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THE STRUCTURE OF ALGEBRAIC COVARIANT DERIVATIVE

CURVATURE TENSORS

J. DÍAZ-RAMOS, B. FIEDLER, E. GARCÍA-RÍO, AND P. GILKEY

Abstract. We use the Nash embedding theorem to construct generators for
the space of algebraic covariant derivative curvature tensors.

1. Introduction

Let M be an m dimensional Riemannian manifold. To a large extent, the geom-
etry of M is the study of the Riemannian curvature R ∈ ⊗4T ∗M which is defined
by the Levi-Civita connection ∇ and, to a lesser extent, the study of the covariant
derivative ∇R. For example, M is a local symmetric space if and only if ∇R = 0;
note that local symmetric spaces are locally homogeneous.

It is convenient to work in the algebraic context. Let V be an m-dimensional real
vector space. Let A(V ) ⊂ ⊗4V ∗ and A1(V ) ⊂ ⊗5V ∗ be the spaces of all algebraic
curvature tensors and all algebraic covariant derivative tensors, respectively, i.e.
those tensors A and A1 having the symmetries of R and of ∇R:

A(x, y, z, w) = A(z, w, x, y) = −A(y, x, z, w),

A(x, y, z, w) +A(y, z, x, w) +A(z, x, y, w) = 0,

A1(x, y, z, w; v) = A1(z, w, x, y; v) = −A1(y, x, z, w; v),

A1(x, y, z, w; v) +A1(y, z, x, w; v) +A1(z, x, y, w; v) = 0,

A1(x, y, z, w; v) +A1(x, y, w, v; z) +A1(x, y, v, z;w) = 0 .

Let Sp(V ) ⊂ ⊗pV ∗ be the space of totally symmetric p forms. If Ψ ∈ S2(V ) and if
Ψ1 ∈ S3(V ), define AΨ ∈ A(V ) and A1,Ψ,Ψ1

∈ A1(V ) by:

AΨ(x, y, z, w) : = Ψ(x,w)Ψ(y, z) − Ψ(x, z)Ψ(y, w),

A1,Ψ,Ψ1
(x, y, z, w; v) : = Ψ1(x,w, v)Ψ(y, z) + Ψ(x,w)Ψ1(y, z, v)

− Ψ1(x, z, v)Ψ(y, w) − Ψ(x, z)Ψ1(y, w, v) .

If one thinks of Ψ1 as the symmetrized covariant derivative of Ψ, then A1,Ψ,Ψ1
can

be regarded, at least formally speaking, as the covariant derivative of AΨ.
Fiedler [6, 7] used group representation theory to show:

Theorem 1.1 (Fiedler).

(1) A(V ) = SpanΨ∈S2(V ){AΨ}.

(2) A1(V ) = SpanΨ∈S2(V ),Ψ1∈S3(V ){A1,Ψ,Ψ1
}.

Let A ∈ A(V ) and A1 ∈ A1(V ) be given. Choose ν(A) and ν1(A1) minimal so

that there exist Ψi ∈ S2(V ), Ψ̃j ∈ S2(V ), Ψ̃1,j ∈ S3(V ), and constants λi, λ1,j so:

A =
∑

1≤i≤ν(A) λiAΨi
and A1 =

∑
1≤j≤ν1(A1)

λ1,jA1,Ψ̃j ,Ψ̃1,j
.
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Set

ν(m) := sup
A∈A(V )

ν(A) and ν1(m) := sup
A1∈A1(V )

ν1(A1) .

The main result of this paper is the following:

Theorem 1.2. Let m ≥ 2.

(1) 1
2m ≤ ν(m) and 1

2m ≤ ν1(m).

(2) ν(m) ≤ 1
2m(m+ 1) and ν1(m) ≤ 1

2m(m+ 1).

We shall establish the lower bounds of Assertion (1) in Section 2. The upper
bound given in Assertion (2) for ν(m) is due to Dı́az-Ramos and Garćıa-Rı́o [4] who
used the Nash embedding theorem [17]; they also gave a separate argument to show
ν(2) = 1 and ν(3) = 2. In Section 3, we shall generalize their approach to establish
the following simultaneous ‘diagonalization’ result from which Theorem 1.2 (2) will
follow as a Corollary:

Theorem 1.3. Let V be an m dimensional vector space. Let A ∈ A(V ) and let

A1 ∈ A1(V ) be given. There exists Ψi ∈ S2(V ) and Ψ1,i ∈ S3(V ) so that

A =
∑

1≤i≤ 1

2
m(m+1)AΨi

and A1 =
∑

1≤i≤ 1

2
m(m+1)A1,Ψi,Ψ1,i

.

The study of the tensors AΨ arose in the original instance from the Osserman
conjecture and related matters; we refer to [9, 11] for a more extensive discussion
than is possible here, and content ourselves with only a very brief introduction to
the subject.

1.1. The Jacobi operator. If M is a pseudo-Riemannian manifold of signature
(p, q) and dimension m = p + q, let S+(M) (resp. S−(M)) be the bundle of unit
spacelike (resp. timelike) tangent vectors. The Jacobi operator J(x) for x ∈ TM is
the self-adjoint endomorphism of TM characterized by the identity:

g(J(x)y, z) = R(y, x, x, z) .

One says that M is spacelike Osserman (resp. timelike Osserman) if the eigenvalues
of J(·) are constant on S+(M) (resp. S−(M)). It turns out these two notions are
equivalent and such a manifold is simply said to be Osserman.

Restrict for the moment to the Riemannian setting (p = 0). If M is a local
rank 1 symmetric space or is flat, then the local isometries of M act transitively on
the sphere bundle S(M) = S+(M) and hence the eigenvalues of J(·) are constant
on S(M) and M is Osserman. Osserman [22] wondered if the converse held; this
question has been called the Osserman conjecture by subsequent authors. The
conjecture has been answered in the affirmative if m 6= 16 by work of Chi [3] and
Nikolayevsky [18, 19, 20].

In the Lorentzian setting (p = 1), an Osserman manifold has constant sectional
curvature [2, 8]. In the higher signature setting (p > 1, q > 1) it is more natural
to work with the Jordan normal form rather than just the eigenvalue structure.
One says that M is spacelike Jordan Osserman (resp. timelike Jordan Osserman)
if the Jordan normal form of J(·) is constant on S+(M) (resp. S−(M)); these
two notions are not equivalent. The following example is instructive. Let (~x, ~y)
for ~x = (x1, ..., xp) and ~y = (y1, ..., yp) be coordinates on R

2p where p ≥ 3. Let
f = f(~x) ∈ C∞(Rp). Define a pseudo-Riemannian metric gf of signature (p, p) on
R

2p by setting

(1.a) gf (∂x
i , ∂

x
j ) = ∂x

i f ·∂
x
j f, gf(∂y

i , ∂
y
j ) = 0, and gf (∂x

i , ∂
y
j ) = gf (∂y

j , ∂
x
i ) = δij .

Let Ψ be the Euclidean Hessian:

Ψ(∂x
i , ∂

x
j ) = ∂x

i ∂
x
j f, Ψ(∂y

i , ∂
y
j ) = 0, and Ψ(∂x

i , ∂
y
j ) = Ψ(∂y

j , ∂
x
i ) = 0 .
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One then has that R = AΨ. We suppose that the restriction of Ψ to Span{∂x
i , ∂

x
j }

is positive definite henceforth. Then M is a complete pseudo-Riemannian manifold
which is spacelike and timelike Jordan Osserman. Similarly set

Ψ1(∂
x
i , ∂

x
j , ∂

x
k ) = ∂x

i ∂
x
j ∂

x
kf

and extend Ψ1 to vanish if any entry is ∂y
ℓ . One has ∇R = A1,Ψ,Ψ1

; thus if f is
not quadratic, M is not a local symmetric space. With a bit more work one can
show that for generic such f , M is curvature homogeneous but not locally affine
homogeneous. We refer to [5, 14] for further details.

1.2. The skew-symmetric curvature operator. Let {e1, e2} be an orthonormal
basis for an oriented spacelike (resp. timelike) 2 plane π. The skew-symmetric
curvature operator R(π) is characterized by the identity

g(R(π)y, z) = R(e1, e2, y, z) ;

it is independent of the particular orthonormal basis chosen. One says that M
is spacelike Ivanov-Petrova (resp. timelike Ivanov-Petrova) if the eigenvalues of
R(·) are constant on the Grassmannian of oriented spacelike (resp. timelike) 2-
planes; these two notions are equivalent and such a manifold is simply said to be
Ivanov-Petrova. The notions spacelike Jordan Ivanov-Petrova and timelike Jordan

Ivanov-Petrova are defined similarly and are not equivalent.
The Riemannian Ivanov-Petrova manifolds have been classified [10, 13, 21]; they

have also been classified in the Lorentzian setting [24] if m ≥ 10. For all these
manifolds, the curvature tensors have the form R = AΨ where Ψ is an idempotent
isometry and R(π) always has rank 2. Conversely, in the algebraic setting, if R
is a spacelike Jordan Ivanov-Petrova algebraic curvature tensor on a vector space
of signature (p, q) where q ≥ 5 and where Rank{R(·)} = 2, then there exist λ
and Ψ so that R = λAΨ. This once again motivates the study of these tensors.
Unfortunately, the situation in the indefinite setting is again quite different. There
exist spacelike Ivanov-Petrova manifolds of signature (s, 2s) where R(π) has rank 4
and where the curvature tensor does not have the form R = AΨ. We refer to [15]
for further details.

1.3. The Szabó operator. There is an analogous operator to the Jacobi operator
which is defined by ∇R. The Szabó operator J1(x) is the self-adjoint endomorphism
of TM characterized by g(J1(x)y, z) = ∇R(y, x, x, z;x). One says that M is space-

like Szabó (resp. timelike Szabó) if the eigenvalues of J1(·) are constant on S+(M)
(resp. S−(M)); these notions are equivalent and such a manifold is simply said to
be Szabó. The notion spacelike (resp. timelike) Jordan Szabó is defined similarly.

In his study of 2 point symmetric spaces, Szabó [23] gave a very lovely topolog-
ical argument showing that any Riemannian Szabó manifold is necessarily a local
symmetric space – i.e. ∇R = 0. This result was subsequently extended to the
Lorentzian case [16]. In the higher signature setting, again the situation is un-
clear. The metric gf described in Display (1.a) defines a Szabó pseudo-Riemannian
manifolds of signature (p, p).

Even in the algebraic setting, there are no known non-zero elements A1 ∈ A(V )
which are spacelike Jordan Szabó. It has been shown [12] that if A1 is a spacelike
Jordan Szabó algebraic covariant derivative curvature tensor on a vector space of
signature (p, q), where q ≡ 1 mod 2 and p < q or where q ≡ 2 mod 4 and p < q− 1,
then A1 = 0. This algebraic result yields an elementary proof of the geometrical
fact that any pointwise totally isotropic pseudo-Riemannian manifold with such a
signature (p, q) is locally symmetric. The general question of finding non-trivial
spacelike Jordan Szabó covariant algebraic curvature tensors, or conversely showing
non exist, remains open.
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The examples discussed above motivate consideration of the tensors A1,Ψ,Ψ1
and

more generally of tensors which are combinations of these. We hope that Theorems
1.2 and 1.3, although of interest in their own right, will play a central role in these
investigations.

2. A lower bound for ν(m) and for ν1(m)

Let V be an m dimensional vector space, let A ∈ A(V ), and let A1 ∈ A1(V ).
Give V a positive definite inner product 〈·, ·〉. The associated curvature operators
are then defined by the identities:

〈RA(ξ1, ξ2)z, w〉 = A(ξ1, ξ2, z, w), and

〈RA1
(ξ1, ξ2, ξ3)z, w〉 = A1(ξ1, ξ2, z, w; ξ3) .

Theorem 1.2 (1) will follow from the following Lemma:

Lemma 2.1. Let V be a vector space of dimension m = 2m̄ or m = 2m̄+ 1.

(1) If Ψ ∈ S2(V ) and if Ψ1 ∈ S3(V ), then for any ξ1, ξ2, ξ3 ∈ V one has:

Rank{RAΨ
(ξ1, ξ2)} ≤ 2 and Rank{RA1,Ψ,Ψ1

(ξ1, ξ2, ξ3)} ≤ 2 .

(2) If A ∈ A(V ) and A1 ∈ A1(V ), then for any ξ1, ξ2, ξ3 ∈ V one has:

Rank{RA(ξ1, ξ2)} ≤ 2ν(A) and Rank{RA1
(ξ1, ξ2, ξ3)} ≤ 2ν1(A1) .

(3) There exist A ∈ A(V ), A1 ∈ A1(V ), and ξ1, ξ2, ξ3 ∈ V so:

Rank{RA(ξ1, ξ2)} = 2m̄ and Rank{RA1
(ξ1, ξ2, ξ1)} = 2m̄ .

Proof. If Ψ ∈ S2(V ) and Ψ1 ∈ S3(V ), let ψ and ψ1(·) be the associated self-adjoint
endomorphisms characterized by the identities

〈ψx, y〉 = Ψ(x, y) and 〈ψ1(z)x, y〉 = Ψ1(x, y, z) .

Assertion (1) follows from the expression:

RAΨ
(ξ1, ξ2)y = {Ψ(ξ2, y)ψ}ξ1 − {Ψ(ξ1, y)ψ}ξ2, and

RA1,Ψ,Ψ1
(ξ1, ξ2, ξ3)y = {Ψ(ξ2, y)ψ1(ξ3) + Ψ1(ξ2, y, ξ3)ψ}ξ1

− {Ψ(ξ1, y)ψ1(ξ3) + Ψ1(ξ1, y, ξ3)ψ}ξ2 .

Let Ai := AΨi
, A1,j := A1,Ψ̃j ,Ψ̃1,j

, Ri := RAi
, and R1,i := RA1,i

. Set

A =
∑

1≤i≤ν(A)Ai and A1 =
∑

1≤j≤ν1(A1)
A1,j .

Assertion (2) follows from Assertion (1) as

Rank{RA(·)} = Rank{
∑

1≤i≤ν(A) Ri(·)}

≤
∑

1≤i≤ν(A) Rank{Ri(·)} ≤ 2ν(A),

Rank{RA1
(·)} = Rank{

∑
1≤j≤ν1(A1) R1,j(·)}

≤
∑

1≤j≤ν1(A1) Rank{R1,j(·)} ≤ 2ν1(A1) .

If dim(V ) = 2m̄, let {e1, ..., em̄, f1, ..., fm̄} be an orthonormal basis for V ; if
dim(V ) is odd, the argument is similar and we simply extend A and A1 to be trivial
on the additional basis vector. Define the non-zero components of Ψi ∈ S2(V ) and
Ψ1,i ∈ S3(V ) by:

Ψi(ej , ek) = Ψi(fj , fk) = δijδik,

Ψ1,i(ej , ek, el) = Ψ1,i(fj , fk, fl) = δijδikδil;

Ψi(·, ·) and Ψ1,i(·, ·, ·) vanish if both an ‘e’ and an ‘f’ appear. Let

Ai := AΨi
, Ri := RAi

, A1,i := A1,Ψi,Ψ1,i
, R1,i := RA1,i

,

A :=
∑

1≤i≤m̄Ai, A1 :=
∑

1≤i≤m̄A1,i,

ξ1 := e1 + ...+ em̄, ξ2 := f1 + ...+ fm̄, ξ3 := ξ1 + ξ2 .
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We may then complete the proof of Assertion (3) by computing:

RA(ξ1, ξ2)ei = Ri(ei, fi)ei = −fi,

RA(ξ1, ξ2)fi = Ri(ei, fi)fi = ei,

RA1
(ξ1, ξ2, ξ3)ei = R1,i(ei, fi, ei + fi)ei = −2fi

RA1
(ξ1, ξ2, ξ3)fi = R1,i(ei, fi, ei + fi)fi = 2ei . ⊓⊔

3. Geometric realizability

Henceforth, let 〈·, ·〉 be a non-singular innerproduct on an m dimensional vector
space V , let A ∈ A(V ) and let A1 ∈ A(V ).

Although the following is well-known, see for example Belger and Kowalski [1]
where a more general result is established, we shall give the proof to keep the devel-
opment as self-contained as possible and to establish notation needed subsequently.

Lemma 3.1.

(1) If g is a pseudo-Riemannian metric on R
m with ∂igjk(0) = 0, then:

(a) Rijkl(0) = 1
2{∂i∂kgjl + ∂j∂lgik − ∂i∂lgjk − ∂j∂kgil}(0).

(b) Rijkl;n(0) = 1
2{∂i∂k∂ngjl + ∂j∂l∂ngik − ∂i∂l∂ngjk − ∂j∂k∂ngil}(0).

(2) There exists the germ of a pseudo-Riemannian metric g on (Rm, 0) and an

isomorphism Ξ from T0(R
m) to V so that

(a) Ξ∗〈·, ·〉 = g|T0(Rm).

(b) Ξ∗A = Rg|T0(Rm).

(c) Ξ∗A1 = ∇Rg|T0(Rm).

Proof. Since the 1 jets of the metric vanish at the origin, we have

Γijk := g(∇∂i
∂j , ∂k) = 1

2 (∂igjk + ∂jgik − ∂kgij) = O(|x|),

Rijkl(0) = {∂iΓjkl − ∂jΓikl}(0), and Rijkl;n(0) = {∂nRijkl}(0) .

Assertion (1) now follows; see, for example, [11] [cf Lemma 1.11.1] for further details.
To prove the second assertion, choose an orthonormal basis {e1, ..., em} for V so that
〈ei, ej〉 = ±δij ; we use this orthonormal basis to identify V = R

m. Let Aijkl and
A1,ijkl;n denote the components of A and of A1, respectively. Define

gik = 〈ei, ek〉 −
1
3

∑
jl Aijlkxjxl −

1
6

∑
jln A1,ijlk;nxjxlxn .

Clearly gik = gki. As g|T0R
m = 〈·, ·〉, g is non-degenerate on some neighborhood of

0. Since the 1 jets of the metric vanish at 0 we have by Assertion (1) that

Rijkl(0)

= 1
6{−Ajikl −Ajkil −Aijlk −Ailjk +Ajilk +Ajlik +Aijkl +Aikjl}

= 1
6{4Aijkl − 2Ailjk − 2Aiklj} = Aijkl ,

Rijkl;n(0)

= 1
12{−Ajikl;n −Ajkil;n −Ajnkl;i −Ajknl;i −Ajinl;k −Ajnil;k

− Aijlk;n −Ailjk;n −Ainlk;j −Ailnk;j −Aijnk;l −Ainjk;l

+ Ajilk;n +Ajlik;n +Ajnlk;i +Ajlnk;i +Ajink;l +Ajnik;l

+ Aijkl;n +Aikjl;n +Ainkl;j +Aiknl;j +Aijnl;k +Ainjl;k}

= 1
12{(4Aijkl;n − 2Ajkil;n + 2Ajlik;n) + (−2Ajnkl;i − 2Ainlk;j)

+ (−2Ajinl;k − 2Aijnk;l) + (−Ailnk;j −Ajnil;k)

+ (−Ainjk;l −Ajknl;i) + (Ajlnk;i +Ainjl;k) + (Ajnik;l +Aiknl;j)}

= 1
12{6Aijkl;n + 2Aijkl;n + 2Aijkl;n +Ailkj;n +Ajkli;n −Ajlki;n −Aiklj;n}

= 1
12{10Aijkl;n + 2Ailkj;n + 2Aikjl;n} = 1

12{10Aijkl;n − 2Aijlk;n} = Aijkl;n . ⊓⊔
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We suppose the inner product 〈·, ·〉 is positive definite henceforth. We apply the
Nash embedding theorem [17] to find an embedding f : R

m → R
m+κ realizing the

metric g constructed in Lemma 3.1. By writing the submanifold as a graph over
its tangent plane, we can choose coordinates (x, y) on R

m+κ where x = (x1, ..., xm)
and y = (y1, ..., yκ) so that

f(x) = (x, f1(x), ..., fκ(x)) where dfν(0) = 0 for 1 ≤ ν ≤ κ .

Since f∗(∂
x
i ) = (0, ..., 1, ..., 0, ∂x

i f1, ...., ∂
x
i fκ), we have

gij(x) = δij +
∑

1≤σ≤κ ∂
x
i fσ · ∂x

j fσ .

Let Ψσ
ij := ∂x

i ∂
x
j fσ(0) and Ψσ

ijk := ∂x
i ∂

x
j ∂

x
kfσ(0). As dgij(0) = 0, by Lemma 3.1:

Rijkl(0)

= 1
2

∑
1≤σ≤κ{(Ψ

σ
ijΨ

σ
kl + Ψσ

ilΨ
σ
kj) + (Ψσ

jiΨ
σ
lk + Ψσ

jkΨσ
li)

− (Ψσ
ijΨ

σ
lk + Ψσ

ikΨσ
lj) − (Ψσ

jiΨ
σ
kl + Ψσ

jlΨ
σ
ki)}

=
∑

1≤σ≤κ{Ψ
σ
ilΨ

σ
jk − Ψσ

ikΨσ
jl} =

∑
1≤σ≤κAΨσ ,

Rijkl;n(0)

= 1
2

∑
1≤σ≤κ{(Ψ

σ
jinΨσ

lk + Ψσ
jknΨσ

li + Ψσ
jiΨ

σ
lkn + Ψσ

jkΨσ
lin + Ψσ

jikΨσ
ln + Ψσ

jnΨσ
lik)

+ (Ψσ
ijnΨσ

kl + Ψσ
ilnΨσ

kj + Ψσ
ijΨ

σ
kln + Ψσ

ilΨ
σ
kjn + Ψσ

ijlΨ
σ
kn + Ψσ

inΨσ
kjl)

− (Ψσ
jinΨσ

kl + Ψσ
jlnΨσ

ki + Ψσ
jiΨ

σ
kln + Ψσ

jlΨ
σ
kin + Ψσ

jilΨ
σ
kn + Ψσ

jnΨσ
kil)

− (Ψσ
ijnΨσ

lk + Ψσ
iknΨσ

lj + Ψσ
ijΨ

σ
lkn + Ψσ

ikΨσ
ljn + Ψσ

ijkΨσ
ln + Ψσ

inΨσ
ljk)

=
∑

1≤σ≤κ{Ψ
σ
ilnΨσ

jk + Ψσ
jknΨσ

il − Ψσ
iknΨσ

jl − Ψσ
ikΨσ

jln} =
∑

1≤σ≤κA1,Ψσ ,Ψσ .

Consequently, ν(A) ≤ κ and ν(A1) ≤ κ. Theorem 1.3 follows from the Nash
embedding theorem as in the analytic category we may take κ ≤ 1

2m(m+ 1). ⊓⊔
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Dedication

11 de Marzo de 2004 Madrid: En memoria de todas las v́ıctimas inocentes.
Todos ı́bamos en ese tren. (In memory of all these innocent victims. We were all
on that train.)
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