of AN. Thus, S - g is isometric to S¢ via the left multiplication by g.

We proceed to compute H,. For this, it suffices to determine the vectors II(H, H)
and II(X, X) for each H € a and X € g\ © R, where A is any positive root. Given
any H € a, it is clear from (2) that II(H, H) = 0. On the other hand, if A\ € Xt
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and X € g, is a unit vector orthogonal to &, we obtain that 1 = (X, X)an = |X|?/2
and (X, X),m)an = ${(X[*Hyn) = (Hyn) = (%3 Ha,n)ay for cach 1 € s+ =

|a?

span{ H,, £}, which means that II(X, X) = <‘ |2> H,. In conclusion,

1 . . 2 1 2
M, = W( > (dimgy)(A ) + (dimga — 1)|al )Ha = (200 —la)H
AexF\{a}
= (dlmga + 2dim J2a — 1>Ha7
where we have used () for the last equality. O

A direct consequence of the previous proposition is that the foliation induced by S
consists of congruent minimal submanifolds if and only if 2a ¢ ¥ and dimg, = 1. If
this is the case, then s¢ = ap @ ng for & = {a}, and By is homothetic to the hyperbolic
plane. Furthermore, s = 0, which means that 35 acts trivially on Bg. More generally,
the extrinsic geometry of the orbits for the solvable part Ag Ng of a parabolic subgroup
was studied by Tamaru in [24], where he proved that for any choice of & C A the
subgroup AgNg induces a harmonic foliation on M whose orbits are congruent.

We now consider the foliations from case (). In this setting, the orbits are not
isometrically congruent, as their mean curvature does not have constant length. More
precisely:

Proposition 3.4. Let a € A be a simple root and v C g, an abelian subspace of
dimension 2. Fiz a vector & € v with |§| = 1, and denote by H; the mean curvature
vector of Sy - Exp(t§) at Exp(t§) and by LEXp e): AN — AN the left translation by
Exp(t€). Then,

tlof?

= 5y a8 + 2dim oo — 1) (o — 26).

(Lixp(—t¢))« Bxp(te) He

In particular, the orbit through Exp(t€) is minimal if and only if t = 0.

Proof. Firstly, if g = Exp(t€) € AN, we deduce that S, - g = gg71S,g = g(g7S,g) is
isometric to g~1S,g by left translatlon Thus, it suffices to compute the mean curvature
H, of S = g7'S,g at e. To this end, we compute the Lie algebra § = Ad(gY)s, of

g 'S,g. Observe that Ad(g~')s, C a @ n is orthogonal to Ad(g)*v = e 2%y with
respect to the inner product (-,-). Given any n € v, we have

n=n-—t[0&n] (mod On)

=~ & o = S(1+0)0E 1] (mod fn)
=n—t&nH, (mod ¢t ®bn).

o—tad(0€)

Therefore, if we consider an orthonormal basis {£,n} of v, it is immediate that the
orthogonal complement of Ad(¢g~1)s, in a ® n is span{tH, — £,n}. As a consequence,
5= Ad(g1)s, = kera ® (n© v) & R(H, + t|a|’¢). The normal spaec st is given by
s =Rn @ R(tH, — 2¢).

Assume H € ker ae. In this case, we directly have from (2)) that II(H, H) = 0.
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Now, suppose that A € £ and X € g,©v is such that 1 = (X, X) 4y = 3| X|*. Then,
(X, X) satisfies (I[(X, X),v) an = F(IX[2Ha,v) = (Hy,v) = (555500 (1Ho — 26), V) an
for every v € 5+, and thus TI(X, X) = 51520 (1 H,, — 2€).

Finally, consider the vector Y = H, + t|a|?¢, whose norm squared is (Y, Y )y =
la|? + 3t2|a|*. Note that (1 —0)[0Y,Y] = 2t|a|*(tH, — (1 — 0)&), so we deduce from (2)
that TI(Y)Y') = t'“‘ (tH, —2¢). As a consequence, the normalized vector Z = Y/|Y |an
satisfies I(Z, Z) = 3 ﬂ;‘“ap (tH,—2¢). From these calculations, we obtain that the mean
curvature of S at o is given by

o= grp( X @ma)a) + (@img, - Dol ), - 26)

2 2
2+ rex\{a}
t
= m((%a a) — |of?)(tH, — 26)
tlal* .
=57 plap 4 e+ 2dim ga — 1), — 26).

Finally, note that the existence of an abelian plane inside g, implies that the integer
dim g, + 2dim go, — 1 is positive, so the orbit through Exp(¢£) is minimal if and only
if t =0, as desired. O

In particular, the homogeneous foliation induced by S, is never harmonic indepen-
dently of the choice of v. From here, Corollary [LLT] follows immediately.

Corollary 3.5. No polar homogeneous foliation constructed as in case () of Theorem[B
is orbit equivalent to a homogeneous foliation given in case ().

4. PROOF OF THEOREM

Now we prove that the examples appearing in Theorem [Bl are the only examples
of codimension two homogeneous polar foliations on symmetric spaces of noncompact

type.
From [2, Proposition 2.2] we obtain:

Proposition 4.1. Let M be a Hadamard manifold, and let H be a connected closed
subgroup of the isometry group of M acting on M in such a way that the orbits of H
form a foliation. Then, all the orbits of H are principal, and there is a connected closed
solvable group S acting isometrically on M whose orbits coincide with the orbits of H.

Let M = G/K be a symmetric space of noncompact type. We assume the notation
introduced in Subsection 2.1l Thus, K is the isotropy group at o € M, we have a
Cartan decomposition g = € @ p, a choice of maximal abelian subspace a of p that
determines a root space decomposition g = go @ (@ Aes g,\), and a positivity criterion
that selects a set of positive roots ¥7. We denote by A the set of simple roots. We
define n = @, .+ ), and recall that £, = go N £.

Assume that H is a connected closed subgroup of the isometry group G that acts
polarly on M, and that the orbits of H on M induce a foliation. Proposition K.1] says
that there exists a solvable subgroup S of G whose orbits coincide with the orbits of
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H. Let s be the Lie algebra of S. Then, s is contained in a Borel subalgebra b of g.
See Subsection 2.3 for further details. The next result states that we may assume that
s is contained in a maximally noncompact Borel subalgebra.

Proposition 4.2. The leaves of a homogeneous polar foliation on M = G/K coincide,
up to isometric congruence, with the orbits of a connected closed solvable subgroup S of
G whose Lie algebra s is contained in a mazimally noncompact Borel subalgebra of the
form t & a dn, where t C € is abelian.

Proof. By Proposition [41] there is a solvable subgroup S of G whose orbits form the
homogeneous polar foliation under investigation. According to Proposition 2.2 we may
assume that s is contained in a maximal solvable subalgebra of the form {®ag O ng,
with ¢ C £ an abelian subspace, and ® C A a subset of simple roots. In particular,
the tangent space of S -0 at o, as a subspace of p, is contained in (1 — 0)(agp B ng). As
a consequence,

(acas)®(1—0)(neng) = <@RH>€B<@PA)Q5#7

rexy

where s = {£ € p : (£,5) = 0}, according to the definition given in Proposition 241
Let A € ¢ be arbitrary, and X € gx. Then, since Hy, (1 — )X € SPL, and the
action of S is polar, it follows from Proposition 24 that [Hy, (1 — 0)X] = (1 + 0)|\*X
is orthogonal to s. Thus, s is orthogonal to EB/\G% t,, and is therefore contained in

(tNE) B ap ®ng C (ENE) ® a® n, with t = tN & abelian. O

In view of Proposition [4.2] if S is a closed solvable subgroup of G acting polarly on
M and such that its orbits induce a foliation on M, we may assume from now on that
the Lie algebra s of S is contained in a Borel subalgebra of the form t @ a & n, where
t C £, is abelian. From now on we assume that the action of S on M is polar, but
not hyperpolar. Recall from Proposition 2.4l that 5# is a Lie triple system (but not an
abelian subspace) and [sp ,5,] is orthogonal to s.

Moreover, [s;,8,] @ s, is a reductive Lie algebra and the orbit through the origin
of the subgroup Sl Whose Lie algebra is this one is also a symmetric space. Since it
is two—dimensional and not flat, it must be homothetic to a real hyperbolic plane RH?2.
Because RH? has constant curvature, it follows from [I3, Chapter IV, Theorem 4.2] that
there exists a constant C' > 0 such that ad(£)?(n) = Cn for any pair of orthonormal
vectors &, ) € spL.

Our next step is to prove that spL is contained in a @ p'. In order to do this, we
consider the vector subspace

%zﬁ@(ﬂ@lﬁzﬁ@( & g)\).

AeTT\A

Since t @ a normalizes all root spaces and [n,n] € n o nl, it follows that § is a
subalgebra of t ® a @ n containing s. In particular, s,s, C Saen, SO the codimension of
Sqan 1S less than or equal to two.

Lemma 4.3. Let q be a Lie subalgebra of tda®dn and X\ € X7, If gy C qamn and there
exists H € a N qugn such that N(H) # 0, then gy C q.
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Proof. Take X € g)n C qaen- Then there exist vectors T, T € t such that T+ H,
T+ X € q. In particular, ad(T)X + A\(H)X = [T 4+ H,T' + X| € q. This means that
the linear map ad(7')+A(H) idy, preserves g, and carries gy to q. Since 7" € t, the linear
transformation ad(7T") is skew-adjoint, so ad(7") + A(H) idg, is a linear isomorphism and
it follows that gy C q. n

Now we can rule out the possibility that §.,s, has codimension zero.
Lemma 4.4. 5,5, # a @ n.

Proof. Assume that §,5, = a @ n. Both a and all root spaces corresponding to positive
roots are contained in §,q,. By Lemma [4.3] it follows that n C s.

Let m denote the maximum possible level of a root. We define k € {0,...,m} to be
the smallest integer for which n**1 @ -.. @ n™ C 5. We want to show that k = 0. On
the contrary, assume that k¥ > 1. Let A € ¥* be a root of level k. As n! generates n,
the root space g, is generated by elements of the form

ad(Xl) cee ad(kal)Xk, Xz € ﬂl.
Since n € 5§ = 5 + (n©n!), we can choose Yj,...,Yy € n©n! such that X; +Y; € 5

for each i € {1,...,k}. Hence, ad(X;+ Y1) --ad(Xg_1 + Vi 1)(Xi +Yi) € 5. By using
the fact that [n",n®] C n"** we have

ad(X1 + Yi) .- -ad(Xk_l + Yk—l)(Xk + Yk) =
ad(X1)---ad(Xp_1)Xr  (mod n* ™ @ ... @n™),

so we obtain ad(X;)---ad(X;_1)X; € s. This means that gy C s, and as a result,
n* C s, contradicting the definition of %.

Therefore, £ = 0 and n C s. In particular, spL C a must be an abelian subspace,
contradicting the fact that our action is not hyperpolar. Thus, the case Sy = a @ n is
not possible. O

Before analyzing the remaining possibilities for the codimension of §,4, we need the
following result.

Lemma 4.5. Assume that V € a @ n is nonzero and orthogonal to s. Then:

(i) If V € a, then 5# =RV @ (1 — 0)Rn,, where n, € gq is nonzero and o € A.

(i) If V € go for o € A, then s; = (1 — 0)(RV @ R(aH, + 1)), where a € R,
Na € 8o O RV, and [V,n,] = 0.

(iii) If V. = H, + &, where a« € A and &, € g, is a nonzero vector, and g =
Exp(—&u/[.)?) € N, then Ad(g)s C t@® a @ n is orthogonal to &,. In partic-
ular, (Ad(g)s)y = (1 — 0)(RE ® R(aH, +14)), for a € R and . € go © RE,.
Furthermore, [, 1a] = 0.

Proof. We prove ({l). Assume V' € a. Since a C p, this means V' € 5#. Choose any unit

vector 1 =1y + D \exr (1 = O) € EPL orthogonal to V', where 19 € a and 7, € g, for

each A € X7, Since the action of S is polar nonhyperpolar, [V, 7] is a nonzero vector
orthogonal to s. Note that

Vin] = (14+6) Y AV,

Aext
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and recalling that 6n is orthogonal to s, we obtain

(1=6) > AV)m € 5y ORV =Ry,

Aext

so g = 0 and A(V) = (V) for every pair of roots A, u € £+ such that ny, 7, # 0.

Suppose p, v € T are two different roots such that n,,n, # 0. Hence, (H,_,,V) =
p(V)—v(V) =0 and (H,_,,n) =0, so H,_, € San. Therefore, we may choose a
T € t such that T'+ H,_, € s. An analogous argument shows that 7, + a7, € s.en for
a = —|nu|*/In.|* <0, so there is a vector 7" € t such that 7" + 7, + an, € s. Hence,

[T, n,) + alT,n,) + (= v, )y + alp —v,v)n, = [T+ Hyo, T+ 1y +an,] € s

Since ad(7T) is skew-adjoint (because T' € €) we deduce [T',1,], [T,7,] € Sagn. Thus
(1 — v, ), + alp — v, v)n, is also in Sge,. Observe that

1 a
(W—v,p) alp—vv)

which implies that 7, + an, and (ux — v, )1, + a{p — v, v)n, are linearly independent
vectors in §yqy. Therefore, 1, 1, € $40n must be orthogonal to 7, contradicting the fact
that they are nonzero. We thus obtain that only one of the 7, can be nonzero, that is,
n=(1-0)n, €p, for some p € XF.

We now prove that p is simple. If 4 = § + 7 were a sum of positive roots 3, v € X7,
then 7, € g, = [93, 9,), S0 we may write 7, = Zle[Xi, Y], where X; € gg and Y; € g,
for each i. Clearly, gg + gy C Saen, Which means that for each ¢ there are vectors T;,
T! € tsuch that T; + X;, T/ + Y; € s. As a consequence,

k k
ST Y]+ XL T+ X0,V = S5+ X, T+ Y €s.

i=1 i=1

- _a|u - V|2 > 07

Note that each [T},Y;] is in g, C Sqan and each [X;,77] is in g C Sqen, which implies
that 7, = > _,[Xi, Yi] € Sqen, contradicting that 7, is nonzero. We deduce that p € A,
so the first assertion is proved.

Now we prove (). Assume V' € g, for a simple root a € A. Choose a nonzero vector
n="n+ st (L =0 € spl, where 19 € a and 7, € gy for each A € ¥T, such that
(V,n) = (V,na) = 0. Let p € ¥F be a positive root with n, # 0.

For now, let us suppose that we can choose p so that p # a.

We first prove that ny € RH,. Assume otherwise, so there exists a vector H € a
such that (H,no) = 0 and (H, H,) = p(H) # 0. Then H € §qg,, so there exists T € t
such that 7'+ H € 5. On the other hand, 7y + an, is orthogonal to both V" and 7 for
a = —|nol*/In.? < 0, which implies that 79 + an, € Suen, and there exists 7" € t such
that 7" + no + an, € s. In particular, a[T, n,] + apu(H)n, = [T+ H,T' +no + an,] € s,
so 0 = (a[T,n,) + ap(H)nu,n) = au(H)|n,|?, a contradiction.

We now prove that 1y = 0 for every A € X+ \ {u}. If X is a positive root linearly
independent with p, and 7, # 0, we may find H € a such that u(H) = 0 # A(H). Since
no € RH,, this implies that H € sqq,, and hence, there exists 7' € t such that T+ H € s.
Furthermore, 17,4bny € Sqan with b = —|n,|?/|nx|* < 0, and there exists 7" € t satisfying
T'+n,+bny € 5. As a consequence, [T, 1,|+b[T, nx]+bA(H)ny = [T+H, T'+n,+bn,] € s.
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In particular, 0 = ([T, n,]+b[T, n\] +bA(H)nx, n) = bA(H)|n,]?, a contradiction. On the
other hand, if 2;x € £* and 7, # 0, a similar argument yields that there is 7' € t such
that T+ H, + an, € s, for a = —pu(no)/|nu|? and T” € t such that T" + 1, + b, € s,
where b = —[1,[*/[n2,|* < 0. Thus,

0= ([T+ Hy+ ang, T" + 1, + bnay). m)
= ([T, nu] + O[T, nop] + [*n + 20|11y + alm, T m) = —| 0|,

contradicting our choice of p. This implies 75, = 0 (and an analogous argument shows
that 1,2 = 0 in the case that p/2 € ¥1).

To summarize, we have obtained n = aH, + (1 — 0)n,, for some constant a € R, and
i is a root different from o with 7, # 0.

Assume a # 0. Since s, is a Lie triple system, ad((1 — )V))*n is proportional to 7.
Since for any H € a we have

(ad((1 — 0)V)*n, H) = —([(1 - O)V, ), [H, (1 - O)V))
= —((1+0) (—ala, )V + [Vim] = [0V:m,]), alH)(1 + O)V)
— 2a{a, 1) |V?a(H) = (2a(a, w)|V[*Ha, H),

it follows that © = « or u = 2a. This last case is not possible, because by Proposi-
tion 24l (1+60)(—2a|al?V —[0V,m24]) = [(1—0)V, aHo+ (1 —0)n94] would be orthogonal
to 6. This would imply that [0V 1,,] is proportional to V', and thus,

0= [Vv? [9‘/7 nZOéH = _[772047 [‘/7 QV]] = 2|V|2|a|2n20€’

contradicting the fact that 7y, # 0. We conclude that u = a.

Suppose now that a = 0, so n € p,. Since a, got, S Sagn, We obtain g,y, C s by
Lemma The vector [(1 — )V, (1 —0)n,] = (1 + 0)([V,n.] — [6V,n,]) is nonzero
and orthogonal to s. Combining this with the fact that g4, C s, we get [V,n,] =0,
so (14 0)[AV,n,] is nonzero and orthogonal to s. This now implies 4 —a € XT and
0V.n,] € (a ®n)Ss. Furthermore, we must have p = 2, and thus, [0V.7,] €
((a®n)©s)Ng, =RV. Therefore,

0= [Va [QV, nZozH = —[QV, [nZom VH - [772aa [Va QV]] = _[|V|2Ha>772a] = —2|Oz|2|V|2772a,

which yields a contradiction.

We now assume 7, = 0 for every p € 37\ {a}. As a consequence, n = 1+ (1 —0)1,,
with (V,n,) = 0. We only need to prove that 79 € RH,. Indeed, if 7 is not proportional
to H,, there exists H € a such that (H,n9) = 0 and a(H) # 0. Therefore, H € Sqan,
so we may find T € t satisfying 7'+ H € s. Similarly, by taking ny + xn, with
x = —|nol?/|nal? < 0, we obtain 1y + 21, € Saan, 50 T + 19 + 21, € 5 for an adequate
T' €t Thus, 0 = ([T + H,T' + 19 + 2n4),n) = za(H)|n.|?, contradiction. Hence, we
may write ) = aHq + (1 — 0)1q with a € R, 14 € go © RV, and 5, = R(1 — 6)V @& Ry.

If a = 0, then note that a, g2 C Suqn, and Lemma implies go, C 5. Together
with the fact that [(1 — )V, (1 —0)n.] = (1 +0)([V,na] — [0V, n4]) is orthogonal to s by
Proposition 24 we get [V, n,] = 0.
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If a # 0, we can take the triple bracket [n, [, (1 — 6)V]], which is in s, C a® p'.
Then, for any X € gao,:

0= (n,[n, X =O)V]], X) = ([n, 1 = O)V], [n, X]])
= ((L+0)(alal*V + [na, V] = [0, V]), 20| X — 011, X])
= —ala*(V. [01a, X]) + 2a|a|*([na, V], X) = =3ala*([V. 4], X),
and this yields [V, n,] = 0, as stated. This finishes the proof of ().
To prove (i), assume V = H, + &, for a nonzero &, € g,, where o € A, and consider
g = Exp(—¢&./I& %) € N. Then, the isomorphism Ad(g) preserves the subalgebra

t ® a @ n, and therefore, Ad(g)s C t® a @ n is the Lie algebra of gSg~!, which induces
a homogeneous polar foliation on M with a non flat section. Observe that

(R T Y

2
Ad(g_l)*(Ha + ga) = e_@ad(%a)ga = ga - %egaa

which means that Ad(g)s C t® a @ n is orthogonal to &,, as desired. The rest of the

assertion follows from (i). O

Now we continue with the proof of Theorem [Bl Recall that § = s+ (nSn!). According
to Lemma [4.4], §,0, # a @ n, so either §,4, has codimension one or two in a @ n.
If 540 has codimension two, we have §qq, = Sqqn, Which is equivalent to 5# Cadph
On the other hand, if §.q, is a codimension one subspace of a & n, then by [3]
Proposition 5.4] we have &40, = (a @ n) © RE, where ¢ satisfies one of the following
possibilitiesﬂ
(i) £ €a.
(ii) € € g, for a simple root a € A.
(iii) & = H, + &, where &, € g, is a nonzero vector and o € A.
Note that & is also orthogonal to s. Hence, by Lemma [4.5] we obtain that 5# may be

assumed to be in a @ p' after conjugation by an element of N. The next step is to
determine the orthogonal projection s4qy.

Lemma 4.6. The action of S is orbit equivalent to the action of a connected closed
subgroup S whose Lie algebra s is contained in t®adn, the normal space §pl s contained
in a®pl, and §pl Npt # 0. Equivalently, the orthogonal projection of EPL on a 1s not
two-dimensional.

Proof. Assume s, Np' is trivial. Let ¥ = {a € A: my, (s,7) # 0}, where 7y, g — g
denotes the orthogonal projection. Since the action is not hyperpolar, ¥ is a nonempty
subset of A. We prove a¥ = @, ., RH, C Wa(spl). Here 7, denotes the orthogonal
projection onto a. Indeed, assume H € a © 7Ta(5pl). Then there exists a vector T € t
such that 7"+ H € s. On the other hand, let @ € ¥. We may find two vectors
§ =&+ Y peall =0)&s and 1 = 1o + Y40 (1 — O)ng in s, such that &, # 0 and
(€as M) = 0. By our assumption, & and 7 are linearly independent, which implies that
there exist unique constants x, y € R such that &, + x&y + yny € Seen- In particular,
we may find 7" € t satisfying 7" + &, + x& + yno € s. Thus, [T,&.] + a(H)E, =

INote that Berndt and Tamaru’s proof does not rely on the additional condition that they impose
on s, namely, that s Nt = 0.
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[T+ H, T+ &, + 2 + yno] € s. Taking the inner product with £, we deduce o(H) = 0.
All in all, we obtain a © 7a(s,) € ag = Naew kera, so a¥ C my(s™) (in particular, ¥
has either one or two elements).

In order to prove the result, we assume first that for all @« € W, the orthogonal
projection g, (5#) is one-dimensional. Thus, we can take two orthogonal vectors £ =
S0+ D ney(1—0)&0 and 1 = 1y + > o (1 — )14 that span s;-. Since the action is polar
nonhyperpolar, the vector [£,n] is nonzero and orthogonal to s. Observe that, because
U CA, [0, €aforalla € U, and o — 5 ¢ 3, we have

[&n]=(1+90) (Z (a(é*o)na - a(no)fa) + ) [§a7n6]> -

ac¥ a,BeV

Since n and s are orthogonal, we obtain

(1-9) <Z (af€o)me — atm)ta) + 3 [gam]) est Campl,

acW a,BeV

which means that all terms in p? cancel out and spL Np! # 0, a contradiction.

Now, assume that there exists o € ¥ such that my, (spL) is two-dimensional. Since
H, € 7ra(5pL), we may find Hy + 3504 (1 —0)8s € 5#, with each g € gg, and £, # 0, for
dimension reasons. Consider the element g = Exp(—¢,/|¢4|?) € N. Then the action of
S is orbit equivalent to the action of gSg~!, whose Lie algebra is Ad(g)s C t® a @ n.

Note that the equality

2
Ad(g™!)* (Ha + Z&s) = & 2“? |2<9§a
BeW Bew @
and (On,s) = 0 imply >, (1 — 0)¢s € (Ad(g)s)y Np'.

To conclude, it suffices to prove that (Ad(g)s), € a @ p'. This is the case if the
projection of Ad(g)s + (n © n') onto a @ n has codimension 2. As the projection of
Ad(g)s+(nont) onto adn cannot be adn by Lemma L4 our assertion is false whenever
this projection is of codimension one, that is, when the orthogonal complement of
Ad(g)s in a @ n is spanned by >,y &s. By [3, Proposition 5.4], {s = 0 for all simple
roots 3 # a, and by Lemma EH(H) we have (Ad(g)s)y = (1 — 0)(Ré, @ (aHa + 14))
for a € R and 7, € go. Thus, (Ad(g)s)f C a @ p', contradicting the fact that the

P
projection of Ad(g)s + (n ©n') onto a @ n has codimension one. O

Due to the previous lemma, we may assume that 5# Np! is a nonzero subspace of g.
First we need:

Lemma 4.7. Let S be a closed subgroup of G whose Lie algebra s satisfies s C tdadn,
and the orbits of S form a homogeneous foliation on M. Let V € n be a vector such
that (1 —0)V € s, and g = Exp(V) € N. Then s Nt =Ad(g)(s Nt) = Ad(g)(s) NE.

Proof. Since the orbit S0 is principal, we have [sNt,s,] = 0. Hence, [sNt, (1—0)V] =
(1—0)[sNt, V] = 0, which means ad(V)(sNt) = 0 and Ad(g)(sNt) = e*V)(sNt) = sNit.
On the other hand, sNAd(g~!)€ is the isotropy algebra of S at g~!-0, and since all orbits
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have the same type, it follows that dim Ad(g)s N € = dims N Ad(¢g~ ')t = dims N € =
dims Nt. Since s Nt = Ad(g)(sNt) C Ad(g)(s) N ¢, the equality follows. O

The next result is needed later to handle the two examples in Theorem [Bl simultane-
ously.

Proposition 4.8. Let S be a connected closed subgroup of G inducing a homogeneous
polar foliation on M. Assume that its Lie algebra is contained in a maximally noncom-
pact Borel subalgebra t@adn, and $aen = 3O (MO 1,,), where v, is an abelian subspace
of ga, @ € A, and 3 is a subspace of a. Let S be the connected Lie subgroup of G whose
Lie algebra is § =3 ® (n©v,). Then, S and S have the same orbits.

Proof. Denote by s, the orthogonal projection of s onto t. We start by proving that
§ = s @ § is a Lie subalgebra of g. Since [gx,g,] € @x+y, for A, p € 7, and t
is abelian, centralizes a, and normalizes each root space, in reality this amounts to
proving [s¢, go © 4] € ga © Va.

Let U, V € v, and T € s,. We choose X € a@® n, such that T+ X € s. Since the
action of S is polar, we know that [5#,5#] is perpendicular to 5. Thus,
0={((1-0U,1-0)V], T+ X)=(—(1+6)[pU, V], T)

= —2([U,0V], T) = =2(U, [V, T]).

This proves [s¢, 0] C go © V4.

Let T € sNtand V € v,. Since sNt C s, we have [T, V] € g,Ev,. Let X € g,O0,.
Then there exists Ty € t such that Tx + X € s. Thus, [T, X]| = [T, Tx + X] € 5, and
hence, ([T, X],V) = 0. We have proved [s Nt,v,] = 0.

Let T: § — 5.5 (sNt), X — Tx, be defined by Tx +X € s. This map is well-defined:
if T'x, T% € t are such that Tx + X, T%x + X € s, subtracting, Tx — T% € s Nt. Note
that T is surjective.

Given a nonzero V € v,, we define @y : g, © 0y — go © 0, by Oy (X) = [Tk, V].
We prove that ®y is self-adjoint. Indeed, given X, Y € g, © v, C 5, we obtain
Tx, Y]+ [X,Ty] + [ X, Y] = [Tx + X, Ty + Y] € s, which means

0=(V,[Tx+X, Ty +Y]) = —(ITx, V], Y)+([1Iv,V], X) = —(Py(X),Y) + (X, Py (Y)).

We now prove that &, = 0. Assume this is not the case, so by the spectral theorem,
there exists a nonzero vector X € g, © v, and a nonzero constant A € R such that
Oy (X) = AX.

Observe that [V, Tiy,x)] = 0. Indeed, [V, Tiv,x)] € ga © 04, and given any Y € g, © v,
we obtain

0=([Ty + Y. Tivx) + [V.X]], V) = [Ty, [V, X]| + [\, T}v,x)), V)
= ([Y7 T[v,x}]a V> = —(Y, [‘/7 T[V,X]])a

which implies [V, Tjv,x]] = 0.
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Now, consider g = Exp(3V) and Z = Tx + X — 2= (Tjv,x] + [V, X]) € s. Then

1 1
— o,y ad(V) _
Ad(g)Z = ¢4 (T + X QAT[VX} 2A[V x])
1 1
:TX+X—2>\T[VX] 2A[VX] S(AX + [V, X]) = 552V, X
1
v — = Tivx) € Ad(g)(s) N E.

2\

By Lemma 7] we obtain Ad(g)Z € s Nt, and thus, Z € Ad(g7 (s Nt) =sNt, a
contradiction. We conclude that ®y is the zero map for every V € v,.

Since ®,, = 0 we have [s;© (s Nt), v,] = 0. Together with [s Nt,v,] = 0, this proves
[s¢, 0] = 0. Therefore, by skew-symmetry of the elements of t, we get ([s;, §oO04], Vo) =
(§a © 04, [51,04]) = 0. Since t normalizes g,, we finally get [s, o ©04] C go © 04, which
in turn implies that § =6 D3O (N © v,) = §( D Saqn 1S a Lie subalgebra of t® a @ n.

We can therefore consider the connected subgroup S of G whose Lie algebra is §. We
prove that S . S and S have the same orbits. Note that a priori we do not know if S is
closed, and thus the action of S may not be proper. Since S C S and Soan = Saan =
FRE (n@n ), we deduce that S-0 = S.0. The same argument may be applied to see that
S.0=_S"0. In particular, S-0=S5-0= 50 is simply connected (because AN is an
exponential Lie group actlng simply transitively on M), which means that the isotropy
subgroups SN K and SN K are connected. As a consequence, the slice representation
of S at o is trivial because [§ N &, sp] =[5, (a0 3) ® (1 —0)o,] = (1 —0)[s,0,] = 0.

Hence, using Lemma 2.3 twice, the groups S, S, and S act with the same orbits . [

Since we can assume that 5# N p! has dimension one or two, we tackle these two
possibilities separately.

4.1. The case s, C p'.

Assume EPL is contained in p!. We have that a and n © n! are subspaces of sugn.
A direct application of Lemma gives non' Cs Let & = > (1 —60)& and
N = aea(l = 0)n, be orthonormal vectors in 5#, where &4, 7o € go. Since the action

is polar nonhyperpolar, [£,n] = (1 + 0) (ZaﬂeA[fa,ng] — [0€4,m5]) is a nonzero vector
orthogonal to s. By using the fact that n © n' C s and [0¢,,n5] = 0 when  # «, we

deduce [£4,70] = 0, and [£4, 18] + [£5,1a] = 0. Thus, [£,7] = —(1+0) > ca[08a: 0]
Since ﬁpL is a two-dimensional Lie triple system, it determines a totally geodesic
submanifold that is isometric to a real hyperbolic space. Hence, there exists C' > 0

such that ad(¢)?n = Cn. Thus, we have for every a € A,
C{8ara) = Cl€arm) = (€a, ad(€)™n) = (€, &al, [, ])

= _<Z SB ga egaaga] (1 + 8) Z[9§V>HV]>

BEA YEA

= ([6al*Has (1+6) Y_[05.m5]) = 0.

BeEA

Proposition 4.9. s40, = (a ®n) © v, where v, is an abelian subspace of g,
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Proof. Let A\, p € A with &, &, # 0. Since ({4,7,) = 0 for all simple roots o € A,
taking x = —[6,\[2/[€,]* < 0 we have &, + 2§, € Sqan. Hence, we may find a T' € t
such that T'+ &, + x€, € 5. On the other hand, choose a vector H € a with A\(H) =0
and p(H) # 0. Since a C S4qn, there exists 77 € t such that 7"+ H € 5. As a
consequence, (17, &\ +x [T, €, +ap(H)E, = [T"+H, T+&\ +2€,] € s. This means that
0= ([T, &)+ 2T, ) +au(H)E, Y., (1—0)E,) = xu(H)|E,|?, which is a contradiction.
Thus, £ = (1 — 0)&,, for a fixed simple root v € A. The same argument can be applied
to conclude that n = (1 — 0)¢s for a simple root f € A. We now prove that a = f.
Indeed, if a # 3, we have [£,n] = (1 — 0)([a, 15] — [0€a, ns]) = 0, contradicting the fact
that S has a non flat section.

Finally, v, = R¢, @ Ry, is abelian by Lemma [L5|(). O

The expression obtained in Proposition [L.12] together with Proposition .8 with 3 = a
imply now that the action of S is orbit equivalent to item (i) of Theorem [Bl

4.2. The case dim(s, Np') =

In this setting, we can choose two orthonormal vectors § = & + > (1 — 0)&, and
N = Y aen(l = 0)n, that span 5 , where & € a is nonzero and &,, 7, € g. for each
a € A.

Since w — 8 ¢ X for o, f € A, a # 3, we have

&m) = (14 0) (D (a(€o)a — [Barmal) + D [éasns]).

acA a,BEA

Recall that ad(£)?n = Cn for a positive constant C' € R. In particular, for any H € a,

0= {On, H) = (ad(e)n, H) = (€. [e H]) = —([e.n). (L+0) YA (H)E,)
YEA
= _QZ §0 faana —< 22 §0 £a777Q>Ha7 H>

acl acl
which implies =23\ @(&){€a: Na) Ha = 0. Therefore,
(3) a(&0)(€a,sma) = 0, for every o € A.
On the other hand, since ad(n)?¢ = C¢, for any H € a,

Cléo, H) = (C€. H) = (ad(n)’€, H) = (In.€], In. H)) = (&), (1+6) > (H)m, )
=23 alg)a(H)lnal* = (2 al&)lnal*Ha, H).

aEA a€el

we obtain

(4) Cto =2 a(6o)lnal*Ha.

a€EA
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Similarly, let o, 3 € A be arbitrary, and X € go13. Then,
0= (C& X) = (ad(m)*€, X) = (In.€], 1. X]) = ([, mly D ((X.m) = X, 0m,)) )

HEA

= —<Z Y(€0) My, Z[X, 9775]> = Z (&), ms], X)

YEA dEA v,0€EA

= (a(&0) [0 ] + B(&0) 5, Mal, X).-
Consequently, for any two simple roots «a, 5 € A, [(a — 8)(&0) Na, 15] = 0.

Lemma 4.10. We have (4, 1a) =0 for all o € A.

Proof. We define ¥ = {a € A: 1, # 0}. We show that (£,,7,) = 0 for each a € V.

From (4) the map a € ¥V — «(&,) cannot be identically zero. Thus, fix a € ¥ such
that a(&y) # 0. Hence [B]) already implies (£,,7,) = 0.

Assume § € U satisfies (€5,m5) # 0. In particular, from (B) we have 3(&) = 0. If
(a, B) # 0, the linear map ad(ns): go — Gats is injective. From [(a — 5)(&o) as s = 0
we deduce (a — £)(&0)na = 0, so a(&y) = B(&) = 0, contradiction. Thus, («, ) = 0.
In particular, Hg € S4qn, so there exists T € t such that 7'+ Hz € s. On the other

hand, & + @1 + Y1s € Sean for y = —|&o[?/(€s,mp) # 0 and @ = —y|ns|*/|nal* # 0, s0
T+ & + xna + yns € s for an adequate 7" € t. Thus,

0= ([T+ Hg, T+ & + 200 + yns], n)

= (@[T, 0] + y[T,ng] + y1B1ns, 1) = ylBI* s,
which gives us a contradiction. Therefore, ({3,73) = 0 for all 8 € A. O

Proposition 4.11. There exists a simple root a« € A and a constant a € R such that
E=aHy,+ (1 —0),. If &, =0 (that is, if £ € a), then n = (1 — 0)1,.

Proof. Firstly, suppose £ € a. Then, a direct application of Lemma .5 implies that n =
(1—0)n, for a simple root a € A. In particular, () is reduced to C& = 2a(&o)|na|* Ha,
so & € RH,,, and the proposition follows.

Now, assume &, ¢ a, and let & € A be a simple root such that &, # 0. We prove that
E=aH,+ (1 —0)¢,.

Suppose that &, is not proportional to H,. Then there exists H € a such that
(H,&) = 0 and o(H) # 0. As a consequence, H € §quq,, and there exists T' € t for
which T+ H € s. On the other hand, & + 2€, € Sqan for ¥ = —|&|?/[€a|> < 0 (because
(€4 Moy = 0 by Lemma [10), and we may choose 7" € t such that T" + & + z&, € s.
Thus, [T+ H,T" + & + 2] = [T, &) + xa(H)E, € s. Taking the inner product with
¢ yields za(H)[£,|* = 0, a contradiction.

Hence &, € RH, for any a € A. The fact that simple roots are linearly independent
together with () implies s = 0 for every 5 € A\ {a}. O

So far we have proved that £ must take the form aH, + (1 — 0)¢, for a nonzero a € R
and &, € g, (which may be zero). If £, = 0, then we also know that n = (1 — 0)n,.
If £, # 0, then the third statement of Lemma implies that the action of S is orbit
equivalent to an action of another closed connected subgroup S for which the normal
space of S -0 at o takes the form 55 = {&, DHo + (1 —0)v, } for a constant b € R and a
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Vo € go. Because of this, we may assume without loss of generality that 5# is spanned
by two orthogonal vectors & = aH, + (1 — 0)¢,, n = (1 — 0)n,, with a # 0, &u, o € Ga-
Recall from Lemma L5 that [£,,7,] = 0.

The key to finishing the proof lies in the following result:

Proposition 4.12. Assume s, = span{¢,n}, where £ = aH, + (1 — 0)&, and n =
(1 — 0)ne, where a # 0, &y, Na € Ga are orthogonal commuting vectors, and o € A.
Then:
(i) If €&, = 0, then the action of S has the same orbits as the action of the connected
subgroup of G whose Lie algebra is (a © RH,) ® (n © Rn,).
(ii) If &, # 0, then there exists an abelian subspace v, C g, such that the action of S
is orbit equivalent to the action of the connected subgroup of G whose Lie algebra
isad (nou,).

Proof. If £, = 0, then 5# =RH,®R(1-0)n, and S4q, = (aORH,) D (nSRn,). Then,
statement (fl) follows directly from Proposition A8
We prove (). We consider the element g = Exp(—ﬁga) € N. Since s is orthogonal

to aH, + &, and 7,, it follows that Ad(g)s is orthogonal to Ad(¢~")*(aH, + &) and
Ad(g7')*n,. By direct computation,

Ad(g™) (aHa + &) = ¢ &P (al, + &) = €&  (mod fn),
Ad(g7")* 1. = 6—@&1(65&)% =1, — ﬁ[@fa, Ne) (mod fn),
and since Ad(g)s C t® a @ n, it follows that the vectors &, and 7, — ﬁ[@fa, Na) are
orthogonal to Ad(g)s. On the other hand, the action of S is polar, so [, 1] = a|a]?(1 +
0)ne — 2[0€4, na) is also orthogonal to 5. As a consequence, (ala|*n, — 2[0&q, 4], 5) = 0.
We deduce that

2 2
Ad(g™)" (alof?n, — 266 1.]) = aloln, — (24 212

a” |

[l

is also orthogonal to Ad(g)s. Because On is already orthogonal to s, it follows that

)[950” el (mod On)

alal*n, — <2 + aé'j‘;) [0€., 1) is perpendicular to s. Since

2 a?|a
ajal” —2-Fp
we deduce that 7, and [0¢,, 74 are both orthogonal to s. We conclude that (Ad(g)s), =
(1 — 0)v,, where v, = span{&,, .}, and thus, gSg~! and the connected subgroup of G
whose Lie algebra is a @ (n © v,) act with the same orbits due to Proposition 1.8 O

= -2 <0,

The proof of Theorem [B] follows now from the observation that Proposition EI2[)
corresponds to case (), and Proposition ET2|([l) corresponds to case ().
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