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ISOPARAMETRIC SUBMANIFOLDS IN

TWO-DIMENSIONAL COMPLEX SPACE FORMS

JOSÉ CARLOS DÍAZ-RAMOS, MIGUEL DOMÍNGUEZ-VÁZQUEZ,
AND CRISTINA VIDAL-CASTIÑEIRA

Abstract. We show that an isoparametric submanifold of a complex hyperbolic plane,
according to the definition of Heintze, Liu and Olmos’, is an open part of a principal orbit
of a polar action.

We also show that there exists a non-isoparametric submanifold of the complex hyper-
bolic plane that is isoparametric according to the definition of Terng’s. Finally, we classify
Terng-isoparametric submanifolds of two-dimensional complex space forms.

1. Introduction

A submanifold M of a Riemannian manifold M̄ is said to be isoparametric according
to Heintze, Liu and Olmos [15], henceforth simply isoparametric, if its normal bundle
νM is flat, all nearby parallel submanifolds have constant mean curvature in the radial
directions, and for any p ∈ M there exists a totally geodesic submanifold Σp through p
such that TpΣp = νpM .

We denote by M̄2(c) a 2-dimensional complex space form of constant holomorphic sec-
tional curvature c 6= 0. Thus, M̄2(c) is a complex projective plane CP 2 if c > 0, or a
complex hyperbolic plane CH2 if c < 0. The first main result of this paper is:

Theorem A. An isoparametric submanifold of M̄2(c) is congruent to an open part of a

principal orbit of a polar action on M̄2(c).

The classification of isoparametric submanifolds for complex projective spaces CP n,
n 6= 15, has been obtained in much greater generality using a different method in [14].
Here we deal with both cases simultaneously and obtain the result for CH2. We prove this
theorem in Section 4.

Recall that an isometric action of a Lie group on a Riemannian manifold is called polar

if there exists a submanifold Σ (called section) that intersects all the orbits of the action,
and such that Σ is orthogonal to the orbits at intersection points. Polar actions on complex
projective spaces have been classified in [16], and polar actions on the complex hyperbolic
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plane have been classified in [5]. See also [11] for the more general classification in CHn.
Therefore, our result implies the classification of isoparametric submanifolds in M̄2(c)
of arbitrary codimension. The classification for CH2 seems to be the first one of these
characteristics in a symmetric space of noncompact type and nonconstant curvature.

A submanifold M of a Riemannian manifold M̄ is called Terng-isoparametric if it has
flat normal bundle and the eigenvalues of the shape operator with respect to any parallel
normal vector field are constant. In our setting, Terng’s definition is less rigid than Heintze,
Liu and Olmos’, and thus, a new example appears in codimension two:

Theorem B. A submanifold of M̄2(c) is Terng-isoparametric if and only if it is congruent

to an open part of:

(i) an isoparametric submanifold of M̄2(c), or
(ii) a Chen’s surface in CH2, or

(iii) a circle in M̄2(c).

The proof of Theorem B is given in Section 5. Apart from circles, which are trivial
examples of Terng-isoparametric submanifolds, we do not get new examples in complex
projective planes. However, there exists a Terng-isoparametric submanifold in CH2 that
is neither a circle nor a principal orbit of a polar action. We have called this new example
Chen’s surface, which is homogeneous, that is, an orbit of an isometric action on the
ambient space, and unique up to isometric congruence (see §3). It was introduced by Chen
in [7], and a geometric characterization was given in [9]. In Section 3 we present a new Lie
theoretic description of this submanifold in terms of the root space decomposition of the
Lie algebra of the isometry group of CH2.

The motivation for this paper comes from the study of isoparametric submanifolds in
symmetric spaces. The history of isoparametric submanifolds can be traced back at least
to the works of Somigliana [18] and Segre [17] who classified isoparametric hypersurfaces in
Euclidean spaces. Thorbergsson showed in [20] that compact, full and irreducible isopara-
metric submanifolds of codimension greater than 2 in Euclidean spaces are homogeneous,
which implies that such submanifolds are principal orbits of polar actions, which in turn
correspond to isotropy representations of symmetric spaces [10].

Thorbergsson’s remarkable result [20] readily implies the classification of isoparametric
submanifolds of codimension ≥ 2 in spheres. However, the classification of isoparametric
hypersurfaces in spheres is open and still an active topic of research. See [21] for a recent
survey on this and other related topics.

Isoparametric hypersurfaces in real hyperbolic spaces were classified by Cartan [6],
whereas for higher codimension, Wu [23] reduced the classification problem to that of
isoparametric hypersurfaces in spheres. We highlight that, in real space forms, homoge-
neous isoparametric submanifolds are always principal orbits of polar actions.

The general study of isoparametric submanifolds was started by Terng [19], whose def-
inition was given for spaces of constant curvature. Nowadays the general definition of
isoparametric submanifold is credited to Heintze, Liu and Olmos [15]. This is the notion
that we use in this paper, although we also consider Terng’s definition, which turns out to
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be less rigid when the ambient space is a complex hyperbolic plane. This contrasts with
the situation in real space forms, where both definitions agree.

Isoparametric submanifolds of complex projective spaces CP n have been studied by the
second author, who gave a classification if n 6= 15. In this paper we also study Terng-
isoparametric submanifolds of CP 2 and conclude that no new interesting examples arise.

The classification of isoparametric hypersurfaces in complex hyperbolic spaces has re-
cently been obtained in [12]. For higher codimension the problem seems to be much more
complicated. We restrict to CH2 in this paper and show that all examples are open parts
of principal orbits of polar actions on CH2. Surprisingly, unlike in real space forms, there
is a Terng-isoparametric submanifold of codimension 2 that is not isoparametric; this sub-
manifold is homogeneous but not an orbit of a polar action.

2. Preliminaries

We start with some basic definitions and notations.

2.1. Submanifold geometry. We denote by M̄2(c) a complex space form of dimension 2
and constant holomorphic curvature c 6= 0. Thus, M̄2(c) is isometric to a complex projec-
tive plane CP 2 endowed with the Fubini-Study metric of constant holomorphic sectional
curvature c > 0, or to a complex hyperbolic plane CH2 endowed with the Bergman metric
of constant holomorphic sectional curvature c < 0. We denote by 〈 · , · 〉 the Riemannian
metric of M̄2(c) and by ∇̄, R̄ and J its Levi-Civita connection, its curvature tensor and
its complex structure, respectively. Thus,

R̄(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X,Z〉Y + 〈JY, Z〉JX − 〈JX,Z〉JY − 2〈JX, Y 〉JZ),

for vector fields X , Y , Z ∈ Γ(M̄2(c)).
Now let M be a submanifold of M̄2(c). We denote its normal bundle by νM , and by

∇ and R its Levi-Civita connection and its curvature tensor, respectively. The extrinsic
geometry of M is determined by its second fundamental form II, which is defined by the
formula ∇̄XY = ∇XY + II(X, Y ), for X , Y ∈ Γ(TM). If ξ ∈ Γ(νM) is a normal vector,
then the shape operator Sξ with respect to ξ is defined by 〈SξX, Y 〉 = 〈II(X, Y ), ξ〉. We
also denote by ∇⊥ the normal connection of the normal bundle νM , which is related to
the shape operator via the Weingarten formula ∇̄Xξ = −SξX +∇⊥

Xξ.
To a large extent, the geometry of M is governed by the Gauss, Codazzi and Ricci

equations, that can be written as

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈II(Y, Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉,
〈R̄(X, Y )Z, ξ〉 = 〈∇XSξY, Z〉 − 〈∇XY, SξZ〉 − 〈S∇⊥

X
ξY, Z〉

− 〈∇Y SξX,Z〉+ 〈∇YX,SξZ〉+ 〈S∇⊥

Y
ξX,Z〉,

〈R̄(X, Y )ξ, η〉 = 〈R⊥(X, Y )ξ, η〉 − 〈[Sξ, Sη]X, Y 〉,

where X , Y , Z, W ∈ Γ(TM), ξ, η ∈ Γ(νM) and R⊥ denotes the curvature tensor of ∇⊥.
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We say that M has flat normal bundle if R⊥ = 0. This is equivalent to requiring that
each point has a neighborhood where there is an orthonormal frame of νM consisting of
∇⊥-parallel normal vector fields.

It is easy to see that the shape operator with respect to a unit normal vector field ξ is self-
adjoint, that is, 〈SξX, Y 〉 = 〈SξY,X〉 for all X , Y ∈ TM . Hence, each Sξ is diagonalizable
with real eigenvalues and orthogonal eigenspaces. These eigenvalues are called the principal
curvatures in the direction of ξ. The mean curvature in the direction of ξ is 1

k
trSξ, while the

mean curvature vector of M is defined by H = 1
k

∑k

i=1 II(Ei, Ei) =
1
k

∑l

i=1(trSξi)ξi, where
{E1, . . . , Ek} and {ξ1, . . . , ξl} are orthonormal frames of TM and of νM , respectively.

A submanifold M is called totally umbilical if II(X, Y ) = 〈X, Y 〉H for any X , Y ∈ TM
and totally geodesic if II = 0. Totally geodesic submanifolds of M̄2(c) can be geodesics,
real projective or hyperbolic planes RP 2 or RH2, and complex projective or hyperbolic
lines CP 1 or CH1, depending on the sign of the holomorphic curvature c.

2.2. Isoparametric submanifolds. Let M̄ be a Riemannian manifold and M a subman-
ifold of M̄ . The submanifold M is said to be almost isoparametric [15] if its normal bundle
νM is flat and if, locally, the parallel submanifolds of M have constant mean curvature in
radial directions.

The submanifold M is said to admit sections if for any point p ∈ M there is a totally
geodesic submanifold Σp, called the section through p, such that TpΣp = νpM . Then,
we say M is isoparametric if it is almost isoparametric and admits sections. Throughout
this paper whenever we consider an isoparametric submanifold, we understand that it is
isoparametric according to this definition.

The submanifold M is said to have constant principal curvatures if for any curve σ : I →
M and any parallel unit normal vector field ξ ∈ Γ(σ∗ν1M) along σ the eigenvalues of
the shape operator Sξ(t) with respect to ξ(t) are constant along σ. Then, M is called
Terng-isoparametric (or isoparametric according to Terng [19]) if it has constant principal
curvatures and flat normal bundle.

3. Chen’s surface

In this section we give a Lie theoretic description of the surface that arises in Theo-
rem B (ii). This surface was introduced by Chen in [7].

First we recall the characterizing properties of this surface according to [7]. A surface
M in CH2 is called slant if its tangent space has constant Kähler angle (called Wirtinger
angle or slant angle in [7]), that is, if for each nonzero vector v ∈ TpM the angle between
Jv and TpM is independent of p ∈ M and v ∈ TpM . Such surface is called proper slant
if it is neither complex nor totally real, that is, if the Kähler angle is neither 0 nor π/2.
The Chen’s surface that appears in Theorem B (ii) is, according to [7, Theorem A] and [9,
Theorem 5.1], the unique (up to isometric congruence) proper slant surface of CH2 with
Kähler angle θ = arccos(1/3), and satisfying 〈H,H〉 = 2K − c(1 + 3 cos2 θ)/2, where K is
the Gaussian curvature of M .

Chen’s surface turns out to be homogeneous, although not an orbit of a polar action,
and the aim of this section is to give a subgroup of the isometry group of CH2 one of
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whose orbits is precisely the Chen’s surface. For that matter let G = SU(1, 2) and K =
S(U(1)U(2)) ⊂ G, and write CH2 = G/K. Then K is the isotropy group of G at the
origin o = 1K. We denote by g and k the Lie algebras of G and K respectively. We
have the Cartan decomposition with respect to o, g = k ⊕ p, where p is the orthogonal
complement of k in g with respect to the Killing form of g. Let a be a maximal abelian
subspace of p, which is known to be 1-dimensional. For a covector λ ∈ a∗ we define gλ =
{X ∈ g : [H,X ] = λ(H)X, ∀H ∈ a}. Then, one can write g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α,
the so-called root space decomposition of g with respect to o and a. It is known that
g0 = k0 ⊕ a, where k0 = g0 ∩ k, and that g2α is 1-dimensional. We determine an ordering
in a∗ so that α is positive, and define the nilpotent subalgebra n = gα ⊕ g2α; we denote
by N the connected subgroup of G whose Lie algebra is n. The subspace a ⊕ n is then
a solvable subalgebra of g and we denote by AN the connected subgroup of G whose Lie
algebra is a ⊕ n. One can show that AN acts simply transitively on CH2, and that the
metric of CH2 induces a left-invariant metric in AN that we denote by 〈 · , · 〉. We also
denote by J the complex structure in a ⊕ n induced by the complex structure of ToCH

2.
This turns a⊕ n into a complex vector space such that gα is J-invariant (that is, gα ∼= C),
and Ja = g2α. Moreover, the decomposition a⊕ gα ⊕ g2α is orthogonal. We choose a unit
vector B ∈ a and define Z = JB ∈ g2α. The Levi-Civita connection of AN in terms of
left-invariant vector fields is determined by

(1)

1√
−c

∇̄aB+U+xZ

(

bB + V + yZ
)

=
(

xy +
1

2
〈U, V 〉

)

B − 1

2

(

bU + yJU + xJV
)

+
(

−bx +
1

2
〈JU, V 〉

)

Z,

where a, b, x, y ∈ R, and U , V ∈ gα. See for example [4].
Now assume that V ∈ gα is a unit vector. We have gα = RV ⊕ RJV . We define the

following subalgebra of a⊕ n:

h = RU1 ⊕ RU2, with U1 =
1√
3

(√
2B + JV

)

, and U2 =
1√
3

(

V +
√
2Z
)

.

Let H be the connected subgroup of AN whose Lie algebra is h, and M = H · o the orbit
through the origin. Since AN acts simply transitively on CH2 we may identify H with M
for the calculations that follow.

First notice that {U1, U2} is an orthonormal basis of the tangent space of M , and
〈JU1, U2〉 = 1/3. By homogeneity we conclude that M is a proper slant surface with
Kähler angle θ = arccos(1/3). Using (1) we get the mean curvature vector and the Gauss-
ian curvature

H =

√
−c

3

(

B −
√
2JV

)

, and K =
c

6
.

It readily follows from this equation that 〈H,H〉 = 2K − c(1 + 3 cos2 θ)/2 and hence, [7,
Theorem A] and [9, Theorem 5.1] imply that M is isometrically congruent to the Chen’s
surface.
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4. Proof of Theorem A

Let M be an isoparametric submanifold of M̄2(c). By definition, M has a section at
every point, that is, for each p ∈ M there exists a totally geodesic submanifold Σp through
p such that TpΣp = νpM . Totally geodesic submanifolds of complex space forms are known
to be either complex or totally real.

First we assume that the section is complex. Then, M is an almost complex submanifold
of a Kähler manifold, and hence, M is Kähler. Since the normal bundle of M is flat, [1,
Theorem 19] implies that M is either a point or an open part of M̄2(c).

Hence, we may assume from now on that sections are totally real. In this case, sections
are either geodesics or totally geodesic real projective planes RP 2 in CP 2 or real hyperbolic
planes RH2 in CH2. If the section is a geodesic, M is an isoparametric hypersurface. The
classification of isoparametric hypersurfaces in CP 2 follows from [14], and all examples
are open parts of orbits of cohomogeneity one actions. Indeed, we get from [14] the full
classification of isoparametric submanifolds of CP 2, but the arguments that follow for
higher codimension are also valid for this case. Isoparametric hypersurfaces in CHn have
been classified in [12, Corollary 1.2] and it follows from here that M is an open part of a
principal orbit of a cohomogeneity one action on CH2.

Therefore, we can assume that M has codimension 2. Since in this case sections are
totally real, it follows that TM and νM are both totally real. Indeed, M is Lagrangian as
JTpM = νpM for each p ∈ M .

If M is totally umbilical, then it follows from [8] that M is an open part of a totally
geodesic real projective plane RP 2 in CP 2 or a totally geodesic real hyperbolic plane RH2

in CH2. However, these are not isoparametric because their normal bundles are not flat.
We denote by ν1M the unit normal bundle of M . By assumption νM is flat. For a given

parallel unit normal vector field ξ ∈ Γ(ν1M) and r > 0 we define Φr,ξ : M → M̄2(c), p 7→
expp(rξ). Let γξp be the geodesic of M̄2(c) with initial conditions γξp(0) = p, γ′

ξp
(0) = ξp.

We also define the vector field ηr along Φr,ξ by ηr(p) = γ′
ξp
(r). Parallel submanifolds to

M are of the form M r,ξ = Φr,ξ(M). We calculate their mean curvature at Φr,ξ(p) in the
direction of ηr(p).

We denote by λ1, λ2 : ν
1M → R the principal curvature functions, which are given by

the fact that λ1(ξ) and λ2(ξ) are the eigenvalues of the shape operator Sξ. We have already
seen that M cannot be totally umbilical, so we may assume that there exists ξ ∈ ν1M such
that λ1(ξ) 6= λ2(ξ). By continuity, the principal curvature functions are thus different on
an open neighborhood of ξ in ν1M . In the sequel we assume that calculations take place
in such a neighborhood. We also denote by U1(ξ) and U2(ξ) a (local) orthonormal frame
of TM consisting of principal curvature vectors associated with λ1(ξ) and λ2(ξ).

Let p ∈ M . Using standard Jacobi field theory, we get that Φr,ξ
∗p (v) = Xv(r) for each v ∈

TpM , where Xv denotes the Jacobi vector field along γξ with initial conditions Xv(0) = v
and X ′

v(0) = −Sξ(v). Here (·)′ stands for covariant derivative along γξ. Recall that the
Jacobi equation on M̄2(c) along γξ can be written as 4X ′′ + cX + 3c〈X, Jγ′

ξ〉Jγ′
ξ = 0.

Moreover, it is known that the points where a Jacobi field vanishes correspond to the
singularities of the Riemannian exponential map. Since the Riemannian exponential map
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is a local diffeomorphism, it is then clear that Φr,ξ is a local diffeomorphism for sufficiently
small values of r. Thus, we will take, if necessary, a sufficiently small neighborhood of p
and sufficiently small values of r so that Φr,ξ is a diffeomorphism.

In order to simplify notation we define ui = Ui(ξp), i = 1, 2, and set v = ui in the previous
calculations. Then Xui

(t) = fλi
(t)Pξ

ui
(t)+〈ui, Jξ〉gλi

(t)Jγ′
ξ(t), where Pξ

v (t) denotes parallel
transport of v ∈ TpM along the geodesic γξ. The functions fλ and gλ are defined by

fλ(t) = cosh
(t

√
−c

2

)

− 2λ√
−c

sinh
(t

√
−c

2

)

,

gλ(t) =
(

cosh
(t

√
−c

2

)

− 1
)(

1 + 2 cosh
(t

√
−c

2

)

− 2λ√
−c

sinh
(t

√
−c

2

))

.

(For c > 0 one would have to replace hyperbolic trigonometric functions by standard
trigonometric functions.) In other words, Xui

is the parallel transport along γξ of the
tangent vector fλi

ui + 〈ui, Jξ〉gλi
Jξ. At this point we recall that M has totally real

tangent and normal bundles. Thus, Jξ is tangent to M and can be written as Jξ =
〈U1(ξ), Jξ〉U1(ξ) + 〈U2(ξ), Jξ〉U2(ξ). Moreover, since TΦr,ξ(p)M

r,ξ = Φr,ξ
∗p (TpM) and Φr,ξ is

a diffeomorphism, it is then clear that TΦr,ξ(p)M
r,ξ = Pξ

TpM
(r), that is, the tangent space

of M r,ξ at the point Φr,ξ(r) is obtained by parallel translation of TpM along the geodesic
γξ from p = γξ(0) to Φr,ξ(r) = γξ(r).

The previous considerations allow us to define the endomorphism-valued map of the
tangent space Dξ(t) : TΦt,ξ(p)M

t,ξ → TΦt,ξ(p)M
t,ξ by Dξ(t)(Pξ

v (t)) = Xv(t), for each v ∈
TpM . Since we are assuming that r is sufficiently small, Dξ(r) is actually an isomorphism

of the tangent space. We denote now by Sr,ξ
ηr the shape operator of M r,ξ with respect

to the radial vector ηr. It follows from Jacobi field theory that the shape operator of
M r,ξ is given by Sr,ξ

ηr (Φ
r,ξ
∗p (v)) = −X ′

v(r)
⊤, where (·)⊤ denotes the orthogonal projection

onto the tangent space TΦr,ξ(p)M
r,ξ. By the previous calculations, X ′

ui
(t) = f ′

λi
(t)Pξ

ui
(t) +

〈ui, Jξ〉g′λi
(t)Jγ′

ξ(t) ∈ TΦr,ξ(p)M
r,ξ. This implies that Sr,ξ

ηr = −D′
ξ(r)Dξ(r)

−1. Finally, the

mean curvature in radial directions is the function hr,ξ : M r,ξ → R determined by

hr,ξ(Φr,ξ(p)) =
1

2
trSr,ξ

ηr(p) = −1

2
trD′

ξ(r)Dξ(r)
−1 = −

d
dr
detDξ(r)

2 detDξ(r)
.

It is easy to check that detDξ = fλ1
fλ2

+ 〈U1(ξ), Jξ〉2fλ2
gλ1

+ 〈U2(ξ), Jξ〉2fλ1
gλ2

. The
function hr,ξ ◦ Φr,ξ can be calculated explicitly, but for our purpose it suffices to calculate
its Taylor power series expansion. After some relatively long but elementary calculations,
and using 〈U1(ξ), Jξ〉2 + 〈U2(ξ), Jξ〉2 = 〈Jξ, Jξ〉 = 1, we get

hr,ξ(Φr,ξ(p)) =
1

2

(

λ1(ξp) + λ2(ξp)
)

+
r

2

(5c

4
+ λ1(ξp)

2 + λ2(ξp)
2
)

+
r2

8

(

c
(

λ1(ξp) + λ2(ξp)
)

+ 4
(

λ1(ξp)
3 + λ2(ξp)

3
)

+ 3c
(

λ1(ξp)〈U1(ξp), Jξp〉2 + λ2(ξp)〈U2(ξp), Jξp〉2
)

)

+O(r3).
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Since M is isoparametric, the function hr,ξ is constant by assumption. Since Φr,ξ is a
diffeomorphism, this is equivalent to requiring that (hr,ξ ◦Φr,ξ)(p) does not depend on the
point p. More precisely, by hypothesis the expression (hr,ξ ◦ Φr,ξ)(p) depends both on r
and on the choice of parallel unit normal vector field ξ ∈ Γ(ν1M), but not on the base
point p of the vector ξp. Therefore, using the above power series expansion we obtain that
the functions p 7→ λi(ξ)(p) = λi(ξp), and p 7→ 〈Ui(ξ), Jξ〉(p) = 〈Ui(ξp), Jξp〉, i = 1, 2, are
constant for a fixed parallel vector field ξ ∈ Γ(ν1M). By linearity this argument readily
implies:

Proposition 4.1. An isoparametric submanifold of M̄2(c) is Terng-isoparametric.

In order to conclude the proof of Theorem A we simply have to verify the following
assertion:

Proposition 4.2. Let M be a Lagrangian, Terng-isoparametric submanifold of M̄2(c).
Then, M is an open part of a principal orbit of a cohomogeneity two polar action on

M̄2(c).

Proof. Since M is Lagrangian, JνpM = TpM . Let ξ ∈ Γ(νM) be a parallel normal vector
field and X ∈ Γ(TM). We denote by (·)⊥ the orthogonal projection onto νM . As Jξ is
tangent and since M̄2(c) is Kähler, the definition of the second fundamental form yields

0 = ∇⊥
Xξ = −∇⊥

XJ
2ξ = −

(

∇̄XJ
2ξ
)⊥

= −
(

J∇̄XJξ
)⊥

= −
(

J(∇XJξ + II(X, Jξ))
)⊥

= −J∇XJξ.

Therefore, ∇Jξ = 0 and it follows that M is flat.
Since M has constant principal curvatures and flat normal bundle, it is clear that M

has parallel mean curvature. Thus, M is a Lagrangian, flat surface of M̄2(c) with parallel
mean curvature and it was shown in [13, Theorem 2.1] that M is then an open part of a
principal orbit of a cohomogeneity two polar action on M̄2(c). �

In particular, propositions 4.1 and 4.2, together with the fact that the principal orbits
of a polar action are isoparametric submanifolds implies

Corollary 4.3. A Lagrangian submanifold of M̄2(c) is isoparametric if and only if it is

Terng-isoparametric.

Remark 4.4. There is a shorter alternative proof of Theorem A that does not require work-
ing with Jacobi fields. Indeed, once the problem was reduced to the case of an isoparametric
Lagrangian surface M , we could have argued as in the proof of Proposition 4.2 to show
that M is flat. Since by assumption M is Lagrangian and has parallel mean curvature,
by virtue of [13], M is a piece of a principal orbit of a cohomogeneity two polar action.
However, we have preferred to include the longer argument because it shows that, in order
to prove that an isoparametric submanifold in M̄2(c) has constant principal curvatures, it
is not necessary to appeal to the strong result in [13].
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5. Proof of Theorem B

We now consider a Terng-isoparametric submanifold M of M̄2(c). In particular, the
normal bundle of M is flat, and we have already seen in Section 4 that, if the normal
bundle of M is complex, then M is either a point or an open subset of M̄2(c). Thus, we
may assume from now on that the normal bundle of M is not complex.

If the normal bundle of M is totally real, M is either a hypersurface or a Lagrangian
submanifold. In the first case, M is a hypersurface of M̄2(c) with constant principal
curvatures. These were classified in [22] for CP 2 and in [3] for CH2 where it was shown
that such hypersurfaces are open parts of homogeneous hypersurfaces. In particular they
are open parts of orbits of cohomogeneity one actions, which are polar.

If the normal bundle is totally real and has rank 2, then M is Lagrangian. Hence, it
follows from Proposition 4.2 that M is an open part of a principal orbit of a cohomogeneity
two polar action on M̄2(c).

Therefore, we can assume from now on that the normal bundle of M is neither complex
nor totally real. If M is 1-dimensional, then M has to be a geodesic or a circle [2, §8.4],
so we also assume that M is 2-dimensional.

Hence, we take, at least locally, a parallel orthonormal frame {ξ, η} of the normal bundle
of M , and let {U1, U2} be an orthonormal frame of the tangent bundle of M such that
SξUi = λiUi, i = 1, 2. Since ξ is parallel, λ1 and λ2 are constant by assumption. At
this point we observe that the mean curvature vector of M is parallel because the normal
bundle is flat and the principal curvatures are constant (and hence the trace of each shape
operator with respect to a parallel normal vector field is constant). Therefore, we may
further assume that {ξ, η} is chosen so that η is perpendicular to the mean curvature
vector field.

Using the fact that TM and νM are neither complex nor totally real we can write
Jξ = b1U1+ b2U2+ aη, where a, b1, b2 : M → R are smooth functions with b21+ b22 + a2 = 1,
and b21 + b22 6= 0, a 6= 0. Since {U1, U2, ξ, η} is an orthonormal frame of TCH2 we can write

−ξ = J2ξ = b1JU1 + b2JU2 + aJη

= b1(〈JU1, U2〉U2 − b1ξ + 〈JU1, η〉η) + b2(−〈JU1, U2〉U1 − b2ξ + 〈JU2, η〉η)
+ a(−〈JU1, η〉U1 − 〈JU2, η〉U2 − aξ)

= (−b2〈JU1, U2〉 − a〈JU1, η〉)U1 + (b1〈JU1, U2〉 − a〈JU2, η〉)U2

+ (b1〈JU1, η〉+ b2〈JU2, η〉)η − ξ.

Thus, we have

−b2〈JU1, U2〉 − a〈JU1, η〉 = b1〈JU1, U2〉 − a〈JU2, η〉 = b1〈JU1, η〉+ b2〈JU2, η〉 = 0.

Using these equalities and b21 + b22 + a2 = 1, it is easy to show that we can write (up to a
choice of orientation)

Jξ = b1U1 + b2U2 + aη, Jη = −b2U1 + b1U2 − aξ,

JU1 = −aU2 − b1ξ + b2η, JU2 = aU1 − b2ξ − b1η.
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For i ∈ {1, 2}, using the Codazzi equation, taking into account that ξ is parallel and
that λ1 and λ2 are constant, we get

−3cabi
4

= 〈R̄(U1, U2)Ui, ξ〉 = (λ2 − λi)〈∇U1
U2, Ui〉 − (λ1 − λi)〈∇U2

U1, Ui〉.

Since a 6= 0 and b21 + b22 6= 0, we readily get λ1 6= λ2. Since {U1, U2} is an orthonormal
frame of the tangent bundle we obtain

∇Ui
Ui = − 3cabi

4(λ1 − λ2)
Uj , ∇Ui

Uj =
3cabi

4(λ1 − λ2)
Ui, i, j ∈ {1, 2}, i 6= j.(2)

Now, since νM is flat, the Ricci equation implies

c

4
(−b21 − b22 + 2a2) = 〈R̄(U1, U2)ξ, η〉 = 〈SξU1, SηU2〉 − 〈SηU1, SξU2〉

= (λ1 − λ2)〈SηU1, U2〉.
Recall that, since η is perpendicular to the mean curvature vector, we have trSη = 0, and
thus, with respect to the orthonormal basis {U1, U2} the shape operator Sη can be written
as

(3) Sη =

(

µ − c(1−3a2)
4(λ1−λ2)

− c(1−3a2)
4(λ1−λ2)

−µ

)

.

for some function µ : M → R.
By assumption, the eigenvalues of Sη are constant, or equivalently, the functions

(4) trSη = 0 and trS2
η = 2µ2 +

c2(1− 3a2)2

8(λ1 − λ2)2

are constant.
Now we calculate the derivatives of b1, b2 and a. We take i, j ∈ {1, 2}, i 6= j. Using (2)

and (3) we obtain

(5)

Uibi = Ui〈Ui, Jξ〉 = 〈∇̄Ui
Ui, biUi + bjUj + aη〉+ 〈Ui, ∇̄Ui

Jξ〉

= bj〈∇Ui
Ui, Uj〉+ a〈Ui, SηUi〉 − λi〈Ui, JUi〉 = − 3cab1b2

4(λ1 − λ2)
− a(−1)iµ,

Uibj = Ui〈Uj , Jξ〉 = 〈∇̄Ui
Uj , biUi + bjUj + aη〉+ 〈Uj , ∇̄Ui

Jξ〉
= bi〈∇Ui

Uj , Ui〉+ a〈Uj , SηUi〉 − λi〈Uj, JUi〉

=
3cab2i

4(λ1 − λ2)
− ca(1− 3a2)

4(λ1 − λ2)
− a(−1)iλi,

Uia = Ui〈Jξ, η〉 = 〈∇̄Ui
Jξ, η〉+ 〈biUi + bjUj + aη, ∇̄Ui

η〉
= −λi〈JUi, η〉 − bi〈Ui, SηUi〉 − bj〈Uj, SηUi〉

= bj(−1)iλi + bi(−1)iµ+
cbj(1− 3a2)

4(λ1 − λ2)
.
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In order to get a relation for the derivatives of µ, we use the Codazzi equation together
with (2), (3) and (5) to get, after some calculations

−3c(−1)iabj
4

= 〈R̄(U1, U2)Ui, η〉
= 〈∇U1

SηU2, Ui〉 − 〈∇U1
U2, SηUi〉 − 〈∇U2

SηU1, Ui〉+ 〈∇U2
U1, SηUi〉

= −Ujµ− 3ca(bjλi + 2biµ)

2(λ1 − λ2)
.

Thus, we obtain

(6) Uiµ =
3ca

4(λ1 − λ2)
(biλi − 3biλj − 4bjµ), i, j ∈ {1, 2}, i 6= j.

The aim of the argument that follows is to show that the functions b1, b2, a and µ are
constant. We first have

Lemma 5.1. If the function a : M → R is constant, then b1, b2 and µ are also constant.

Proof. If a is constant, it readily follows from (4) that µ is constant. Hence, from (6) we
get (λ1 − 3λ2)b1 − 4µb2 = −4µb1 + (λ2 − 3λ1)b2 = 0. This is a homogeneous linear system
in the variables b1 and b2, whose coefficients are constant. It cannot have a unique solution
because b1 = b2 = 0 is not possible, and thus the rank of the matrix of the system cannot
be 2. The rank cannot be 0 because that would imply λ1 = λ2 = 0. Thus, it has rank one
and we can write b2 = νb1 for some constant ν ∈ R. Then 1 − a2 = b21 + b22 = (1 + ν2)b21
implies that b1 is constant, and hence also b2. �

In view of Lemma 5.1, the calculations that follow aim at proving that a is constant.
Recall from (4) that trS2

η is constant. Hence there is k ∈ R such that

(7) µ2 = k − c2(1− 3a2)

16(λ1 − λ2)2
.

Taking derivatives in (7) with respect to Ui, using (5) and (6) and substituting µ2 by (7)
we get, after some calculations

(8)
0 = bj

(

(−1)jc2(1− 3a2)2 + 4c(1− 3a2)λi(λ1 − λ2) + 32(−1)ik(λ1 − λ2)
2
)

+ 4bi(λ1 − λ2)
(

c(1− 3a2)− 2(−1)i(λ1 − λ2)(λi − 3λj)
)

µ.

If c(1−3a2)+2(λ1−λ2)(λ1−3λ2) or c(1−3a2)−2(λ1−λ2)(λ2−3λ1) is zero in an open
set, then the function a is constant and it follows from Lemma 5.1 that b1, b2 and µ are
also constant. As a consequence, we may assume that there is a point in M where these
two functions do not vanish, and thus, they do not vanish in an open set. Moreover, if
bi = 0 in an open set, then it follows from the first equation in (5) that µ = 0, so by (7),
a is constant, and thus also bj . Hence, we also assume that bi, i = 1, 2, is not zero on an
open set. Thus, from (8) we get two possible expressions for µ, and combining this with (7)
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yields

0 =
(

k −

c
2(1− 3a2)2

16(λ1 − λ2)2

)

−

(

−b2
c
2(1− 3a2)2 + 4c(1− 3a2)λ1(λ1 − λ2)− 32k(λ1 − λ2)

2

4b1(λ1 − λ2)(c(1− 3a2) + 2λ2

1
− 8λ1λ2 + 6λ2

2
)

)

·

·

(

b1
c
2(1− 3a2)2 − 4c(1− 3a2)λ2(λ1 − λ2)− 32k(λ1 − λ2)

2

4b2(λ1 − λ2)(c(1− 3a2) + 6λ2

1
− 8λ1λ2 + 2λ2

2
)

)

=
−c

3(1− 3a2)3 − 3c2(1− 3a2)2(4k + (λ1 − λ2)
2) + 16k(λ1 − λ2)

2(16k + 3λ2

1 − 10λ1λ2 + 3λ2

2)

4(c(1− 3a2) + 2λ2

1
− 8λ1λ2 + 6λ2

2
)(c(1− 3a2) + 6λ2

1
− 8λ1λ2 + 2λ2

2
)

.

This equation implies that 1 − 3a2 is constant, and hence, by Lemma 5.1 we get that b1,
b2 and µ are also constant.

Using (5) we get

0 = U1b1 + U2b2 = − 3cab1b2
2(λ1 − λ2)

,

and since a 6= 0 we get b1 = 0 or b2 = 0. We may assume b1 6= 0, b2 = 0, a2 = 1 − b21.
Then, by (5) we obtain 0 = U2b2 = −aµ, so µ = 0. Next, equation (6) implies that
0 = U1µ = 3cab1(λ1 − 3λ2)/(4(λ1 − λ2)), and thus, λ1 = 3λ2 6= 0. Finally, using (5) once
more,

0 = U1b2 =
3cab21 − ca(1− 3a2)

4(λ1 − λ2)
+ aλ1 =

a(c+ 12λ2
2)

4λ2
.

Hence, if c > 0 we get a contradiction, which yields

Proposition 5.2. A Terng-isoparametric surface of CP 2 is isoparametric.

Otherwise, if c < 0 we have λ2 = ±
√
−3c/6. By changing the orientation if necessary,

we may assume λ2 > 0. Finally, (5) yields 0 = U2a = cb1(9b
2
1 − 8)/(4

√
−3c). Altogether

we have obtained

Sξ =

(√
−3c
2

0

0
√
−3c
6

)

, Sη =

(

0
√
−3c
6√

−3c
6

0

)

, a =
1

3
, b1 =

2
√
2

3
, b2 = 0.

Finally, it follows from [9, Theorem 5.1(vi)] that M is an open part of a Chen’s surface,
as we wanted to show.
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