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Abstract. We give a geometric characterization of certain hypersurfaces of cohomo-
geneity one in the complex projective and hyperbolic planes. We also obtain some partial
classifications of austere hypersurfaces and of Levi-flat hypersurfaces with constant mean
curvature in these spaces.

1. Introduction

The method of equivariant differential geometry has shown to be a powerful tool for
the construction of submanifolds with specific geometric properties; see for example [19],
[20]. Given a proper isometric action of a Lie group H on a Riemannian manifold M̄ , the
idea of the method is to find a curve in the orbit space M̄/H such that the union of the
corresponding orbits in M̄ yields a submanifold M with the desired geometric property. It
turns out that for many interesting properties, finding such a curve is equivalent to solving
certain ordinary differential equation. Thus, existence and uniqueness of such a curve is
guaranteed, for given initial conditions. The resulting submanifolds M are, intrinsically,
manifolds of cohomogeneity one, that is, they admit an isometric action whose principal
orbits have codimension one in M .

In [16], Gorodski and Gusevskii constructed many examples of complete constant mean
curvature hypersurfaces of cohomogeneity one in complex hyperbolic spaces CHn, by ap-
plying the equivariant method to several cohomogeneity two polar actions on CHn. We
recall that a proper isometric action on a Riemannian manifold is called polar if there is
a submanifold intersecting all the orbits of the action perpendicularly; such a submanifold
must be totally geodesic, and is called a section of the action. Thus, the resulting hyper-
surfaces appear as the union of orbits through some curve in the 2-dimensional section.

Recently, the authors [13] discovered the first examples of real hypersurfaces with ex-
actly two distinct nonconstant principal curvatures in the complex projective and hyper-
bolic planes, CP 2 and CH2, thus answering an open question posed by Niebergall and
Ryan in [26]. These new examples are, again, constructed using the equivariant method
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applied to cohomogeneity two polar actions on CP 2 and CH2. (Ivey and Ryan derived a
construction of the same examples by a different approach in [22].)

In the context of real hypersurfaces in Kähler manifolds, the class of Hopf hypersurfaces
has been studied thoroughly. Recall that, if M is a real hypersurface in a Kähler manifold
with complex structure J , and ξ is a (locally defined) unit normal vector field on M ,
then Jξ is called the Hopf vector field of M . Moreover, M is said to be Hopf at a point
p ∈ M if Jξ is an eigenvector of the shape operator S of M at p, and M is called a Hopf
hypersurface if it is Hopf at every point. For example, all homogeneous hypersurfaces in
CP n (that is, those which are orbits of a cohomogeneity one isometric action on CP n)
happen to be Hopf. Furthermore, Hopf hypersurfaces with constant principal curvatures
in CP n and CHn have been classified [2], [23], and it follows from these classifications that
such hypersurfaces are open parts of homogeneous ones.

However, the examples constructed in [13] and [16] are generically non-Hopf. Moreover,
in CHn, n ≥ 2, there are examples of non-Hopf homogeneous hypersurfaces [5]. The
observation that motivates this paper is that most of the examples in [13] and [16], and
some examples in [5], share the following geometric properties:

(C1) The smallest S-invariant distribution D of M that contains Jξ has rank 2.
(C2) D is integrable.
(C3) The spectrum of S|D is constant along the integral submanifolds of D.

Here S stands for the shape operator of M . A real hypersurface M satisfying (C1) and
(C2) was called 2-Hopf in [8] and [22]. Motivated by this terminology, we will say that a
real hypersurface M in a Kähler manifold is strongly 2-Hopf if it satisfies conditions (C1),
(C2) and (C3) above. The generalization of these definitions to k-Hopf and strongly k-Hopf
hypersurfaces, for any positive integer k, is straightforward. It is important to mention
that the notions of Hopf, 1-Hopf and strongly 1-Hopf real hypersurfaces agree when the
ambient manifold is a nonflat complex space form CP n or CHn (see [26]). Also, note that
condition (C1) has been studied in the context of real hypersurfaces with constant principal
curvatures in nonflat complex space forms [11]. Finally, observe that if we define h as the
number of principal curvature spaces of M onto which the Hopf vector field has nontrivial
projection, then M is Hopf precisely when h = 1, and condition (C1) is equivalent to h = 2.

The main result of this paper is a characterization of the cohomogeneity one hypersur-
faces in CP 2 or CH2 constructed via the equivariant method applied to a polar action
of cohomogeneity two. Such characterization is achieved in terms of the strongly 2-Hopf
property. It is important to mention here that polar actions on nonflat complex space
forms have been classified [12], [27]: up to orbit equivalence, there is exactly one polar
action of cohomogeneity two on CP 2, and exactly four on CH2 (see Subsection 2.2). In
what follows we will denote by M̄2(c) a nonflat complex space form of complex dimension 2
and constant holomorphic curvature c 6= 0. Then, our main result can be stated as follows.

Main Theorem. Consider a polar action of a group H acting with cohomogeneity two
and with section Σ on a nonflat complex space form M̄2(c).

Let p ∈ Σ be a regular point, and σ : (−ε, ε)→ Σ a unit speed curve in Σ with σ(0) = p.
Define the subset H · σ = {h(σ(t)) : h ∈ H, t ∈ (−ε, ε)} of M̄2(c). Then, there exists a
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finite subset wp of the unit sphere of TpΣ such that, for ε small enough, if σ̇(0) /∈ wp, the
set H · σ is a strongly 2-Hopf hypersurface of M̄2(c), whereas if σ̇(0) ∈ wp, then H · σ is a
real hypersurface of M̄2(c) that is Hopf at p.

Conversely, any strongly 2-Hopf real hypersurface in M̄2(c) is locally congruent to a
hypersurface constructed as above.

A first consequence of this result is a local characterization of the examples of constant
mean curvature hypersurfaces constructed by Gorodski and Gusevskii [16].

Corollary 1.1. Let H and Σ be as in the Main Theorem, and let η ∈ R. Then, for any
regular point p ∈ Σ and any unit w ∈ TpΣ, there is exactly one locally defined curve σ on Σ
with σ(0) = p, σ̇(0) = w, and such that the hypersurface H ·σ has constant mean curvature
η. Conversely, any strongly 2-Hopf real hypersurface with constant mean curvature in
M̄2(c) is locally congruent to a hypersurface constructed in this way.

It is interesting to point out here that, in the family of constant mean curvature hy-
persufaces in M̄2(c), the wealth of strongly 2-Hopf examples contrasts with the rigidity of
those that are Hopf. Indeed, we have the following result:

Theorem 1.2. Let M be a connected Hopf real hypersurface in CP 2 or CH2 with constant
mean curvature. Then M is an open part of a homogeneous Hopf hypersurface.

The homogeneous Hopf hypersurfaces in CP n and CHn are usually referred to as the
examples in Takagi’s and Montiel’s lists [26]. In the case of CP 2 these are geodesic spheres
and tubes around a totally geodesic RP 2, whereas in CH2 they are geodesic spheres, tubes
around a totally geodesic RH2, tubes around a totally geodesic CH1, and horospheres.

We will also investigate the so-called austere hypersurfaces. These objects were intro-
duced by Harvey and Lawson [17] in their study of special Lagrangian submanifolds, and
are defined as those hypersurfaces whose principal curvature functions are invariant under
multiplication by −1. Thus, austere hypersurfaces provide a subclass of minimal hypersur-
faces. The classification of austere hypersurfaces in spheres, or in the complex projective
and hyperbolic planes, is not known [10], [21]. In this sense we prove the following result.

Theorem 1.3. Let M be a real hypersurface of M̄2(c), c 6= 0, whose Hopf vector field has
nontrivial projection onto at most two principal curvature spaces (i.e. h ≤ 2). Then M is
austere if and only if it is an open part of one of the following examples:

(i) a Lohnherr hypersurface in CH2, or
(ii) a Clifford cone in CP 2 or CH2, or

(iii) a bisector in CH2.

In particular, M is strongly 2-Hopf on the open and dense subset of nonumbilical points.

All the examples in this classification are ruled, in the sense that their maximal complex
distribution is integrable and its integral submanifolds are totally geodesic in the ambient
space. We briefly describe the examples in Theorem 1.3. The Lohnherr hypersurface is
the only, up to congruence, complete ruled hypersurface of CHn with constant principal
curvatures [25]. It is also the unique minimal homogeneous hypersurface of CHn [5]. A
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Clifford cone is a minimal hypersurface which is constructed as follows (see also [1], [15]
and [24] for alternative descriptions). The Lie group H = U(1) × U(1) acts on M̄2(c)
polarly with cohomogeneity two. This action has three fixed points in CP 2, and only one
in CH2. Let p be one of these fixed points, and Sr any geodesic sphere centered at p.
Then a Clifford cone with vertex p is the (singular) hypersurface made of all geodesic rays
starting from p and hitting the only 2-dimensional H-orbit that is minimal as a submanifold
of Sr. Finally, a bisector in CHn is a minimal hypersurface of cohomogeneity one defined
as the set of points in CHn that are at the same distance from two fixed points [15].

Another application of the Main Theorem concerns the existence of Levi-flat hypersur-
faces of cohomogeneity one. We recall that a real hypersurface of a complex manifold is
called Levi-flat if it is foliated by complex hypersurfaces (see §6.2). This notion is important
in the study of holomorphic foliations, and indeed, an outstanding problem is the existence
of complete, smooth Levi-flat hypersurfaces in the complex projective plane; nonexistence
has been proved for CP n, n ≥ 3 [28]. Note that the following result contrasts with the
nonexistence of Levi-flat, Hopf real hypersurfaces in nonflat complex space forms [9].

Corollary 1.4. Let H and Σ be as in the Main Theorem. Then, for any regular point
p ∈ Σ and any unit w ∈ TpΣ, there is exactly one locally defined curve σ on Σ with
σ(0) = p, σ̇(0) = w, and such that the hypersurface H · σ is Levi-flat. Conversely, any
strongly 2-Hopf, Levi-flat real hypersurface in M̄2(c) is constructed locally in this way.

It is interesting to determine to what extent imposing some additional geometric con-
ditions restricts the class of Levi-flat hypersurfaces. In this sense, Bryant [7] classified
Levi-flat minimal hypersurfaces in 2-dimensional complex space forms. It follows from
his result that, for CP 2 and CH2, each example in his classification is invariant under a
one-dimensional subgroup of the ambient isometry group. By weakening the minimality
condition, and adding the strongly 2-Hopf assumption, we can obtain the following result.

Theorem 1.5. Let M be a connected, Levi-flat, strongly 2-Hopf real hypersurface in M̄2(c),
c 6= 0. Then M has constant mean curvature if and only if it is an open part of

(i) a Lohnherr hypersurface in CH2, or
(ii) a Clifford cone in CP 2 or CH2, or

(iii) a bisector in CH2.

In particular, M is austere and ruled.

This work is organized as follows. In Section 2 we establish notation, recall some basic
concepts and results about submanifold geometry and polar actions on complex space
forms, and prove Theorem 1.2. In Section 3 we prove some formulas for the Levi-Civita
connection of a hypersurface satisfying h = 2. The proof of the Main Theorem is presented
in Section 4: in §4.1 we explain how to construct strongly 2-Hopf hypersurfaces, and
in §4.2 we characterize these examples. Then, Section 5 is devoted to the study of austere
hypersurfaces and the proof of Theorem 1.3. Finally, in Section 6, we give some applications
of the Main Theorem and prove the remaining theorems.
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2. Preliminaries

In this section we settle some notation and terminology concerning submanifold theory
and polar actions, with particular emphasis on the case of nonflat complex space forms.

2.1. Submanifold geometry in complex space forms. Let M be a smooth submani-
fold of a Riemannian manifold M̄ . Since the arguments that follow are local, we can assume
that M is embedded. We denote by TpM and νpM the tangent and normal spaces to M at p
respectively. Let X, Y , Z, W be tangent vector fields along M , and let ξ be normal. We de-
note by 〈 · , · 〉 the metric of M̄ , by ∇̄ its Levi-Civita connection, and by R̄ its curvature ten-
sor, which we adopt with the following sign convention: R̄(X, Y )Z = [∇̄X , ∇̄Y ]Z−∇̄[X,Y ]Z.
The Levi-Civita connection of M is denoted by ∇, and is determined by the Gauss formula

∇̄XY = ∇XY + II(X, Y ),

where II is the second fundamental form of M . The Weingarten formula reads

∇̄Xξ = −SξX +∇⊥Xξ
where Sξ is the shape operator of M with respect to ξ, and ∇⊥ is the normal connection
of M . Moreover, we have the relation 〈II(X, Y ), ξ〉 = 〈SξX, Y 〉.

The shape operator Sξ is a self-adjoint endomorphism with respect to the induced metric
on M , and thus it can be diagonalized with real eigenvalues. These eigenvalues are called
the principal curvatures of M with respect to ξ, the corresponding eigenspaces are the
principal curvature spaces, and the corresponding eigenvectors are the principal curvature
vectors. The mean curvature vector field H of M is defined as the trace of the second
fundamental form. We say that M has parallel second fundamental form (resp. parallel
mean curvature) if II (resp. H) is parallel with respect to the normal connection ∇⊥. We
say that M has flat normal bundle if every normal vector can be extended locally to a
parallel normal vector field or, equivalently, if the curvature of ∇⊥ is zero.

Now let M be a hypersurface of M̄ , and ξ a unit normal vector field on M . In this case
we simply write S for the shape operator Sξ. The Codazzi equation is then written as

〈R̄(X, Y )Z, ξ〉 = 〈(∇XS)Y, Z〉 − 〈(∇Y S)X,Z〉,
and, by letting R denote the curvature tensor of M , the Gauss equation reads

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉+ 〈SX,Z〉〈SY,W 〉 − 〈SX,W 〉〈SY, Z〉.
We now restrict our attention to the case M̄ = M̄n(c), where M̄n(c) represents a complex

space form of complex dimension n and constant holomorphic curvature c ∈ R, that is, a
complex projective space CP n if c > 0, a complex Euclidean space Cn if c = 0, or a complex
hyperbolic space CHn if c < 0. We denote by J the complex structure of M̄n(c). Since
M̄n(c) is Kähler, we have that ∇̄J = 0. We will also need the formula of the curvature
tensor R̄ of a complex space form of constant holomorphic sectional curvature c:

〈R̄(X, Y )Z,W 〉 =
c

4

(
〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉

+ 〈JY, Z〉〈JX,W 〉 − 〈JX,Z〉〈JY,W 〉 − 2〈JX, Y 〉〈JZ,W 〉
)
.
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Let M be a real hypersurface of M̄n(c), that is, a submanifold with real codimension
one. The tangent vector field Jξ is called the Hopf or Reeb vector field of M . We define the
integer-valued function h on M as the number of principal curvature spaces onto which Jξ
has nontrivial projection or, equivalently, as the dimension of the minimal subspace of the
tangent space to M that contains Jξ and is invariant under the shape operator S. Thus,
M is said to be Hopf at a point p if h(p) = 1, and is called a Hopf hypersurface if h = 1
on M , that is, if Jξ is a principal curvature vector field everywhere. If h is constantly
equal to an integer number k, then there is a smooth distribution D of rank k on M that
consists of the minimal subspace of the tangent space to M at each point that contains
Jξ and is S-invariant. If D is integrable, then M is said to be k-Hopf. If additionally,
the principal curvatures of M corresponding to the principal directions in D are constant
along the leaves of D, then we will say that M is strongly k-Hopf.

For more information on submanifold geometry and real hypersurfaces in complex space
forms we refer to [3], [8] and [26].

As an application of well-known results about Hopf real hypersurfaces in nonflat complex
space forms, we prove Theorem 1.2.

Proof of Theorem 1.2. Let M be a Hopf real hypersurface in M̄2(c), c 6= 0, with constant
mean curvature. Let α denote the principal curvature of the Hopf vector field. By [26,
Theorem 2.1] we know that α is constant on M . Now, by [26, Corollary 2.3(ii)], if β and
γ denote the other principal curvatures of M , we have that 2α(β + γ)− 4βγ + c = 0. This
equation, together with the constancy of α and α + β + γ, implies that β and γ are also
constant. Hence, M is a Hopf hypersurface with constant principal curvatures in M̄2(c),
c 6= 0. According to their classification by Kimura [23] and Berndt [2], we conclude that
M must be an open part of a homogeneous Hopf hypersurface. �

2.2. Polar actions. Let M̄ be a Riemannian manifold, and H a connected group of isome-
tries of M̄ . The isometric action H × M̄ → M̄ , (h, p) 7→ h(p), is called proper if the map
H × M̄ → M̄ × M̄ , (h, p) 7→ (g(p), p), is proper, which implies that the orbits of the
H-action are embedded, the space M̄/H of orbits is Hausdorff, and the isotropy groups
Hp = {h ∈ H : h(p) = p} are compact. An orbit of a proper action is called principal if
its isotropy groups are minimal among all the isotropy groups of the orbits. In particular,
principal orbits have maximal dimension. The codimension of a principal orbit is called the
cohomogeneity of the action. If an orbit has codimension higher than the cohomogeneity,
it is called singular. A point is said to be regular if it lies on a principal orbit.

Two isometric actions are called orbit equivalent if they have the same orbits, modulo
an isometry of the ambient space. A submanifold of M̄ is called homogeneous if it is an
orbit of an isometric action on M̄ . A Riemannian manifold is said to be of cohomogeneity
one if it admits a cohomogeneity one isometric action.

We say that a proper isometric action H×M̄ → M̄ is polar if there exists a submanifold
Σ of M̄ that intersects all the H-orbits, and every such intersection is perpendicular. Such
a submanifold Σ is totally geodesic, has the dimension of the cohomogeneity of the action,
and is called a section. Polar actions admit sections through any given point in M̄ . It
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turns out that the set Σreg of regular points in Σ is an open and dense subset of Σ. For
more information on isometric and polar actions we refer to [3, Chapter 2].

In this work we use polar actions to construct examples of interesting hypersurfaces in
nonflat complex space forms of dimension two. Thus, let us comment on their classification.
Polar actions on complex projective spaces were classified (up to orbit equivalence) by
Podestà and Thorbergsson [27], whereas for complex hyperbolic spaces the corresponding
classification was obtained by the first two authors and Kollross [12], although the case of
the complex hyperbolic plane had previously been solved by Berndt and the first author [6].
We are interested in the case of cohomogeneity two. It is known that, in this case, sections
Σ are totally real, that is, 〈JTΣ, TΣ〉 = 0. In particular, they are totally geodesic real
projective planes RP 2 if c > 0, and totally geodesic real hyperbolic planes RH2 if c < 0.

In CP 2 there is only one polar action of cohomogeneity two up to orbit equivalence,
namely the action of the group U(1)×U(1), which is induced from the standard action of
U(1)×U(1)×U(1) on the 5-sphere via the Hopf map. This action has three fixed points,
the other orbits are contained in the geodesic spheres around each one of these points, and
topologically they can be circles or 2-dimensional tori (the latter are the principal orbits).

In CH2 there are four polar actions of cohomogeneity two up to orbit equivalence. One
of them is dual to the one described for CP 2. It is the action of U(1) × U(1) on CH2,
which has only one fixed point in this case, and the other orbits are again circles or 2-tori
contained in the geodesic spheres around the fixed point. In order to describe the other
three examples we introduce some notation (see [6] for details). Let g = su(1, 2) be the Lie
algebra of the isometry group of CH2, and k = s(u(1)⊕u(2)) the Lie algebra of the isotropy
group of some point of CH2. The corresponding Cartan decomposition can be written as
g = k⊕ p, where p is the orthogonal complement of k in g with respect to the Killing form
of g. Then, a choice of a maximal abelian subspace a of p determines a decomposition
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, called the restricted root space decomposition. Here,
g0 = k0⊕a, where k0 ∼= u(1) is the centralizer of a in k. Thus, the other three cohomogeneity
two polar actions on CH2 correspond to the connected subgroups H of SU(1, 2) with the
following Lie algebras: h = g0, h = k0 ⊕ g2α, and h = ` ⊕ g2α, where ` is a 1-dimensional
vector subspace of gα. Topologically, the principal orbits of these first two actions are
2-dimensional cylinders, while those of the last one are 2-dimensional planes.

3. Levi-Civita connection of a hypersurface with h = 2

In this section we calculate the Levi-Civita connection of a real hypersurface M in M̄2(c),
c 6= 0, satisfying h = 2. This information will be used several times throughout this paper.

Let M be a real hypersurface with unit normal vector field ξ and shape operator S in
a nonflat complex space form M̄2(c). Let α, β and γ be the three principal curvatures of
M . For each principal curvature λ, we denote by Tλ the corresponding principal curvature
distribution; note that, in principle, this distribution might be singular. We will denote by
Γ(Tλ) the module of smooth vector fields X on M such that Xp ∈ Tλ(p) for every point p.

For the following proposition we only assume that M satisfies condition (C1) in the
definition of strongly 2-Hopf hypersurface, that is, the Hopf vector field Jξ of M has
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nontrivial projections onto exactly h = 2 principal curvature spaces, say onto Tα and Tβ.
This implies that α 6= β at every point.

Proposition 3.1. There are positive smooth functions a, b : M → R with a2 + b2 = 1, and
an orthonormal frame {U, V,A} on M with U ∈ Γ(Tα), V ∈ Γ(Tβ), A ∈ Γ(Tγ), such that

Jξ = aU + bV, JU = −bA− aξ, JV = aA− bξ, JA = bU − aV.

Proof. Since Jξ is a unit vector field tangent to M which has nontrivial projection onto Tα
and Tβ, we can write Jξ = aU + bV , where U ∈ Γ(Tα), V ∈ Γ(Tβ) are unit vector fields,
and a, b are smooth functions on M satisfying a2 + b2 = 1, and a, b > 0. Let A ∈ Γ(Tγ) be
a unit vector field; take it perpendicular to U and V in case γ has multiplicity 2. Then,
{U, V,A} constitutes an orthonormal frame on M .

As −ξ = J2ξ = aJU + bJV , and a 6= 0, taking inner product with V we get that
〈JU, V 〉 = 0. This implies that JU , JV ∈ span{A, ξ}. Now, 〈JU, ξ〉 = −〈U, Jξ〉 = −a, and
since U has unit length, we obtain 〈JU,A〉 = ±b. By changing the sign of A if necessary,
we can assume that JU = −bA − aξ. A similar argument shows that JV = aA − bξ.
Finally, these expressions imply 〈JA,U〉 = b, 〈JA, V 〉 = −a, and 〈JA, ξ〉 = 0, from where
the result follows. �

Proposition 3.2. Assume that α 6= β 6= γ 6= α at every point. Then the Levi-Civita
connection of M in terms of the basis {U, V,A} is given by the following equations:

∇UU =
V α

α− β
V − 3abc− 4Aα

4(α− γ)
A, ∇UV = − V α

α− β
U +

(
α +

3a2bc− 4aAα

4b(α− γ)

)
A,

∇V V = − Uβ

α− β
U +

3abc+ 4Aβ

4(β − γ)
A, ∇VU =

Uβ

α− β
V −

(
β +

3ab2c+ 4bAβ

4a(β − γ)

)
A,

∇AU =
(
γ − Ab

a

)
V +

Uγ

α− γ
A, ∇UA =

3abc− 4Aα

4(α− γ)
U −

(
α +

3a2bc− 4aAα

4b(α− γ)

)
V,

∇AV =
(
−γ +

Ab

a

)
U +

V γ

β − γ
A, ∇VA =

(
β +

3ab2c+ 4bAβ

4a(β − γ)

)
U − 3abc+ 4Aβ

4(β − γ)
V,

∇AA = − Uγ

α− γ
U − V γ

β − γ
V.

Moreover:

(1)

Ua =
bV α

α− β
, V a =

bUβ

α− β
, Aa = −bAb

a
,

Ub = − aV α

α− β
, V b = − aUβ

α− β
, V γ =

a(γ − β)Uγ

b(α− γ)
,

(2)

Ab = aγ +
ac

(
a2 − 2b2

)
4(α− β)

− 3a3c(β − γ)

4(α− β)(α− γ)
− αa(β − γ)

α− β
+

a2(β − γ)

b(α− β)(α− γ)
Aα,

Aβ =− 3abc

4
− aβ(β − γ)

b
− ac(β − γ)

4b(α− γ)
− aα(β − γ)2

b(α− γ)
− 3a3c(β − γ)2

4b(α− γ)2
+
a2(β − γ)2

b2(α− γ)2
Aα.
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Proof. Using the fact that U and A are orthogonal eigenvectors of S associated with the
eigenvalues α and γ respectively, we get

〈(∇US)A,U〉 = 〈∇USA− S∇UA,U〉 = 〈∇U(γA), U〉 − 〈∇UA, SU〉
= (Uγ)〈A,U〉+ γ〈∇UA,U〉 − α〈∇UA,U〉 = (α− γ)〈∇UU,A〉.

As U is a unit vector field we have 〈∇AU,U〉 = 0. Thus, proceeding as before, we get
〈(∇AS)U,U〉 = Aα. Moreover, the expression of the curvature tensor of a complex space
form yields 〈R̄(U,A)U, ξ〉 = −3abc/4. Hence, the Codazzi equation applied to the triple
(U,A, U) implies

〈∇UU,A〉 =
1

α− γ

(
Aα− 3abc

4

)
.

Applying the Codazzi equation to the triples (U, V, U), (U,A, U), (U,A,A), (U, V, V ),
(V,A, V ) and (V,A,A), we obtain in a similar way:

(3)

〈∇UU, V 〉 =
V α

α− β
, 〈∇UU,A〉 =

1

α− γ

(
Aα− 3abc

4

)
, 〈∇AA,U〉 = − Uγ

α− γ
,

〈∇V V, U〉 = − Uβ

α− β
, 〈∇V V,A〉 =

1

β − γ

(
Aβ +

3abc

4

)
, 〈∇AA, V 〉 = − V γ

β − γ
.

Since J is parallel with respect to the Levi-Civita connection ∇̄ of M̄2(c), we have
∇̄UJξ = J∇̄Uξ = −JSU = −αJU . Taking this into account, and using Proposition 3.1
and (3), we get

0= U〈A, Jξ〉 = 〈∇̄UA, Jξ〉+ 〈A, ∇̄UJξ〉 = a〈∇UA,U〉+ b〈∇UA, V 〉+ αb〈A,A〉+ αa〈A, ξ〉

= − a

α− γ

(
Aα− 3abc

4

)
+ b〈∇UA, V 〉+ αb,

from where we can obtain 〈∇UA, V 〉. This, and analogous calculations with V 〈A, Jξ〉 = 0
and A〈V, Jξ〉 = Ab, give the expressions

(4)

〈∇UV,A〉 = α− a

b(α− γ)

(
Aα− 3abc

4

)
, 〈∇AU, V 〉 = γ − Ab

a
,

〈∇VU,A〉 = −
(
β +

b

a(β − γ)

(
Aβ +

3abc

4

))
.

Equations (3) and (4) give the formulas for the Levi-Civita connection.
Now, the relations U〈V, Jξ〉 = Ub, V 〈V, Jξ〉 = V b, A〈A, Jξ〉 = 0, a2 + b2 = 1, together

with analogous calculations as above and (3), yield Equations (1).
Finally, if we apply the Codazzi equation to the triples (U, V,A) and (U,A, V ), we obtain:

〈∇VU,A〉 =
c+ 4(β − γ)〈∇UV,A〉

4(α− γ)
, 〈∇AU, V 〉 = −(a2 − 2b2)c− 4(β − γ)〈∇UV,A〉

4(α− β)
.

Combining this with (4) we derive (2). �
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4. Strongly 2-Hopf hypersurfaces

In this section we investigate the structure of strongly 2-Hopf hypersurfaces in CP 2 and
CH2. We prove the first part of the Main Theorem in §4.1, and the second part in §4.2.

4.1. Construction. We proceed with the construction of the examples of strongly 2-Hopf
hypersurfaces in a nonflat complex space form M̄2(c), c 6= 0.

We fix a connected groupH of isometries of M̄2(c) acting polarly and with cohomogeneity
two on M̄2(c). Let Σ be a section for this action, and Σreg the set of regular points of Σ.

Let σ : t ∈ (−ε, ε) 7→ σ(t) ∈ Σreg be a unit speed curve, and put p = σ(0). Then, the
subset

M = H · σ = {h(σ(t)) : t ∈ (−ε, ε), h ∈ H}
is a 3-dimensional hypersurface in M̄2(c) that is foliated by equidistant principal H-orbits,
and orthogonally, by the curves h ◦ σ : t ∈ (−ε, ε) 7→ (h ◦ σ)(t) = h(σ(t)) ∈ Σreg, for each
h ∈ H. Note that M = H · σ is intrinsically a cohomogeneity one manifold. Moreover, the
integrable distributions associated with these two foliations are invariant under the shape
operator of M . Indeed, if ξ is a unit normal vector field on M , the principal curvatures
(resp. principal curvature spaces) of some orbit H ·q at q with respect to ξ are also principal
curvatures (resp. principal curvature spaces) of M at q. This follows from the fact that ξ
is an H-equivariant normal field along principal orbits of a polar action, and therefore ξ
is also parallel with respect to the normal connection of the orbits [3, Corollary 2.3.7]. In
particular, the principal curvatures of M along an H-orbit are constant. Our purpose is
to argue that, generically, M is a strongly 2-Hopf hypersurface.

Consider the map

Φ: w ∈ S1(TpΣ) 7→ 〈S(ξw)p(Jξw)p, Jw〉 ∈ R,
defined in the unit sphere of TpΣ, and where S denotes the shape operator of the surface
H · p, and ξw ∈ TpΣ is the unit vector obtained by rotating w 90 degrees (in some fixed
orientation) around the origin of TpΣ. Denote by wp the subset of vectors of S1(TpΣ) where
Φ vanishes. Observe that M = H · σ is Hopf at p if and only if σ̇(0) ∈ wp.

In [13, end of §2.2], it was shown that, by virtue of the Ricci equation, the map Φ cannot
vanish identically. Therefore, since Φ is an analytic map, the set wp cannot be infinite.
(We note that in [13] it was claimed that wp had at most two elements, but this does not
need to be true, since Φ is not linear as asserted there; however, all other statements in [13]
remain true.) Thus, if w = σ̇(0) /∈ wp, then M = H · σ is not Hopf at p. By continuity,
this implies that, if σ̇(0) /∈ wp and for ε small enough, then M is not Hopf at any point.
Denote by D the rank-2 integrable distribution tangent to the H-orbits. Then, if ξ is a
unit normal vector field to M , then Jξ ∈ D (since Σ is totally real), and hence, D is the
smallest distribution of M containing Jξ and invariant under the shape operator of M .
Moreover, as mentioned above, the principal curvatures of M whose principal curvature
spaces lie in D are constant along the H-orbits, that is, along the integral submanifolds
of D. This completes the proof that M is strongly 2-Hopf, whenever σ̇(0) /∈ wp. Finally,
by the definition of wp, H · σ is Hopf at p if σ̇(0) ∈ wp. This concludes the proof of the
first part of the Main Theorem.
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4.2. The equations of a strongly 2-Hopf hypersurface. The aim of this subsection
is to prove the second part of the Main Theorem, that is, to show that a strongly 2-Hopf
real hypersurface in M̄2(c), c 6= 0, must be locally congruent to a hypersurface constructed
as in the previous subsection.

From now on we assume that M is strongly 2-Hopf with associated distribution D. We
will use the notation given above in Proposition 3.1, so in particular D = span{U, V }. In
the following proposition we determine the Levi-Civita connection of M .

Proposition 4.1. The Levi-Civita connection of M in terms of the frame {U, V,A} is
given by the following equations:

∇UU = −b(c− 4α(α− β))

4a(α− β)
A, ∇VU =

c

4(α− β)
A,

∇UV =
c

4(α− β)
A, ∇V V = −a(c+ 4β(α− β))

4b(α− β)
A,

∇UA =
b(c− 4α(α− β))

4a(α− β)
U − c

4(α− β)
V, ∇VA = − c

4(α− β)
U +

a(c+ 4β(α− β))

4b(α− β)
V

∇AU =

(
c(β − γ)

4(α− β)2
− c (a2 − 2b2)

4(α− β)

)
V, ∇AV =

(
− c(β − γ)

4(α− β)2
+
c (a2 − 2b2)

4(α− β)

)
U,

∇AA = 0.

Furthermore, we have Da = Db = Dα = Dβ = Dγ = 0.

Proof. First of all, note that, in case that γ equals one of the other two principal curvatures
in an open set of M , then the relations above hold, according to [13, Proposition 4.1].
Therefore, it is enough to prove Proposition 4.1 for the case where M has three distinct
principal curvatures at every point. In particular, Proposition 3.2 holds.

By definition of strongly 2-Hopf hypersurface, we have Uα = Uβ = V α = V β = 0.
Then, Equations (1) imply Ua = Ub = V a = V b = 0.

Since the distribution D = span{U, V } is integrable due to the strongly 2-Hopf assump-
tion, we must have 〈∇UV −∇VU,A〉 = 0. Using Proposition 3.2, this allows us to obtain
after some calculations

(5)

Aα =
αb(α− γ)

a
+
bc(α− γ)

4a(β − α)
+

3abc

4
,

Aβ = −βa(β − γ)

b
− ac(β − γ)

4b(α− β)
− 3abc

4
,

Ab = a

(
c (a2 − 2b2)

4(α− β)
− c(β − γ)

4(α− β)2
+ γ

)
.

The last step is to show that Uγ = 0. Proposition 3.2, Equations (5), and the assumption
Uα = 0, easily imply

[U,A]α = (∇UA−∇AU)α = − 1

α− γ

(
αb(α− γ)

a
+
bc(α− γ)

4a(β − α)
+

3abc

4

)
Uγ,
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UAα =
b(c− 4α(α− β))

4a(α− β)
Uγ, AUα = 0.

Thus,

0 = ([U,A]− UA+ AU)α = − 3abc

4(α− γ)
Uγ,

which yields Uγ = 0, as desired. Finally, by (1), we get V γ = Uγ = 0. Putting together
all these results we obtain Proposition 4.1. �

In order to conclude the proof of the Main Theorem we need to extract certain geometric
information on the integrable distributions D and RA, and then use this information to
show that M can be constructed as in the statement of the Main Theorem. The arguments
needed for this purpose are completely analogous to those developed in [13, Sections 5
and 6]. Hence, we will restrict ourselves to give a quick idea of the arguments and state
the main partial results involved. We refer to [13] for detailed proofs.

A first consequence of Propositions 3.1 and 4.1 is the following.

Proposition 4.2. The leaves of the integrable distribution D are flat, totally real surfaces
of M̄2(c) with parallel second fundamental form and flat normal bundle.

Observe that the relation ∇AA = 0 in Proposition 4.1 implies that the integral curves of
A are geodesics of M and, by the Gauss formula, their curvature as curves in M̄2(c) is γ.
Moreover, these curves are, locally, intersections of M with totally geodesic, totally real
surfaces in M̄2(c). More precisely, we have:

Proposition 4.3. Let σ be an integral curve of A through a point p ∈ M . Let Qp =
expp(RAp ⊕ Rξp), where expp denotes the Riemannian exponential map of M̄2(c) at p.

Then Qp is a totally real, totally geodesic surface of M̄2(c), and σ is contained in Qp.
Furthermore, the curve σ is determined by the initial conditions σ(0) = p, σ̇(0) = Ap,

and the fact that σ is a unit speed curve in Qp = expp(RAp ⊕ Rξp) with curvature γ with
respect to ξ.

Next, one can show that, if Qp and σ are as above, then Qp intersects the integral
submanifolds of D perpendicularly along σ. This, Proposition 4.3, the fact that the integral
curves of A are geodesics in M , and the fact that the curvature γ is constant along the
leaves of D, allows to show the following result.

Proposition 4.4. We have:

(i) The integral surfaces of D are equidistant submanifolds of M̄2(c).
(ii) Let L be an integral surface of the distribution D, and let Lt be an integral surface of
D whose distance to L is a sufficiently small number t. Then, in a neighborhood U of
a point in L there exists a parallel normal vector field ηt such that

Lt = {expp(ηt(p)) : p ∈ U}.

Now, it follows directly from Proposition 4.2 that the integral submanifolds of D are
flat, Lagrangian surfaces of M̄2(c) with parallel mean curvature. Then, [13, Theorem 2.1]
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guarantees that each one of these surfaces is an open part of a principal orbit of a polar
action of cohomogeneity two on M̄2(c). By Proposition 4.4, the integral surfaces of D are
obtained by exponentiating a parallel normal vector field along a fixed leaf. Moreover, on
a principal orbit of a polar action every parallel normal field is equivariant. Altogether,
this implies that all leaves of D are principal orbits of the same polar action of a group H.
Moreover, for each p ∈ M the integral curve of A through p is contained in the totally
geodesic submanifold Qp = expp(RAp ⊕ Rξp), which is perpendicular to the leaf of D
through p and, then, must be a section for the H-action. Therefore, M is obtained, locally,
as H ·σ, where σ is an integral curve of A. This concludes the proof of the Main Theorem.

5. Austere hypersurfaces

In this section we investigate austere real hypersurfaces in M̄2(c), c 6= 0, under the
only assumption that the Hopf vector field does not have nontrivial projection onto three
principal curvature spaces. In other words, we just assume h ≤ 2. We prove first that h
must be constantly equal to 2 in an open dense subset.

Proposition 5.1. There are no Hopf austere hypersurfaces in M̄2(c), c 6= 0.

Proof. Austere hypersurfaces have, by definition, vanishing mean curvature. Then, by
Theorem 1.2, a Hopf austere hypersurface in M̄2(c), c 6= 0, must be an open part of
a homogeneous Hopf hypersurface. But by direct inspection of the principal curvatures
of the examples in Takagi’s and Montiel’s lists [26, §3] one can check that the only Hopf,
homogeneous, minimal hypersurfaces in M̄2(c), c 6= 0, are geodesic spheres or tubes around
a totally geodesic RP 2 of certain fixed radius. But none of these examples is austere. �

Hence, if M is an austere hypersurface of M̄2(c), c 6= 0, with h ≤ 2, then there is an open
and dense subset of M where h = 2. In what follows we will assume that calculations take
place in this subset. Note that the assumption that M is austere implies that its principal
curvatures are α, −α and 0, for some smooth function α on M . We will use the notation
established in Proposition 3.1.

Proposition 5.2. Let M be an austere hypersurface of M̄2(c), c 6= 0, with h = 2, and
three distinct principal curvatures α, −α and 0. Then M is strongly 2-Hopf, the Hopf
vector field has nontrivial projections onto Tα and T−α, and the norm of both projections
is a = b = 1/

√
2.

Proof. Assume first that Jξ has nontrivial projection onto Tα and T0. Thus, we put β = 0
and γ = −α in the results of Section 3. In particular, by (1) and (2) we have

Aα =
b

4a
(5c+ 8α2 + 9b2c), Ab =

a

4α
(5c− 4α2 − 3ca2), V a = V b = 0,(6)

V α = − a

2b
Uα, Ua = − a

2α
Uα, Ub =

a2

2bα
Uα.(7)

Using Proposition 3.1, the formulas for the Levi-Civita connection in Proposition 3.2, (6)
and (7), the Gauss equation applied to (U, V, U,A) implies, after some calculations, that

(8) Uα = V α = Ua = Ub = 0.
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Using again Propositions 3.1 and 3.2, (6) and (8), the Gauss equation applied to (U, V, U, V )
yields α2 = 1

4
(2 + 3b2)c. Similarly, by the Gauss equation applied to (A, V, U,A) we obtain

that α2 = (−8+9b2+27b4)c
4(−7+3b2)

. But both expressions for α2 are incompatible for b ∈ R. This

contradiction implies the nonexistence of austere hypersurfaces whose Hopf vector field has
nontrivial projections onto Tα and T0.

Since α and −α are interchangeable, we just have to deal with the case where Jξ has
nontrivial projection onto Tα and T−α. Thus, we put β = −α and γ = 0 in the results of
Section 3. Then, by (2) we get

(9) Aα =
ab

2
(c+ 4α2).

Hence, by applying the Gauss equation to (A, V,A, U), and using Propositions 3.1 and 3.2
with β = −α, γ = 0, and (9), we obtain abc(a2 − b2)(c + 4α2) = 0. If a 6= b on a
nonempty subset U of M , we deduce that U is a real hypersurface with constant principal
curvatures ±

√
−c/2 and 0 in M̄2(c), c < 0. By the classification in [4], U must be an

open part of a Lohnherr hypersurface, but this example satisfies a = b everywhere, which
is a contradiction. Therefore we must have a = b on M . Since a2 + b2 = 1, we deduce
that a = b = 1/

√
2. But then (1) yields Uα = V α = 0. This, together with (9) and

Proposition 3.2, implies that ∇UV − ∇VU = 0. Hence, M is strongly 2-Hopf, as we
wanted to show. �

In order to conclude the proof of Theorem 1.3 we will make use of the notion of ruled
hypersurface. Recall that a real hypersurface M in a complex space form is called ruled if
the maximal complex distribution (Jξ)⊥ of M is integrable and its integral submanifolds
are totally geodesic complex hypersurfaces of the ambient space [8, §8.5.1].

Proof of Theorem 1.3. Observe that (Jξ)⊥ = RJA⊕RA = R(bU − aV )⊕RA. By Propo-
sition 5.2 we have SJA = αbU+αaV = (α/

√
2)(U+V ) = αJξ and SA = 0, which implies

that S(Jξ)⊥ ⊂ RJξ. By [8, Proposition 8.27], M is a ruled hypersurface. In particular,
M is a minimal ruled hypersurface in M̄2(c), c 6= 0. Lohnherr and Reckziegel [25] proved
that there is at most one minimal ruled hypersurface in CP 2 up to local congruence, and
at most three in CH2.

Kimura [24] proved that a cone over a Clifford torus in CP 2 is austere and ruled. Since
ruled hypersurfaces satisfy h ≤ 2 everywhere (indeed h = 2 on an open and dense subset),
Kimura’s example gives the only possibility of an austere hypersurface with h ≤ 2 in CP 2.

In CH2 there are three known (noncongruent) examples of minimal ruled hypersurfaces:
Clifford cones [1, §3], Lohnherr hypersurfaces [25, §4], and bisectors [8, p. 447]; see also [15,
p. 253]. All of them are known to be austere with h ≤ 2. Therefore, these are precisely
the examples of austere hypersurfaces with h ≤ 2 in CH2. �

Remark 5.3. It is known that a ruled hypersurface M in a complex space form is locally
constructed by attaching to an integral curve τ of Jξ the complex totally geodesic hyper-
surfaces that are normal to τ̇ . It was also shown in [25] that a ruled hypersurface in M̄2(c),
c 6= 0, is minimal if and only if τ is a circle contained in a totally geodesic and totally real
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submanifold of M̄2(c). Moreover, in the projective case, any two such circles give rise to
the same ruled hypersurface, up to congruence, whereas in the hyperbolic case, two circles
τ1, τ2 give rise to congruent ruled hypersurfaces if and only if their curvatures

∥∥∇̄τ̇1 τ̇1
∥∥,∥∥∇̄τ̇2 τ̇2

∥∥ are both greater, equal, or less than
√
−c/2. It follows from our study above that

∇̄JξJξ = αA for an austere hypersurface with h = 2. Note that from (9) we have that
α −
√
−c/2 has constant sign. One can show that the cases α >

√
−c/2, α =

√
−c/2

and α <
√
−c/2 correspond, respectively, to Clifford cones, Lohnherr hypersurfaces and

bisectors.

We conclude this section by observing that we could have finished the proof of Theo-
rem 1.3 without using the results about ruled hypersurfaces. We sketch briefly the idea of
this alternative argument.

In view of Propositions 5.1 and 5.2, an austere hypersurface M in M̄2(c), c 6= 0, satisfying
h ≤ 2, is strongly 2-Hopf in an open and dense subset, and thus, must be constructed by
the procedure described in Subsection 4.1. Moreover, according to Proposition 4.3, the
curve σ inside the section Σ of a polar H-action must have curvature γ = 0. In other
words, we need σ to be a pregeodesic in Σ, that is, ∇̄σ̇σ̇ ∈ span{σ̇}.

Moreover, if M = H · σ is to be austere, the trace of the shape operator Sξ of the orbits
H ·σ(t), with respect to the normal vector field ξ of M , must vanish. This follows from the
fact that the principal curvatures of the integral leaves of D = span{U, V } with respect to
ξ coincide with the spectrum of the shape operator of M restricted to D, but this spectrum
is {α,−α}, for some H-invariant function α on M , according to Proposition 5.2. Thus,
ξp must be perpendicular to the mean curvature vector field of the orbit H · p, for every
p ∈M . By H-equivariance, it is enough to have this property along the points of σ. Let H
be the vector field on Σ defined by the fact that Hp is the mean curvature vector of H · p
at p. Then the condition reads Hσ(t) ∈ span{σ̇(t)} for every t.

It turns out that M = H · σ is austere if and only if σ is a pregeodesic and Hσ(t) ∈
span{σ̇(t)}, for all t. Thus, the idea is to find all curves σ satisfying both conditions, for
each polar action of cohomogeneity 2 on M̄2(c), c 6= 0. This requires a good understanding
of such actions and, in particular, one needs to determine the mean curvature vector field
H on Σ explicitly, and to compute the derivative ∇̄HH. Here we skip the elementary but
long calculations involved.

As mentioned in Subsection 2.2, the unique polar action of cohomogeneity two on CP 2

(up to orbit equivalence) is the action of H = U(1)×U(1). A section Σ for this action is a
totally geodesic RP 2, and the orbit space CP 2/H is homeomorphic to a geodesic triangle
of angles (π/2, π/2, π/2) inside Σ = RP 2. Due to the action of the Weyl group on Σ, it
is enough to find a curve σ in this triangle. It turns out that the only curves satisfying
the above mentioned conditions are the bisectors of the three angles of the triangle. Each
such a curve σ joins a vertex of the triangle (which is a fixed point of the H-action) to the
only minimal principal H-orbit, which we call a Clifford torus of CP 2. Thus, the resulting
hypersurface H · σ is a cone over a Clifford torus in CP 2.

In CH2 there are four cohomogeneity-two polar actions up to orbit equivalence. A section
Σ for each of them is always a totally geodesic RH2. The action of H = U(1)×U(1) is in
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some sense dual to the corresponding action on CP 2, and the only suitable curves σ in Σ
give rise to Clifford cones (cf. [16, §3.2]). The action of the group H with Lie algebra h = g0
admits only one curve σ in Σ such that H ·σ is austere; in this case, the hypersurface H ·σ
turns out to be a bisector (cf. [16, §3.4]). The action corresponding to h = k0⊕g2α does not
admit any suitable curve σ. Finally, the case h = `⊕ g2α, with ` a 1-dimensional subspace
of gα, admits only one suitable curve σ, and the corresponding austere hypersurface H · σ
is a Lohnherr hypersurface (which is called a fan in [16, §3.6]).

6. Applications

In this section we derive some characterizations of strongly 2-Hopf hypersurfaces that
satisfy some additional properties. We first prove Corollaries 1.1 and 1.4 in Subsections 6.1
and 6.2, respectively, and then, in Subsection 6.3 we classify strongly 2-Hopf, Levi-flat real
hypersurfaces with constant mean curvature in M̄2(c), c 6= 0 (Theorem 1.5).

The Main Theorem guarantees that strongly 2-Hopf hypersurfaces in M̄2(c), c 6= 0, are
constructed locally as a set H · σ = {h(σ(t)) : t ∈ (−ε, ε), h ∈ H}, where H is a connected
group of isometries acting polarly and with cohomogeneity two on M̄2(c), and σ is a smooth
curve in the regular part of a section Σ of the H-action. Our purpose is to determine which
curves σ give rise to a real hypersurface with one or several additional properties.

6.1. Strongly 2-Hopf hypersurfaces with constant mean curvature. In order to
prove Corollary 1.1, we assume that the mean curvature of the resulting hypersurface H ·σ
is constant. Thus, let p ∈ Σ be a regular point, w ∈ TpΣ a tangent vector, and σ a smooth
curve in the regular part of Σ such that σ(0) = p and σ̇(0) = w. Let ξ be one of the two unit
normal vector fields along σ that are tangent to Σ, and let γ denote the curvature of σ with
respect to ξ. We also denote by ξ the unique extension to a smooth unit normal vector field
along H ·σ; note that such extension is H-equivariant. Observe also that, by equivariance,
the principal curvatures of H · σ with respect to ξ are constant along each H-orbit. Then
the mean curvature of H · σ with respect to ξ will have a constant value η ∈ R if and only
if the curvature function γ satisfies γ(t) = η−α(ξ(t))−β(ξ(t)) for all t where σ is defined,
being α(ξ(t)) and β(ξ(t)) the principal curvatures of the orbit H ·σ(t) with respect to ξσ(t)
at the point σ(t). In other words, we need (∇̄σ̇σ̇)(t) = (η − α(ξ(t)) − β(ξ(t)))ξσ(t) for all
t. But, in local coordinates, this yields an ordinary differential equation of second order
in normal form, so it admits a unique local solution σ for initial conditions σ(0) = p and
σ̇(0) = w. This, together with the Main Theorem, proves Corollary 1.1. Observe that, by
the Main Theorem, the hypersurface with constant mean curvature constructed above is
generically strongly 2-Hopf.

6.2. Levi-flat strongly 2-Hopf hypersurfaces. The Levi form of a real hypersurface
M in a Kähler manifold is the symmetric bilinear map L : (Jξ)⊥ × (Jξ)⊥ → νM defined
by

L(X, Y ) = II(X, Y ) + II(JX, JY ),

where (Jξ)⊥ is the maximal complex distribution of M . Then M is called Levi-flat if
its Levi form vanishes identically. It is easy to check that M is Levi-flat if and only if
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the maximal complex distribution of M is integrable. Thus, ruled hypersurfaces are a
very particular case of Levi-flat hypersurfaces. See [18] for more information on Levi-flat
hypersurfaces.

Consider a real hypersurface M in M̄2(c), c 6= 0, satisfying h = 2. We will use the
notation established in Section 3. Assume thatM is Levi-flat. Then, its Levi-form vanishes.
Since A, JA ∈ (Jξ)⊥ by Proposition 3.1, we have II(A,A)+II(JA, JA) = 0 or, equivalently,
〈SA,A〉+ 〈SJA, JA〉 = 0. Using Proposition 3.1 again, this condition reads

γ + b2α + a2β = 0.

Now, in order to prove Corollary 1.4 the procedure is analogous to the one described
above in §6.1. One just has to take into account that now the curve σ must have curvature
function γ(t) = −b(ξ(t))2α(ξ(t))− a(ξ(t))2β(ξ(t)), where a(ξ(t)) and b(ξ(t)) are the norms
of the orthogonal projections of Jξ(t) onto the principal curvature spaces Tα(ξ(t)) and Tβ(ξ(t))
of the surface H · σ(t) with respect to ξ(t), at each point σ(t).

6.3. Levi-flat strongly 2-Hopf hypersurfaces with constant mean curvature. Our
aim in this subsection is to prove Theorem 1.5.

Let M be a Levi-flat strongly 2-Hopf real hypersurface in M̄2(c), c 6= 0, with constant
mean curvature η. By Subsections 6.1 and 6.2, we have that γ = η − α − β and γ =
−b2α − a2β. Since a2 + b2 = 1, we deduce a2α + b2β = η. If we take derivatives in this
expression with respect to the vector field A we obtain

2aαAa+ a2Aα + 2bβAb+ b2Ab = 0.

From (5) in Section 4 and from the relation aAa + bAb = 0, we deduce the expressions
of Aa, Ab, Aα and Aβ in terms of a, b and the principal curvatures. Thus, substituting
into the previous equation we obtain after some calculations that 3γ = α + β. Since
γ = η − α− β, then γ = η/4 and α + β = 3η/4.

From the equations a2 + b2 = 1 and αb2 + βa2 = −γ we get the expressions a2 =
(γ + β)/(β −α) and b2 = (α+ γ)/(α− β). Since α+ β is constant, we have A(α+ β) = 0.
Putting together this with (5), the previous expressions for a2 and b2, and the relations
γ = η/4 and β = 3η/4− α, we obtain after some calculations that

0 = η(8α2 − 6ηα + 3η2 − 4c).

We distinguish between the minimal and non-minimal cases. Thus, if η 6= 0, the previous
equation implies that α is constant, and then M has constant principal curvatures. But real
hypersurfaces with constant principal curvatures in the complex projective and hyperbolic
planes have been classified [4], [29] (see [14] for a survey). On the one hand, in CP 2 there
do not exist non-Hopf hypersurfaces with constant principal curvatures. On the other
hand, in CH2 the only non-Hopf hypersurfaces with constant principal curvatures are
the Lohnherr hypersurface (which is minimal), and its equidistant hypersurfaces (which
are non-minimal). All of them are strongly 2-Hopf, as follows from [5, §4.1] (cf. [11]).
However, only the Lohnherr hypersurface is Levi-flat: it is the only one that satisfies the
relation γ = −b2α−a2β, as can be checked from [11, Theorem 3.12]. Hence, the case η 6= 0
is impossible.
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Assume now that η = 0. Then γ = 0, β = −α and a2 = b2 = 1/2. In particular, M
is an austere strongly 2-Hopf hypersurface in M̄2(c), c 6= 0. By the classification achieved
in Section 5, we deduce that M must be an open part of a Lohnherr hypersurface, or a
Clifford cone, or a bisector. Finally, observe that all these examples are Levi-flat, since
they are ruled. This concludes the proof of Theorem 1.5.
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