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COHOMOGENEITY ONE ACTIONS

ON ANTI DE SITTER SPACETIMES

J.C. DÍAZ-RAMOS, S.M.B. KASHANI, AND M.J. VANAEI

Abstract. In this paper we classify, up to orbit equivalence, cohomogeneity one actions
of connected closed Lie subgroups of U(1, n) on the (2n + 1)-dimensional anti de Sitter
spacetime AdS2n+1. We also give some new examples of nonproper cohomogeneity one
actions on AdSn+1 and determine parabolic Lie subgroups of SO(2, n) and their orbits in
AdSn+1.

1. Introduction

Cohomogeneity one actions have successfully been used in Riemannian geometry to con-
struct examples of manifolds with certain geometric properties. See for example [17] or [21]
for a remarkable relation between cohomogeneity one actions and Riemannian manifolds of
positive curvature. Other uses of cohomogeneity one actions can be found to build examples
of Einstein metrics or Ricci solitons [12]. They have also been used to construct examples
of submanifolds with symmetries in [16]. In general, many geometric conditions translate
into a difficult PDE on a manifold; if the manifold is of cohomogeneity one and the PDE
behaves correctly with respect to this structure, then this PDE becomes an ODE which
one might be capable of solving. A recent example of this procedure can be found in [15],
where the mere fact of having existence and uniqueness results for ordinary differential
equations allows, at least theoretically, to solve a problem.

Our motivation for studying cohomogeneity one actions comes from a different perspec-
tive in this paper. We are interested in the classification and study of cohomogeneity one
actions on a given manifold. Cohomogeneity one actions on Euclidean spaces were classi-
fied by Segre [19] in his study of isoparametric hypersurfaces. Kollross gave a classification
of cohomogeneity one actions on compact irreducible symmetric spaces in [18]. For irre-
ducible symmetric spaces of noncompact type some important progress has been done by
Berndt and Tamaru [8]. The classification of cohomogeneity one actions on complex hyper-
bolic spaces, which was also achieved by Berndt and Tamaru in [7], is particularly relevant
for this paper. It can also be obtained as a corollary to the more general classification of
isoparametric hypersurfaces in complex hyperbolic spaces [14].
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The study of isometric actions on Lorentzian manifolds is not as well developed as in
Riemannian manifolds, although some interesting results are obtained by Adams and Stuck
in [1]. One important question that arises in this setting is whether nonproper actions
should be investigated. On the one hand, the fact that a Lie group action is not proper
makes the study much more complicated. For example, in [6] we have shown that there
might exist cohomogeneity zero actions on a Lorentzian manifold of constant curvature,
which are nevertheless not transitive. Other curious phenomena such as the existence of
non-closed orbits may occur. On the other hand, there are many interesting non proper
actions that seem worthwhile to study. One such example is the action of O(1, n) on the
Minkowski space Ln+1, whose orbits are real hyperbolic spaces, de Sitter spacetimes and
light cones, all of which have geometric or physical meaning.

In this paper we study cohomogeneity one actions on anti de Sitter spacetimes, as a
continuation of a previous study in [20]. In the first part of the paper we assume that
our action is proper and study actions on odd dimensional anti de Sitter spacetimes that
are related to cohomogeneity one actions on complex hyperbolic spaces via the Hopf map.
We also give a description of their orbit spaces, and how the orbits of these actions can
be obtained geometrically. This part is basically an application of the classification of
cohomogeneity one actions on complex hyperbolic spaces [7], and of transitive actions on
complex hyperbolic spaces [11].

In the second part of this paper we give new examples of cohomogeneity one and coho-
mogeneity zero actions on anti de Sitter spacetimes of any dimension. More specifically, we
consider the Iwasawa decomposition of SO0(2, n) and parabolic subgroups of SO0(2, n).
Most of the examples provided are not proper. Hence, there are cohomogeneity zero ac-
tions that are not transitive, and cohomogeneity one actions with infinitely many singular
orbits. In these cases there are also orbits that are not closed. This contrasts with the
Riemannian setting, where these natural decompositions of isometry groups give rise to
well-behaved proper isometric actions.

The paper is organized as follows. In Section 2 we present the notions and notations
that are used in this paper. In Section 3 we study subgroups of U(1, n) acting with
cohomogeneity one on odd dimensional anti de Sitter spacetimes. First we introduce some
results and notation in Subsection 3.1, and then we address our study in Subsection 3.2,
to prove one of our main results: Theorem 3.1. In Section 4 we give new examples of
cohomogeneity zero and cohomogeneity one actions on anti de Sitter spacetimes. We
give in Subsection 4.1 the explicit root space decomposition of the Lie algebra so(2, n).
In subsections 4.2 and 4.3 we take advantage of these results to determine the Iwasawa
decomposition and the parabolic subalgebras of so(2, n). The main contributions in this
section are propositions 4.1, 4.3 and other interesting examples of isometric actions together
with the study of their orbits.

2. Preliminaries

We start with some basic definitions and results related to anti de Sitter spacetimes and
cohomogeneity one actions.
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2.1. Anti de Sitter spacetimes.

Throughout the paper, Rν,n−ν, 0 ≤ ν ≤ n, stands for the pseudo-Euclidean vector space
Rn endowed with the standard scalar product of signature (ν, n− ν). For r > 0 we define
the quadric hypersurfaces

Sn
ν (r) = {x ∈ Rν,n−ν+1 : 〈u, u〉 = r2}, Hn

ν (r) = {x ∈ Rν+1,n−ν : 〈u, u〉 = −r2},

called, respectively, the pseudo-sphere and the pseudo-hyperbolic space of index ν and
radius r. The n-dimensional pseudo-sphere and pseudo-hyperbolic spaces of index 1 and
radius 1 are known as the de Sitter and the anti de Sitter spacetimes; they are denoted by
dSn and AdSn, respectively.

The semi-orthogonal group is defined as O(ν, n − ν) = {A ∈ Gl(n,R) : A⊺ǫA = ǫ},
where ǫ is the diagonal matrix diag(−Iν , In−ν). The special semi-orthogonal group is
SO(ν, n− ν) = {A ∈ O(ν, n− ν) : detA = 1}. As pseudo-Riemannian symmetric spaces
we can write

Sn
ν = O(ν, n− ν + 1)/O(ν, n− ν) = SO(ν, n− ν + 1)/SO(ν, n− ν),

Hn
ν = O(ν + 1, n− ν)/O(ν, n− ν) = SO(ν + 1, n− ν)/SO(ν, n− ν).

2.2. Isometric actions.

Let M be a manifold. An action of a Lie group G on M is called proper if the map

G×M → M ×M, (g, p) 7→ (p, g · p),

is proper, that is, the preimage of a compact subset of M ×M is compact in G×M . If an
action is proper, then the orbit space M/G is a Hausdorff space with the quotient topology,
the orbits are closed submanifolds of M , and all isotropy subgroups are compact.

We now consider a pseudo-Riemannian manifold (M, g). We denote its isometry group
by I(M). It is well-known that I(M) is a Lie group. All the actions that we consider in
this paper are isometric (that is, they preserve the pseudo-Riemannian structure of M).
An action is effective if the only element of the group acting as the identity is the identity
itself. An effective isometric action is equivalent to the natural action of a subgroup of the
isometry group. The action of a connected Lie subgroup G of the isometry group I(M) is
called of cohomogeneity r if the minimum codimension of its orbits is r. In this case, M is
said to be a cohomogeneity r G-manifold.

Assume now that M is a cohomogeneity one G-manifold, and that the action of G on
M is proper. Then, by [4], the orbit space M/G is a one dimensional manifold, possibly
with boundary, homeomorphic to (i) R, (ii) S1, (iii) [0, 1), or (iv) [0, 1] with their standard
topology. We denote by π : M → M/G the projection. A point p ∈ M is called regular
(resp. singular) if π(p) is an interior (resp. boundary) point. The corresponding orbit
G · p is called principal or regular (resp. singular). A singular orbit whose codimension
coincides with the cohomogeneity is usually called exceptional. In cases (i) and (iii), the
manifold M is G-equivariantly diffeomorphic to G/K×R and the twisted product G×H V ,
respectively, where K and H are the isotropy subgroups of a regular and a singular point
of M , respectively. The manifold V is H-diffeomorphic to a (d+1)-dimensional Euclidean
vector space upon which H acts linearly and transitively on the unit sphere Sd ⊂ V ,
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and Sd ∼= H/K. In case (iii) there is exactly one singular orbit, every other orbit is
principal, and a tube around the singular orbit. In case (ii) the projection π : M → S1 is
a fibration with fiber G/K. In cases (i) and (ii) all orbits are principal and form a regular
cohomogeneity one foliation. Finally, in case (iv), M is obtained by gluing two manifolds
of type (iii) together. In this case there are exactly two singular orbits and every other
orbit is principal and a tube around any of the singular orbits (cf. e.g. [2]).

In the Riemannian setting, an effective isometric action of a Lie group G is proper if and
only if it corresponds to the standard action of a closed subgroup of the isometry group.
Thus, cohomogeneity one manifolds are a natural generalization of homogeneous manifolds
as cohomogeneity zero G-manifolds. In the non-Riemannian setting, a closed subgroup of
the isometry group does not necessarily act properly. In this case, there are examples of
cohomogeneity zero G-manifolds that are not homogeneous, that is, the group G does not
act transitively on M (see Proposition 4.3, for example).

3. Cohomogeneity one actions on AdS2n+1

The aim of this section is to present some examples of cohomogeneity one actions on
odd dimensional anti De Sitter spacetimes that are obtained by lifting cohomogeneity one
actions of complex hyperbolic spaces via the Hopf fibration.

We first recall some properties of the Lie algebra of the isometry group of CHn.

3.1. Complex hyperbolic spaces.

We consider the complex vector space Cn endowed with its standard complex structure J .
Obviously, Cn has an underlying structure of a real vector space that is isomorphic to R2n.
Thus, a real subspace of Cn is an R-linear subspace of the real vector space obtained from Cn

by restricting the scalars to the real numbers. Let V be a real subspace of Cn . The Kähler
angle of a nonzero vector v ∈ V with respect to V is defined to be the angle between Jv and
V or, equivalently, the value ϕ(v) ∈ [0, π/2] such that 〈πV(Jv), πV(Jv)〉 = cos2(ϕ(v))〈v, v〉,
where πV denotes the orthogonal projection map onto V. We say that V has constant
Kähler angle ϕ if the Kähler angle of every nonzero vector v ∈ V with respect to V is ϕ.
In particular, V is a complex subspace if and only if it has constant Kähler angle 0, and it
is a totally real subspace if and only if it has constant Kähler angle π/2.

We now consider the complex vector space Cn+1 and denote by {e0, e1, . . . , en} its canon-
ical basis. We denote by C1,n the complex vector space Cn+1 endowed with the scalar
product

(1) 〈z, w〉 = Re

(

−z0w̄0 +
n
∑

k=1

zkw̄k

)

,

where z, w ∈ Cn+1. This scalar product makes C1,n isometric, as a real vector space, to
R2,2n. Moreover, the odd dimensional anti de Sitter spacetime can now be rewritten as

AdS2n+1 = {z ∈ C1,n : 〈z, z〉 = −1}.

Consider the equivalence relation on AdS2n+1 generated by z ∼ λz with λ ∈ S1 ⊂ C.
By definition, the complex hyperbolic space is the quotient manifold CHn = AdS2n+1/ ∼
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endowed with the Riemannian metric that makes the projection map π : AdS2n+1 → CHn

a pseudo-Riemannian submersion. The complex structure of C1,n induces a complex struc-
ture that makes CHn a Kähler manifold of constant negative holomorphic sectional cur-
vature. In particular, π : AdS2n+1 → CHn is a principal fiber bundle over CHn with total
space AdS2n+1, fiber S1 and whose projection map is called the Hopf map of CHn. If
n = 1, then CH1 is isometric to the real hyperbolic space RH2; hence, we consider n ≥ 2
throughout this section.

The expression inside the brackets in (1) defines a pseudo-hermitian product in Cn+1.
The group of transformations that preserves it, is denoted by U(1, n). More explicitly,
U(1, n) = {A ∈ GL(n,C) : A∗ǫA = ǫ}, where in this case ǫ = diag(−1, In), and (·)∗ denotes
conjugate transpose. We also denote SU(1, n) = {A ∈ U(1, n) : detA = 1}. It turns out
that both U(1, n) and SU(1, n) act transitively but not effectively on CHn, the former
with kernel S1 = {λIn ∈ U(1, n) : λ ∈ S1}, and the latter with finite kernel. Moreover,
the corresponding Lie algebras u(1, n) and su(1, n) are reductive and simple, respectively.
As a symmetric space, the complex hyperbolic space can be written as CHn = G/K with
G = SU(1, n) and K = S(U(1)U(n)) ∼= U(n).

We need a finer description of g = su(1, n) for our results. We use the following notation
to denote certain type of matrices that appear in this section:

⌈t, v,X⌉ =

(

it v∗

v X

)

,

where t ∈ R, v ∈ Cn, and X is a complex (n × n) matrix. Then, the Lie algebra of the
group SU(1, n) can be written as

g = su(1, n) = {⌈t, v,X⌉ : t ∈ R, v ∈ Cn, X ∈ u(n), it + trX = 0}.

Let k be the Lie subalgebra s(u(1) ⊕ u(n)) of the Lie algebra g, and p the orthogonal
complement of k in g with respect to the Killing form B of g. Then, g = k ⊕ p is the
Cartan decomposition of g corresponding to the Cartan involution X 7→ −X∗. We take
the maximal abelian subspace a = R⌈0, e1, 0⌉ of p and denote its dual vector space by a∗.
For each λ ∈ a∗ we define the subspace gλ ⊂ g by

gλ = {X ∈ g : ad(H)(X) = λ(H)X for all H ∈ a}.

A nonzero covector λ ∈ a∗ is called a restricted root if the corresponding subspace gλ is
nontrivial. The restricted root space decomposition of g with respect to a has the form
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α for a certain α ∈ a∗.

The root spaces gα and g2α are isomorphic to the (n − 1)-dimensional complex vector
space Cn−1 and the 1-dimensional euclidean vector space R, respectively. Explicitly,

gα =

{

⌈0, (0, v),

(

0 v∗

−v 0

)

⌉ : v ∈ Cn−1

}

, g2α =

{

⌈µ, (iµ, 0),

(

−iµ 0
0 0

)

⌉ : µ ∈ R

}

.

We fix a criterion of positivity on the set of roots by letting α be a positive root. Then
the subspace n = gα ⊕ g2α, as the sum of the root spaces corresponding to all positive
roots, turns out to be a nilpotent Lie subalgebra of g with center g2α. The decomposition
g = k ⊕ a ⊕ n is called the Iwasawa decomposition of g. The corresponding Iwasawa
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decomposition at Lie group level is SU(1, n) = KAN , where K, A and N , denote the
connected Lie subgroups of SU(1, n) whose Lie algebras are k, a and n, respectively.

Finally, g0 = k0 ⊕ a, where k0 = g0 ∩ k ∼= s(u(1)u(n − 1)) is a Lie subalgebra of k.
Explicitly,

k0 =

{

⌈µ, 0,

(

iµ 0
0 Y

)

⌉ : µ ∈ R, Y ∈ u(n− 1), 2iµ+ trY = 0

}

.

Moreover, [k0, gλ] ⊂ gλ for any λ ∈ a∗. If K0 is the connected subgroup of SU(1, n)
whose Lie algebra is k0, then K0A is a semi-direct product of Lie groups isomorphic to
S(U(1)U(n− 1))R.

3.2. Lie subgroups of U(1, n) acting with cohomogeneity one on AdS2n+1.

The idea of this subsection is to lift cohomogeneity one actions on complex hyperbolic
spaces to odd dimensional anti de Sitter spacetimes via the Hopf fibration π : AdS2n+1 →
CHn. We classify, up to orbit equivalence, cohomogeneity one actions of connected, closed
Lie subgroups of U(1, n) on AdS2n+1.

Theorem 3.1. Let H ⊂ U(1, n), n ≥ 2, be a closed, connected Lie subgroup that acts with
cohomogeneity one on AdS2n+1. Then the action of H is orbit equivalent to one of the
following:

(1) The action of a subgroup of the form FN , where
(a) F = A, or
(b) F = K0, or
(c) F = Fc, where the Fc is generated by exponentiating the matrix

Xc =





ic 1 0
1 ic 0
0 0 0



 , with c ∈ R, c 6= 0.

In this case all orbits are principal and the orbit space AdS2n+1/H is S1.
(2) The action of S(U(1, k)× U(n− k)), k ∈ {0, 1, . . . , n− 1}; there is one singular orbit

which is isometric to AdS2k+1 and every principal orbit is a tube around the singular
orbit.

(3) The action of S1SO0(1, n); there is one singular orbit obtained as S1 ·(R1,n∩AdS2n+1),
where R1,n = spanR{e0, . . . , en}, and the rest of the orbits are tubes around this one.

(4) The action of N0
K(S)S, where S ⊂ SU(1, n) is the connected Lie subgroup with the Lie

algebra s = a⊕w⊕ g2α, and w is a real subspace of gα ∼= Cn−1 such that w⊥ is totally
real; the orbit through e0 is the intersection W ∩ AdS2n+1, where

W = spanC{e0, e1, e2, . . . , en−r} ⊕ spanR{en−r+1, . . . , en},

and the other orbits are tubes around this orbit.
(5) The action of N0

K(S)S, where S ⊂ SU(1, n) is the connected Lie subgroup with the Lie
algebra s = a ⊕ w ⊕ g2α, and w is a linear subspace of gα ∼= Cn−1 such that w⊥ has
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constant Kähler angle ϕ ∈ (0, π
2
); the orbit through e0 is singular and corresponds to

the intersection W ∩ AdS2n+1 where

W = spanC{e0, . . . , ek+1} ⊕ spanR{f1, . . . , fℓ, h1, . . . , hℓ},

and

fj = cos(ϕ
2
)ek+j+1 + sin(ϕ

2
)iek+ℓ+j+1,

hj = cos(ϕ
2
)iek+j+1 + sin(ϕ

2
)ek+ℓ+j+1, j = 1, . . . , ℓ,

being {e0, . . . , en} the canonical basis of C1,n. The other orbits are tubes around the
orbit through e0.

The rest of this subsection is devoted to the proof of Theorem 3.1. We begin with some
general remarks.

Let π : AdS2n+1 → CHn denote the Hopf map, and assume that H is a closed, connected
Lie subgroup of U(1, n) acting with cohomogeneity one on AdS2n+1. Note that, since H is
closed in U(1, n) and S1 is compact, H acts properly on CHn. Now, let {gn} and {pn} be
sequences in H and AdSn+1 respectively, such that pn → p and gn(pn) → q in AdS2n+1.
Then the sequences {π(pn)} and {gn(π(pn))} = {π(gn(pn))} are convergent in CHn and, by
the fact that H acts properly on CHn, it follows that {gn} has a convergent subsequence.
In particular, we conclude that H acts properly on AdS2n+1.

Since the elements of H are C-linear, for each orbit H · p, either H · p contains none of
the fibers at its points, or H · p contains the fiber S1 · q at every point q ∈ H · p.

First, we assume that there is a principal orbit H · p that contains none of the fibers.
Then the restriction map π|H·p : H · p → CHn is (at least locally) a one-to-one smooth
map. It follows that the orbit H · π(p) = π(H · p) is of dimension 2n, which means that H
acts with cohomogeneity zero, hence transitively on CHn (because the action is proper).
Now we have [11, Theorem 4.2]

Theorem 3.2. The connected groups acting transitively on CHn are the full isometry group
SU(1, n) and the groups FN , where N is the nilpotent factor of the Iwasawa decomposition
of SU(1, n) and F is a connected closed Lie subgroup of K0A with nontrivial projection
onto A.

It follows from Theorem 3.2 that all the orbits are principal, diffeomorphic to CHn, and
that the orbit space AdS2n+1/H is homeomorphic to the circle S1.

Let us consider a subgroup FN , as in the statement of Theorem 3.2, acting with coho-
mogeneity one on the anti de Sitter spacetime AdS2n+1. We denote by f the Lie algebra of
F , which is a Lie subalgebra of k0 ⊕ a. We also denote by fa the projection of f onto the
subspace a.

By Theorem 3.2, fa = a. Hence, we can write f = RξX ⊕ (k0 ∩ f), where

ξX = ⌈c, e1,

(

ic 0
0 X

)

⌉,
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with c ∈ R, X ∈ u(n− 1) and 2ci + trX = 0. More specifically, we can write

(2) f⊕ n =















iac + ix+ iy a− ix v∗

a+ ix iac− ix+ iy v∗

v −v aX + Y



 :

a, x ∈ R, v ∈ Cn−1,

⌈y, 0,

(

iy 0
0 Y

)

⌉ ∈ k0 ∩ f











.

It readily follows from this expression that Te0(FN · e0) is at least 2n-dimensional, and
Te0(FN · e0) is not (2n + 1)-dimensional if and only if y = 0. Thus, FN acts with
cohomogeneity one if and only if y = 0 in (2); equivalently, Y ∈ su(n− 1) in (2).

We take the matrix Xc as in the statement of Theorem 3.1 (1c) and define fc = RXc. We
denote by Fc the connected subgroup of K0A whose Lie algebra is fc. We now prove that
FN has the same orbits as FcN . It will actually be enough to show that (f⊕n)·p̃ = (fc⊕n)·p̃
for each p̃ ∈ AdS2n+1, by uniqueness of integral submanifolds of an integrable distribution.

Let p̃ = (p0, p1, p) ∈ AdS2n+1. A generic element of Tp̃(FN · p̃) = (f ⊕ n) · p̃, according
to (2), is written as





a(icp0 + p1) + ix(p0 − p1) + v∗p
a(p0 + icp1) + ix(p0 − p1) + v∗p

(p0 − p1)v + aXp+ Y p



 .

On the other hand, we can write fc ⊕ n as a particular case of (2), just by setting y = 0,
and X = Y = 0. Now we take

y = x− i
ap∗Xp+ p∗Y p

|p0 − p1|2
∈ R, w = v +

a

p0 − p1
Xp+

1

p0 − p1
Y p ∈ Cn−1.

It is worthwhile to note here that, for any element X ∈ u(n− 1), since X∗ = −X we get
that p∗Xp is a purely imaginary number. Taking the previous expressions into account, it
follows that the previous vector equals





a(icp0 + p1) + iy(p0 − p1) + w∗p
a(p0 + icp1) + iy(p0 − p1) + w∗p

(p0 − p1)w



 .

Altogether this shows that (f⊕ n) · p̃ = (fc ⊕ n) · p̃ as desired. If c = 0, then fc = a and we
have that the action of FN is orbit equivalent to the action of AN . This corresponds to
Theorem 3.1 (1a). If c 6= 0, the action of FN is orbit equivalent to the action of FcN on
AdS2n+1 as in Theorem 3.1 (1c).

In what follows we assume that every principal orbit H · p contains the fiber S1 · q for all
q ∈ H · p. Since, by the assumption, H acts with cohomogeneity one on AdS2n+1 it follows
that the action of H on CHn is also of cohomogeneity one. So, in order to complete the
proof of Theorem 3.1 we have to lift cohomogeneity one actions on CHn to cohomogeneity
one actions on AdS2n+1. The following theorem by Berndt and Tamaru [7] gives a complete
classification of cohomogeneity one actions on CHn, up to orbit equivalence.

Theorem 3.3. A real hypersurface in CHn, n ≥ 2, is homogeneous if and only if it is
holomorphically congruent to one of the following hypersurfaces:

(i) a tube around a totally geodesic CHk, for some k ∈ {0, . . . , n− 1},
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(ii) a tube around a totally geodesic RHn,
(iii) a horosphere,
(iv) the Lohnherr hypersurface W 2n−1 or one of its equidistant hypersurfaces,
(v) a tube around a Berndt-Bruck submanifold W 2n−k

ϕ for some ϕ ∈ (0, π/2] and some
k ∈ {2, . . . , n− 1}, where k is even if ϕ 6= π/2.

The connected closed subgroups of SU(1, n) that give rise to each one of the cohomo-
geneity one actions (up to orbit equivalence) are: (i) S(U(1, k)×U(n− k)), (ii) SO0(1, n),
(iii) N , (iv) the connected Lie subgroup S of AN whose Lie algebra is s = a ⊕ w ⊕ g2α,
where w is a linear hyperplane of gα, (v) N

0
K(S)S, where S is the connected Lie subgroup

of AN whose Lie algebra is s = a ⊕ w ⊕ g2α, with w a real subspace of gα such that
w⊥ = gα ⊖ w (orthogonal complement of w in gα) has dimension k and constant Kähler
angle ϕ, and N0

K(S) is the connected component of the identity of the normalizer of S
in K.

Examples (i) and (ii) in Theorem 3.3, correspond to cohomogeneity one actions with
one totally geodesic singular orbit. The families (iii) and (iv) provide homogeneous regular
foliations on CHn and, hence, the corresponding cohomogeneity one actions do not have
singular orbits. The families in (v) correspond to cohomogeneity one actions with one
non-totally geodesic singular orbit.

Before starting our study of the cohomogeneity one actions on odd dimensional anti de
Sitter spacetimes that are related to cohomogeneity one actions on complex hyperbolic
spaces, we present some general remarks that will be useful afterwards.

Note that since the action of U(1, n) on CHn is given by gπ(p) = π(gp), for any Lie
subgroup H ⊂ U(1, n) and any p ∈ AdS2n+1 we have H · p ⊂ π−1 (H · π(p)). On the
other hand, if the principal orbits of H in AdS2n+1 contain the fiber at every point, then
π−1 (H · π(p)) ⊂ H · p, that is, H · p = π−1 (H · π(p)) for any regular p. Now let p ∈
AdS2n+1 be any point and λ ∈ S1. We can find a sequence of regular points {pn} such
that pn → p. Since λpn ∈ S1 · pn ⊂ G · pn by assumption, we get that there exists a
sequence {gn} ⊂ H such that λpn = gnpn. Thus, pn → p, gnpn → λp. Since H acts
properly, {gn} has a convergent subsequence {gnk

} converging to a point g ∈ H . Then,
λp = limλpnk

= lim gnk
pnk

= gp ∈ H · p. Therefore, we have proved

(3) H · p = π−1(H · π(p)), for all p ∈ AdS2n+1.

Suppose that the actions of two Lie subgroups H and H ′ of U(1, n) on CHn are orbit
equivalent via an isometry f ∈ U(1, n) which is, in particular, a C-linear map. Then
f ◦ π = π ◦ f , where f is considered both as an isometry on AdS2n+1 and an isometry on
CHn. Hence, the actions of the groups H and H ′ are orbit equivalent on AdS2n+1. Thus,
in order to lift a cohomogeneity one action of a Lie subgroup H ⊂ U(1, n) on CHn to a
cohomogeneity one action on AdS2n+1, without loss of generality, one can take H itself as
the acting group upon AdS2n+1.

Now we consider the subgroup S1 = {λI : λ ∈ S1 ⊂ C} of U(1, n). Since the elements of
S1 are diagonal matrices, they commute with any element of U(1, n). In particular, if H
is a subgroup of U(1, n), so is S1H . Since S1 is compact, it follows that S1H is closed in
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U(1, n) and the action of S1H on AdS2n+1 is still proper. Furthermore, the orbits of S1H
on AdS2n+1 satisfy (3), that is, all the orbits contain the fibers. Therefore, for any subgroup
H of U(1, n) acting with cohomogeneity one on the complex hyperbolic space CHn, the
group S1H acts properly on the anti de Sitter spacetime AdS2n+1 with cohomogeneity one,
and each orbit contains the S1-fiber.

Let M̄ be a Lorentzian manifold (in particular the anti de Sitter spacetime) and let
M ⊂ M̄ be a Lorentzian submanifold of M̄ , that is, a submanifold such that the induced
metric of M̄ turns out to be Lorentzian. Under these circumstances, the normal bundle
νM of M has a positive definite metric at each point. For fixed r > 0, we define the tube
of radius r around M as the set

M r = {exp(rξ) : ξ ∈ νM, 〈ξ, ξ〉 = 1}.

In general, the subset M r does not need to be a regular submanifold of M̄ . However, under
mild conditions it can be proved that it is a hypersurface. In our case, the submanifold
M will be a homogeneous submanifold of AdS2n+1, and tubes around it will indeed be
hypersurfaces.

In what follows, we will apply this method to lift the cohomogeneity one actions on
the complex hyperbolic space CHn given by Theorem 3.3 to the anti de Sitter space-
time AdS2n+1.

Lifting the action of S(U(1, k)× U(n − k)). Clearly, the action of S(U(1, k)× U(n− k)),
k ∈ {0, 1, . . . , n−1}, on the anti de Sitter spacetime AdS2n+1 is of cohomogeneity one and
this action has exactly one singular orbit which is isometric to AdS2k+1. Every principal
orbit is a tube around this totally geodesic singular orbit. This corresponds to case (2) of
Theorem 3.1.

Lifting the action of SOo(1, n). We now consider the group H = S1SO0(1, n) acting on
AdS2n+1. We have that SO0(1, n)·e0 = {(x0, x1, . . . , xn} ∈ R1,n : −x2

0+x2
1+· · ·+x2

n = −1}
is a totally real, totally geodesic, anti de Sitter spacetime of dimension n in AdS2n+1, which
is obtained by intersecting the subspace V = R1,n = spanR{e0, e1, . . . , en} with AdS2n+1.
Hence

H · e0 = S1(V ∩AdS2n+1)

= {λ(x0, x1, . . . , xn) ∈ C
1,n : λ ∈ S1 ⊂ C, xi ∈ R, −x2

0 + x2
1 + · · ·+ x2

n = −1}.

Since the action is of cohomogeneity one, the rest of the orbits are tubes around this one,
and we obtain (3) of Theorem 3.1.

Lifting the action of N . The complex hyperbolic space CHn is diffeomorphic to AN and
the space AdS2n+1 is a principal bundle over CHn with fiber S1. So, in order to determine
all orbits of N in AdS2n+1 it is sufficient to find the orbits of N through the points in the
fibers over an orbit of A in CHn. Then, we will get the orbits of S1N just by letting S1

act on the orbits of N .
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First we write down the explicit expression of the elements of the groups A and N as
the image of matrices in a and n under the exponential map:

(4)

Exp(⌈0, (x, 0), 0⌉) =





cosh(x) sinh(x) 0
sinh(x) cosh(x) 0

0 0 I



 ,

Exp(⌈µ, (iµ, v),

(

−iµ v∗

−v 0

)

⌉) = I +





iµ+ 1
2
〈v, v〉 −iµ − 1

2
〈v, v〉 v∗

iµ+ 1
2
〈v, v〉 −iµ − 1

2
〈v, v〉 v∗

v −v 0



 ,

where x, µ ∈ R, and v ∈ Cn−1.
Using (4) we get A ·e0 = {cosh(x)e0+sinh(x)e1 : x ∈ R}. Thus, any point in the S1-fiber

at a point of the orbit A · π(e0) is of the form

px,λ = λ(cosh(x)e0 + sinh(x)e1),

for some x ∈ R and λ ∈ S1. We find the orbits of N through the points px,λ. Let V ⊂ C1,n

be the linear subspace

V = spanR{e0 + e1, i(e0 + e1), e2, ie2, . . . , en, ien}.

Using (4) once more,

N · px,λ = px,λ + λe−x
{

µi(e0 + e1) +
1

2
〈v, v〉(e0 + e1) + v : µ ∈ R, v ∈ Cn−1

}

∈ px,λ + V.

So, N ·px,λ ⊂ (px,λ+V)∩AdS2n+1. For the reverse inclusion, let q = px,λ+z(e0+e1)+w ∈
AdS2n+1 ∩ (px,λ + V), with z ∈ C, w ∈ spanC{e2, . . . , en}

∼= Cn−1. Taking

µ = ex Im(zλ̄), v = exλ̄w, X = ⌈µ, (iµ, v),

(

−iµ v∗

−v 0

)

⌉,

we get q = Exp(X) · px,λ. Thus N · px,λ = AdS2n+1 ∩ (px,λ +V), for all x ∈ R, λ ∈ S1, and
therefore

(5) N · p = AdS2n+1 ∩ (p+ V), for all p ∈ AdS2n+1.

The above description of the orbits of N , in particular, implies that N acts with cohomo-
geneity 2 on AdS2n+1. Recall that the subgroup K0 whose Lie algebra is k0 is isomorphic
to S(U(1)U(n− 1)). More explicitly, we can write

K0 =











iµ
iµ

X



 : µ ∈ S1, X ∈ U(n− 1), µ2 detX = 1







.

It is then easy to check that S1N · p = K0N · p for all p ∈ AdS2n+1. Hence, the action
of S1N on AdS2n+1, which is obtained by lifting the action of N on CHn to the anti de
Sitter spacetime, corresponds to Theorem 3.1 (1b).
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Lifting the tubes around the Berndt-Brück submanifolds of totally real normal bundle. Let
S be the connected Lie subgroup of SU(1, n) whose Lie algebra is s = a⊕w⊕ g2α, where
w is a real subspace of gα ∼= Cn−1 such that w⊥, the orthogonal complement of w in gα,
is a totally real subspace. The group N0

K(S)S, where N0
K(S) is the identity component

of the normalizer of S in K, acts with cohomogeneity one on CHn. The orbits of S
form a polar foliation in CHn [13]. In particular, if w⊥ is 1-dimensional, equivalently
if w is a hyperplane, the action of S produces the ruled Lohnherr hypersurface and its
equidistant hypersurfaces, which is a particular case of this construction that gives rise
to the cohomogeneity one action described in Theorem 3.3(iv). The calculations carried
out here work for the actions described in Theorem 3.3(iv) and Theorem 3.3(v) whenever
ϕ = π/2, so we do these two cases simultaneously. In order to determine the orbits of
N0

K(S)S in AdS2n+1, we first find the orbits of S in AdS2n+1 and then consider the action
of N0

K(S) on the orbits of S.
The subspace w decomposes as the orthogonal direct sum of a complex subspace of gα,

and a totally real subspace of gα [13]. We may therefore assume, without loss of generality,
that w ∼= Cn−1−r⊕Rr. For the purpose of the calculations that follow, we choose a complex
basis {e2, . . . , en} in such a way that w = w0 ⊕ wπ/2, where w0 = spanC{e2, . . . , en−r} ∼=
Cn−r−1 and wπ/2 = spanR{en−r+1, . . . , en} ∼= Rr, for some 1 ≤ r ≤ n− 1.

An element X ∈ s is of the form

X =









iµ x− iµ z∗ u⊺

x+ iµ −iµ z∗ u⊺

z −z
0

u −u









,

where x, µ ∈ R, z ∈ Cn−r−1, and u ∈ Rr. Then,

(6)

Exp(X) = I +
cosh(x)− 1

x









x+ 1
x
(〈z, z〉+ 〈u, u〉) 1

x
(〈z, z〉 + 〈u, u〉) z∗ u⊺

1
x
(〈z, z〉 + 〈u, u〉) x− 1

x
(〈z, z〉+ 〈u, u〉) z∗ u⊺

−z z
0

−u u









+
sinh(x)

x









iµ x− iµ z∗ u⊺

x+ iµ −iµ z∗ u⊺

z −z
0

u −u









∈ S.

Hence, we have

(7) S · e0 =





























cosh(x)−1
x2 (〈z, z〉 + 〈u, u〉) + cosh(x) + iµ sinh(x)

x
cosh(x)−1

x2 (〈z, z〉 + 〈u, u〉) + sinh(x) + iµ sinh(x)
x

1−e−x

x
z

1−e−x

x
u











:
z ∈ Cn−r−1,
u ∈ Rr,
x, µ ∈ R



















.
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We define the subspace V = spanR{e0, e1, i(e0+e1)}⊕w. We also define the half-subspaces
V+ = {v ∈ V : 〈v, e0〉 < 0} and V− = {v ∈ V : 〈v, e0〉 > 0} (note that e0 is timelike).
Obviously, (7) implies S · e0 ⊂ AdS2n+1 ∩ V+. We now check the reverse inclusion.

Let q = a0e0 + a1e1 + bi(e0 + e1) + w + v ∈ AdS2n+1 ∩ V+, where a0, a1, b ∈ R, w ∈ w0

and v ∈ wπ/2. Note that 〈q, q〉 = −1 implies a0 ≥ 1 and a0 > a1. Then,

Exp









iµ x− iµ z∗ u⊺

x+ iµ −iµ z∗ u⊺

z −z
0

u −u









· e0 = q, where











x = − ln(a0 − a1), µ =
x

sinh(x)
b,

z =
x

1− e−x
w, u =

x

1− e−x
v.

Therefore S · e0 = AdS2n+1 ∩ V+.
In order to determine all the orbits of S on AdS2n+1, we only need to find the orbits

through the points of the form p = λ(x0e0 + iv), for λ ∈ S1 and v ∈ wπ/2. We assume
x0 > 0. Then, taking g ∈ S as in (6), and using (7) we get

g · p = g(λ(x0e0 + iv)) = λ(x0ge0 + igv) = λ
(

x0ge0 +
ex − 1

x
〈u, v〉i(e0 + e1) + iv

)

= λ(x0e0 + iv) + λ
(

x0ge0 +
ex − 1

x
〈u, v〉i(e0 + e1)− x0e0

)

∈ p+ λV+.

Thus, S · p ⊂ (p+ λV+) ∩AdS2n+1.
In order to verify that the reverse inclusion holds, since the elements of S are C-linear,

it suffices to take q = (x0e0+ iv)+ (y0e0+ y1e1+ bi(e0+ ei)+w+ v′) ∈ (p+V+)∩AdS2n+1

and check that there exists g ∈ S such that g(x0e0 + iv) = q. In the notation of (6) this is
achieved by taking

x = −
ln(x0 + y0 − y1)

x0
, µ =

x

x0 sinh(x)

(

b−
ex − 1

x
〈u, v〉

)

,

z =
x

x0(1− e−x)
w, u =

x

x0(1− e−x)
v′.

Therefore, we have S · p = p+ λV+ for p = λ(x0e0 + v) with x1 > 0, λ ∈ S1 and v ∈ iwπ/2.
In a similar way, we get S · p = p+ λV− if x0 < 0.

Now that we have found the orbits of S, in order to describe the orbit of the group
N0

K(S)S through a point p ∈ AdS2n+1 we let the group N0
K(S) act on the orbit S · p.

Again, we may assume p = λ(x0e0 + iv) with λ ∈ S1, x0 > 0 and v ∈ wπ/2. The identity
component of the normalizer of S in K is N0

K(S) = S(U(1)U(n − r − 1)O(r)) (see [13]).
We have NK(S) · (x0e0 + iv) = S1 · e0 + iSO(r) · v, so i(SO(r) · v) is an (r− 1)-dimensional
sphere in iwπ/2. Moreover, NK(S) ·V± =W, where W = spanC{e0, e1} ⊕w. This implies

N0
K(S)S · p = N0

K(S) · (S · p) = N0
K(S) ·

(

(p+ λV+) ∩AdS2n+1
)

=
(

N0
K(S) · p+ λN0

K(S) · V+

)

∩AdS2n+1

= (SO(r) · iv) +W) ∩AdS2n+1,
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and hence, the group N0
K(S)S acts with cohomogeneity one on AdS2n+1. The orbit through

e0 is the intersection W ∩ AdS2n+1, and the other orbits are tubes around this one. This
is part (4) of Theorem 3.1.

Lifting the tubes around the Berndt-Brück submanifolds whose normal bundle has constant
Kähler angle ϕ ∈ (0, π/2). Let w be a real linear subspace of gα ∼= Cn−1 such that w⊥

has constant Kähler angle ϕ ∈ (0, π/2). Denote by S the connected Lie subgroup of AN
with Lie algebra s = a⊕w⊕ g2α, and by N0

K(S) the identity component of its normalizer
in K. Then the group N0

K(S)S acts on CHn with cohomogeneity one. For the point
o = π(e0) ∈ CHn, we denote by W 2n−r

ϕ = N0
K(S)S · o the orbit of N0

K(S)S through o.

Then, W 2n−r
ϕ is of dimension (2n − r), where r = dimw⊥ = 2ℓ is an even number. The

other orbits are tubes around this one. More details can be found in [5]. However, a
more detailed discussion on real subspaces of complex vector spaces can be found in [13,
Section 2.3].

We will show that N0
K(S)S acts on AdS2n+1 with cohomogeneity one. The calculations

that follow are very similar to case (4) of Theorem 3.1, although somewhat more com-
plicated. We point out the differences with the previous case here and skip the routine
calculations.

As before, we identify gα with a subspace of Cn−1. The subspace w admits a decompo-
sition w = w0⊕wϕ, where w0 is a complex subspace of gα, and wϕ is a real subspace of gα
with constant Kähler angle ϕ ∈ (0, π/2). Recall that wϕ has dimension r = 2ℓ, and Cwϕ =
wϕ ⊕ w⊥. We may assume w0 = spanC{e2, . . . , ek+1}, wϕ = spanR{f1, . . . , fℓ, h1, . . . , hℓ},
where k + 2ℓ = n− 1 and

fj = cos(ϕ
2
)ek+j+1 + sin(ϕ

2
)iek+ℓ+j+1, hj = cos(ϕ

2
)iek+j+1 + sin(ϕ

2
)ek+ℓ+j+1, j = 1, . . . , ℓ.

Taking into account the previous decomposition of w, and the expression of the vectors
{f1, . . . , fℓ, h1, . . . , hℓ} in the basis {e2, . . . , en} of gα, an element of s can be written as













iµ x− iµ z∗ (u− iv)∗ cos(ϕ
2
) (v − iu)∗ sin(ϕ

2
)

x+ iµ −iµ z∗ (u− iv)∗ cos(ϕ
2
) (v − iu)∗ sin(ϕ

2
)

z −z
(u+ iv) cos(ϕ

2
) −(u+ iv) cos(ϕ

2
) 0

(v + iu) sin(ϕ
2
) −(v + iu) sin(ϕ

2
)













,

where x, µ ∈ R, z ∈ Ck, and u, v ∈ Rℓ.
Proceeding as in the previous part, one can see, after some calculations, that S · e0 =

V+∩AdS
2n+1 where V = spanR{e0, e1, i(e0+e1)}⊕w ⊂ C1,n and V+ = {v ∈ V : 〈v, e0〉 < 0}

(that is, V+ consists of the vectors in V whose e0-coefficient is positive).
In order to determine the other orbits of S, it is sufficient to find the orbits through the

points of the form p = λ(x0e0 + v), where λ ∈ S1 and v ∈ w⊥. For calculation purposes it
is convenient to take the basis {f ′

1, . . . , f
′
ℓ, h

′
1, . . . , h

′
ℓ} of w⊥ given by

f ′
j = − sin(ϕ

2
)ek+j+1 + cos(ϕ

2
)iek+ℓ+j+1, h′

j = − sin(ϕ
2
)iek+j+1 + cos(ϕ

2
)ek+ℓ+j+1,
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for j = 1, . . . , ℓ. (Recall that Cwϕ = wϕ ⊕ w⊥, and that dimwϕ = dimw⊥.) For such a
point p we can show that S ·p = (p+λV+)∩AdS

2n+1 if x0 > 0, or S ·p = (p+λV−)∩AdS
2n+1

if x0 < 0, where V− is defined analogously.
By [13, Lemma 2.8], N0

K(S) = S(U(1)U(w0)U(wϕ)) ∼= U(k)×U(l). So, for a point p as
above, one has

N0
K(S)S · p = N0

K(S) · (S · p) = N0
K(S) ·

(

(p+ λV+) ∩AdS2n+1
)

=
(

N0
K(S) · p+ λN0

K(S) · V+

)

∩AdS2n+1

=
(

N0
K(S) · v) +W

)

∩AdS2n+1,

where W = N0
K(S) ·V+ = spanC{e0, ie1}⊕w. The vector v ∈ w⊥ is also in the orthogonal

complement of W and N0
K(S) · v

∼= U(l) · v is a (2ℓ − 1)-dimensional sphere (see [5]).
Therefore, the orbit of N0

K(S)S through e0 is the intersection W∩AdS2n+1, and the other
orbits are tubes around this one. This completes the proof of Theorem 3.1. �

4. Examples of cohomogeneity one and cohomogeneity zero actions on

anti de Sitter spacetimes

In this section we present new examples of cohomogeneity zero and cohomogeneity one
actions on anti de Sitter spacetimes. It turns out that there are examples of cohomogeneity
zero actions which are not transitive, a phenomenon that was already pointed out in [6].
Many examples of isometric actions are obtained from the restricted root space decom-
position of the Lie algebra of SO0(2, n) which, in turn, is the way to obtain the Iwasawa
decompostion of so(2, n), and the Langlands decompositions of the parabolic subalgebras
of so(2, n).

4.1. The Lie algebra so(2, n).
The Lie algebra g = so(2, n) of the Lie group G = SO0(2, n) is

so(2, n) = {X ∈ gl(n+ 2,R) : ǫX +X⊺ǫ = 0, trX = 0}

=
{

(

A u⊺

u B

)

: A ∈ so(2), B ∈ so(n), u ∈ Mn×2

}

,

where ǫ = diag(−I2, In), and Mn×2 denotes the vector space of matrices with n rows and
2 columns. The real Lie algebra so(2, n) is simple for n ≥ 3. Thus, we assume n ≥ 3 from
now on. The Killing form B on g is given by

(8) B(X, Y ) = tr(adX ◦ adY ) = n trXY, for all X , Y ∈ so(2, n).

The Cartan involution θ(X) = −X⊺ gives rise to the Cartan decomposition so(2, n) = k⊕p,
where

k =

{(

A 0
0 B

)

: A ∈ so(2), B ∈ so(n)

}

∼= so(2)⊕ so(n), p =

{(

0 u⊺

u 0

)

: u ∈ Mn×2

}

.

The Killing form of so(2, n) is positive definite on p and negative definite on k. Thus, the
formula Bθ(X, Y ) = −B(X, θY ) defines an inner product on g.
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gα1
= R













0 1

−1 0

0 −1

−1 0
0

0 −1

−1 0

0 1

−1 0
0

0 0 0













, gα2
=



































0 0
v
⊺

0

0 0
v
⊺

0

v 0 −v 0 0













: v ∈ R
n−2























,

gα1+α2
=



































0 0
0

w
⊺

0 0
0

w
⊺

0 w 0 −w 0













: v ∈ R
n−2























, gα1+2α2
= R













0 1

−1 0

0 −1

1 0
0

0 1

−1 0

0 −1

1 0
0

0 0 0













.

Figure 1. Positive root spaces of so(2, n) with respect to a.

From now on we make the following choice of a maximal flat a of p by setting

a =























Ha,b =













0
a 0
0 b

0

a 0
0 b

0 0

0 0 0













∈ so(2, n) : a, b ∈ R























.

Recall that a restricted root space is defined as gλ = {X ∈ g : [H,X ] = λ(H)X, ∀H ∈ a}
for each covector λ ∈ a∗, whenever gλ is nonzero. We consider the covectors α1, α2 ∈ a∗ by
setting α1 (Ha,b) = −a+ b, α2 (Ha,b) = a. It turns out that so(2, n) is a real Lie algebra of
type B2 whose set of restricted roots is Σ = {±α1,±α2,±(α1+α2),±(α1+2α2)}. We choose
a criterion of positivity so that the set of positive roots is Σ+ = {α1, α2, α1+α2, α1+2α2}.
Then, the set of simple roots is precisely Λ = {α1, α2}. The root spaces are calculated
explicitly in Figure 1.

The long simple root of this root system is α1, which has multiplicity one, and the
short simple root, α2, has multiplicity n− 2. Recall that the root spaces corresponding to
the negative roots are determined by the equation g−λ = θgλ. It is also well known that
[gλ, gµ] = gλ+µ for any λ, µ ∈ a∗. Finally, g0 = k0 ⊕ a, where k0 = g0 ∩ k is the normalizer
of a in k. In this case k0 ∼= so(n− 2).

We now define n to be the vector space direct sum of the positive root spaces, that is,
n = gα1

⊕ gα2
⊕ gα1+α2

⊕ gα1+2α2
. Then, n is a 3-step nilpotent subalgebra of g and we

have the so-called Iwasawa decomposition g = k⊕ a⊕ n. If we denote by K, A and N the
corresponding connected subgroups of G whose Lie algebras are k, a and n, respectively,
then we also get the Iwasawa decomposition G = KAN .

4.2. Cohomogeneity one actions of Lie subgroups of AN containing N .

First, we determine the orbits of the nilpotent factor N in the Iwasawa decomposition
SO0(2, n) = KAN . For that matter, let p = (p1, . . . , pn+2) ∈ AdSn+1, that is, −p21 − p22 +
p23 + · · ·+ p2n+2 = −1.

The tangent space of the orbit N · p at p is Tp(N · p) = n · p, which can be calculated
using the expressions obtained in Subsection 4.1. If p2 = p4, then |p1| 6= |p3|, and in this
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case we get (gα1
⊕ gα1+α2

⊕ gα1+2α2
) · p ⊂ span{e2 + e4}; in particular,

n · p = span{e2 + e4} ⊕ gα2
· p, dim(n · p) = n− 1, if p2 = p4.(9)

If p2 6= p4, then gα2
· p ⊂ (gα1

⊕ gα1+α2
) · p, and thus,

n · p = (gα1
⊕ gα1+α2

⊕ gα1+2α2
) · p, dim(n · p) = n, if p2 6= p4.(10)

Therefore, we have proved that N acts with cohomogeneity one on AdSn+1.
We now obtain a more explicit form of the orbits of N on AdSn+1. According to the

results of Figure 1, an element X ∈ n can be written as

(11) X =













0 b+ a 0 −b− a v⊺

−b− a 0 −b+ a 0 w⊺

0 −b+ a 0 b− a v⊺

−b− a 0 −b+ a 0 w⊺

v w −v −w 0













, where a, b ∈ R, v, w ∈ Rn−2.

If p2 = p4, according to (9) one may assume b = 0, w = 0, and thus

exp(X) =













1 + 1
2
〈v, v〉 a −1

2
〈v, v〉 −a v⊺

−a 1 a 0 0
1
2
〈v, v〉 a 1− 1

2
〈v, v〉 −a v⊺

−a 0 a 1 0
v 0 −v 0 In−2













.

Hence, (Exp(X) · p)2 = (Exp(X) · p)4 and (Exp(X) · p)1 − (Exp(X) · p)3 = p1 − p3,
where subscripts just refer to the corresponding component of the vector. Conversely, let
q ∈ AdSn+1 such that q2 = q4 and q1− q3 = p1−p3. Then, if we take X ∈ n as in (11) such
that a = (p2 − q2)/(p1 − p3) ∈ R and v = (q − p)/(p1 − p3) ∈ R

n−2, then Exp(X) · p = q.
Indeed,

(12) N · p = AdSn+1 ∩ (V+ p), where V = {x ∈ R2,n : x1 = x3, x2 = x4}, if p2 = p4.

Now, assume p2 6= p4. By (10) we may assume v = 0 in (11), and thus

exp(X) =













1 a+ b o −a− b 0
−a− b 1− 2ab+ 1

2
〈w,w〉 a− b 2ab+ 1

2
〈w,w〉 w⊺

0 a− b 1 −a + b 0
−a− b −2ab+ 1

2
〈w,w〉 a− b 1 + 2ab− 1

2
〈w,w〉 w⊺

0 w 0 −w In−2













.

In this case we get N · p ⊂ AdSn+1 ∩ (W+ p) where W = {x ∈ R2,n : x2 = x4}. To see the
reverse inclusion, let q ∈ AdSn+1 ∩ (W+ p). Then, taking X ∈ n as in (11) with

a =
(q1 + q3)− (p1 + p3)

2(p2 − p4)
, b =

(q1 − q3)− (p1 − p3)

2(p2 − p4)
, w =

q − p

p2 − p4
,

we get Exp(X) · p = q. Therefore, we have shown
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Proposition 4.1. The nilpotent factor N in the Iwasawa decomposition SO0(2, n) = KAN
acts with cohomogeneity one on AdSn+1. For every p ∈ AdSn+1 with p2 6= p4, the orbit
N · p is principal and obtained as the intersection of AdSn+1 with the affine hyperplane
p +W, where W = {x ∈ R2,n : x2 = x4}. If p2 = p4, then N · p is a singular orbit of
dimension n − 1 that is obtained by intersecting AdSn+1 with the affine subspace p + V,
where V = {x ∈ R2,n : x1 = x3, x2 = x4}.

In particular, principal orbits are parametrized by non-zero values of p2−p4 and singular
orbits (where p2 = p4) are parametrized by non-zero values of p1 − p3.

Remark 4.2. Let H be a subgroup of SO0(2, n) such that N ⊂ H ⊂ AN . We determine
when H acts on AdSn+1 with cohomogeneity one.

By Proposition 4.1, the nilpotent subgroup N acts with cohomogeneity one on AdSn+1.
Hence, H acts with cohomogeneity one or zero. Thus, it is enough to rule out those
subgroups that act with cohomogeneity zero. Consider the Lie algebra h of H , which by
assumption satisfies n ⊂ h ⊂ a ⊕ n. Let p ∈ AdSn+1, and a, b ∈ R. Then, if p2 6= p4,
by (10) and Figure 1, we have Ha,b · p ∈ n · p if and only if b = 0. Thus, either h = n or
h = RH1,0 ⊕ n. In particular, AN acts with cohomogeneity zero on AdSn+1.

The orbits of N have already been studied in Proposition 4.1. Let h = RH1,0 ⊕ n. We
are now going to describe the orbit foliation induced by H . For that matter, let us denote
by Ōr the principal N -orbit through a point p with r = p2−p4 6= 0, and by Os the singular
N -orbit of a point p with p2 = p4 and s = p1 − p3. Then it is not difficult to see that the
orbit foliation induced by H can be written as

(13) FH = O+ ∪O− ∪

(

⋃

r 6=0∈R

Ōr

)

, where O+ =
⋃

s>0

Os, and O− =
⋃

s<0

Os.

4.3. Parabolic subgroups of SO0(2, n).
From the point of view of Riemannian geometry, a parabolic subgroup of the isometry

group of a Riemannian symmetric space of noncompact type is the normalizer of a point
at infinity. This definition does not apply to our case, but parabolic subgroups of real
semisimple Lie groups can be determined, up to conjugacy, from the root space decom-
position of its Lie algebra. We take this approach in this section, and determine how
parabolic subgroups of SO0(2, n) act on AdSn+1.

We follow [9]. The conjugacy classes of parabolic Lie subgroups are parametrized by
proper subsets of the set of positive simple roots Λ. Let Φ  Λ be a subset of the set
of positive simple roots, and denote by ΣΦ the root system generated by Φ. We write
Σ+

Φ = ΣΦ ∩ Σ+, and define

lΦ = g0 ⊕

(

⊕

λ∈ΣΦ

gλ

)

, nΦ =
⊕

λ∈Σ+\Σ+

Φ

gλ qΦ = lΦ ⊕ nΦ.(14)

By definition, qΦ is a parabolic subalgebra associated with the subset Φ ⊂ Λ. The de-
composition qΦ = lΦ ⊕ nΦ is called the Langlands decomposition of qΦ. Moreover, lΦ is a
reductive Lie algebra, and nΦ is a nilpotent subalgebra of g. For Φ = ∅ we have l∅ = g0
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and n∅ = n. Hence, (14) becomes

q∅ = g0 ⊕ n = k0 ⊕ a⊕ n,

which is a minimal parabolic subalgebra.
For so(2, n) there are two more parabolic subalgebras up to conjugacy. We denote them

by qi = qΦi
, i = 1, 2, where Φi = Λ \ {αi}. Simply using (14) we get

q1 = g0 ⊕ (gα2
⊕ g−α2

)⊕ (gα1
⊕ gα1+α2

⊕ gα1+2α2
) = q∅ ⊕ g−α2

,

q2 = g0 ⊕ (gα1
⊕ g−α1

)⊕ (gα2
⊕ gα1+α2

⊕ gα1+2α2
) = q∅ ⊕ g−α1

.

We denote by Q∅, Q1 and Q2 the connected Lie subgroups of SO0(2, n) whose Lie algebras
are q∅, q1 and q2, respectively.

A parabolic subgroup of the isometry group of a Riemannian symmetric space of non-
compact type acts transitively on that space. However, in our setting we have

Proposition 4.3. The groups Q∅, Q1 and Q2 act isometrically on AdSn+1 with cohomo-
geneity zero. Furthermore, the group Q2 acts transitively on AdSn+1. The orbit foliation
induced by Q∅, Q1 and AN coincide, and is given by

(15) F = O+ ∪O− ∪ Ō+ ∪ Ō−,

where O+ and O− are as in (13), and Ō+ =
⋃

r>0 Ōr, Ō− =
⋃

r<0 Ōr.

Proof. Since q∅, q1 and q2 contain a⊕ n, it is clear that Q∅, Q1 and Q2 act with cohomo-
geneity zero by Remark 4.2.

Let p ∈ AdSn+1. If p2 6= p4, since a ⊕ n is contained in qi, i ∈ {∅, 1, 2}, it readily
follows from Remark 4.2 that qi · p is (n + 1)-dimensional. Assume now p2 = p4. We
can easily see, using the same methods as in Section 4.2, that (a ⊕ n) · p = V, where
V = {x ∈ R2,n : 〈x, p〉 = 0, x2 = x4} (the equality 〈x, p〉 = 0 follows simply from the fact
that the action is isometric).

If X ∈ g−α1
= θgα1

, then it follows from the expressions in Figure 1 that (X · p)2 =
−(X · p)4. Thus, Tp(Q2 · p) = q2 · p = TpAdS

n+1 and we get that the action of Q2

on AdSn+1 is transitive. On the other hand, g−α2
· p, k0 · p ⊂ (a ⊕ n) · p, and hence

q1 ·p = q∅ ·p = (a⊕n) ·p  TpAdS
n+1. As in Remark 4.2, the corresponding orbits through

p ∈ AdSn+1 with p2 = p4 are parametrized by s = p1 − p3 6= 0. �

References

[1] S. Adams, G. Stuck: The isometry group of a compact Lorentz manifold. I, II, Invent. Math. 129
(1997), no. 2, 239–261, 263–287.

[2] A. V. Alekseevsky, D. V. Alekseevsky: G-manifolds with one dimensional orbit space, Adv. Soviet
Math., 8 (1992), no. 1, 1–31.

[3] P. Ahmadi, S. M. B. Kashani: Cohomogeneity one anti de Sitter space H3
1 , Bull. Iranian Math. Soc.

35 (2009), no. 1, 221–233, 289.

[4] L. Bérard-Bergery: Sur de nouvelles variétés riemanniennes d’Einstein, Ins. Élie Cartan 6 (1982),
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